# SPACE SHUTTLE ORBITER THRUST STRUCTURE

DESIGN PROJECT 1 Final Report AEE 471 | Davidson Assigned:August 31st, 2018 Due Date: September 28th, 2018

TYLER VARTABEDIAN

# TABLE OF CONTENTS

| TABLE OF CONTENTS                                   | 2  |
|-----------------------------------------------------|----|
| PROVIDED INFORMATION                                | 3  |
| LIMIT AND DESIGN LOADS                              | 4  |
| DESIGN CONDITION ONE                                | 5  |
| STRUTS AB and DE, CIRCULAR CROSS SECTIONS (Tubes)   | 6  |
| STRUTS AC and CD, I-BEAM CROSS SECTIONS             | 7  |
| STRUTS BC and CE, SQUARE/RECTANGULAR CROSS SECTIONS | 8  |
| DESIGN CONDITION TWO                                | 10 |
| DESIGN CONDITION THREE                              | 11 |
| FINAL DESIGN INFORMATION                            | 13 |

#### PROVIDED INFORMATION

This project encompasses the design of a space shuttle orbiter upper thrust structure. This structure is simplified and shown below in *Figure 1*. The end goal of this project is to appropriately design the idealized upper thrust structure as seen in *Figure 1* featuring minimum weights.



Each engine (with 3 in total) generates 375,000 lbf of thrust and can gimbal up to  $8^{\circ}$ . The forces *P1*, *P2*, and *P3* are shown below for each case, where cases 2 and 3 account for anticipated gimbal.

|    | CASE 1      | CASE 2      | CASE 3      |
|----|-------------|-------------|-------------|
| P1 | 101,196 lbf | 120,000 lbf | 88,391 lbf  |
| Р2 | 227,655 lbf | 227,655 lbf | 227,655 lbf |
| Р3 | 104,196 lbf | 88,391 lbf  | 120,000 lbf |

Table 1 (Davidson, AEE 471 Handout, 8/31/18)

Each beam will be designed from Ti-5AL-2.5Sn Titanium and B4/N5505 Boron/Epoxy, which feature the following properties:

|                                                         | Titanium | Boron   |
|---------------------------------------------------------|----------|---------|
| Modulus, E (msi)                                        | 15.500   | 29.600  |
| <b>Poisson's ratio</b> v                                | 0.330    | 0.210   |
| Yield stress, $\sigma_{ys}$ (ksi)                       | 110.000  | n/a     |
| Ultimate Strength in<br>tension, σ <sub>uts</sub> (ksi) | 115.000  | 183.000 |
| Ultimate Strength in compression, $\sigma_{ucs}$ (ksi)  | 115.000  | 363.000 |
| Density (lb/in^3)                                       | 0.162    | 0.072   |

 Table 2 (Davidson, AEE 471 Handout, 8/31/18)
 Paint 1/18

For initial constraints, stuts AC and CD are to be I-beams with a maximum outer depth of four inches. Struts AB and DE are to have thin-walled circular cross sections with a maximum outer radius of four inches. Finally, struts BC and CE are to have square or rectangular cross sections featuring a maximum outer depth of six inches.

#### LIMIT AND DESIGN LOADS

First in this design process comes calculating limit and design loads. These will later lead to calculating appropriate factors of safeties of various failure modes. Limit loads are the internal forces experienced by each strut for each load case. The maximum limit load will be picked from the appropriate load case, and this will continue to be a driving force for further design conditions as the design develops. Design loads will be calculated, by multiplying the limit loads by a factor of safety of 1.5, or in the case of a yield stress will be a 1.25 factor of safety. Results for this aspect of the design are shown below in *Tables 3 and 4*. Design loads and peak limit loads are in *Table 4*, with the limit loads for each load case are in *Table 3*. Calculations for this are shown in Appendix A, where numbers are calculated in Appendix m in MATLAB.

|                               |          | No Gimbal<br>(Case 1) | Gimbal Right<br>(Case 2) | Gimbal Left<br>(Case 3) |
|-------------------------------|----------|-----------------------|--------------------------|-------------------------|
| Load Cases and<br>Limit Loads | P1 (lbf) | 101,196               | 120,000                  | 88,391                  |
|                               | P2 (lbf) | 227,655               | 227,655                  | 227,655                 |
|                               | P3 (lbf) | 104,196               | 88,391                   | 120,000                 |
|                               | AC       | 50,589 (T)            | 58,262 (T)               | 42,915 (T)              |
|                               | CD       | 50,589 (T)            | 42,915 (T)               | 58,262 (T)              |
| Load in Strut                 | AB       | 77,211 (C)            | 88,922 (C)               | 65,499 (C)              |
| (lbf)                         | DE       | 77,211 (C)            | 65,499 (C)               | 88,922 (C)              |
|                               | BC       | 138,120 (C)           | 151,670 (C)              | 124,570 (C)             |
|                               | CE       | 138,120 (C)           | 124,570 (C)              | 151,670 (C)             |

Table 3 (Appendix A and M)

Table 4 (Appendix A and M) (T=Tension, C=Compression)

| Strut | Load Case        | Peak Limit Load<br>(lbf) | Design Load (lbf) |
|-------|------------------|--------------------------|-------------------|
| AC    | Gimbal Right (2) | 58,262 (T)               | 87,392 (T)        |
| CD    | Gimbal Left (3)  | 58,262 (T)               | 87,392 (T)        |
| AB    | Gimbal Right (2) | 88,922 (C)               | 133,380 (C)       |
| DE    | Gimbal Left (3)  | 88,922 (C)               | 133,380 (C)       |
| BC    | Gimbal Right (2) | 151,670 (C)              | 227,500 (C)       |
| СЕ    | Gimbal Left (3)  | 151,670 (C)              | 227,500 (C)       |

#### DESIGN CONDITION ONE

-Appendix B, C, and D, Appendix M for calculations in MATLAB (lines 70-209)

This section utilizes all Titanium Struts, utilizing the material properties available in Table 2.

## **Total Weight** (Design Condition 1 Only) = 620.837 lbs Given By Equation 1: Total Weight = $2 * Weight_{BC,CE} + 2 * Weight_{AB,DE} + 2 * Weight_{AC,CD}$ (1)

STRUTS AB and DE, CIRCULAR CROSS SECTIONS (Tubes)

-Appendix B, Appendix M for calculations (lines 118-160) -In Compression





Table 5

| Requirements                            |             |  |
|-----------------------------------------|-------------|--|
| Limit Load (lbf)                        | 88,922.000  |  |
| Design Load (lbf)                       | 133,380.000 |  |
| Desiş                                   | gn Geometry |  |
| Outer Radius (in)                       | 4.000       |  |
| Inner Radius (in)                       | 3.811       |  |
| Length of strut (in)                    | 201.156     |  |
| Analysis Information                    |             |  |
| Cross-sectional area (in <sup>2</sup> ) | 4.638       |  |
| Moment of Inertia I (in <sup>4</sup> )  | 35.391      |  |
| Correlation coefficient ( y )           | 0.810       |  |
| Cylindrical Buckling coefficient $k_x$  | 28,729.000  |  |
| Failure Predictions                     |             |  |

| Critical Load-Euler Buckling (lbf)       | 133,800.000   |  |
|------------------------------------------|---------------|--|
| Critical Load-Cylindrical Buckling (lbf) | 1,682,700.000 |  |
| Critical Load-Ultimate Failure (lbf)     | 533,350.000   |  |
| Critical Load-Yielding (lbf)             | 510,170.000   |  |
| Factors of Safety                        |               |  |
| Euler Buckling                           | 1.505         |  |
| Cylindrical Buckling                     | 18.924        |  |
| Ultimate Failure                         | 5.998         |  |
| Yielding                                 | 5.737         |  |
| Weight of each Strut (lbs)               | 151.135       |  |

## STRUTS AC and CD, I-BEAM CROSS SECTIONS

-Appendix C, Appendix M for calculations (lines 70-117) -In Tension

Figure 3



| Table 6                                |                |  |
|----------------------------------------|----------------|--|
| Requirements                           |                |  |
| Limit Load (lbf)                       | 58,262.000     |  |
| Design Load (lbf)                      | 87,392.000     |  |
| Design Geometry                        |                |  |
| bf-bottom (in)                         | 1.037          |  |
| bf-top (in)                            | 1.100          |  |
| tf-bottom (in)                         | 0.400          |  |
| tf-top (in)                            | 0.400          |  |
| tw                                     | 0.200          |  |
| bw                                     | 0.500          |  |
| Length of strut (in)                   | 72.000         |  |
| Analys                                 | is Information |  |
| Cross-sectional area (in^2)            | 0.795          |  |
| Moment of Inertia I (in <sup>4</sup> ) | 0.019          |  |
| Failur                                 | re Predictions |  |
| Critical Load-Ultimate Failure (lbf)   | 91,402.000     |  |
| Critical Load-Yielding (lbf)           | 87,428.000     |  |
| Factors of Safety                      |                |  |
| Ultimate Failure                       | 1.569          |  |
| Yielding                               | 1.501          |  |
| Weight of Each Strut (lbs)             | 9.270          |  |

## STRUTS BC and CE, SQUARE/RECTANGULAR CROSS SECTIONS

-Appendix D, Appendix M for calculations (lines 161-209) -In Compression

Figure 4



| Requirements                             |                |  |
|------------------------------------------|----------------|--|
| Limit Load (lbf)                         | 151,670.000    |  |
| Design Load (lbf)                        | 227,500.000    |  |
| Desig                                    | gn Geometry    |  |
| Base (in)                                | 5.700          |  |
| Height (in)                              | 5.700          |  |
| Thickness (in) Equivalent Thickness Used | 0.180          |  |
| Length of strut (in)                     | 232.992        |  |
| Analys                                   | is Information |  |
| Cross-sectional area (in^2)              | 3.974          |  |
| Moment of Inertia I (in <sup>4</sup> )   | 20.205         |  |
| Buckling coefficient $k_h$               | 4.000          |  |
| Failure Predictions                      |                |  |
| Critical Load-Euler Buckling (lbf)       | 227,760.000    |  |
| Critical Load-Crippling (lbf)            | 349,750.000    |  |
| Critical Load-Local Buckling             | 241,840.000    |  |
| Critical Load-Ultimate Failure (lbf)     | 457,060.000    |  |

| Critical Load-Yielding (lbf) | 437,180.000 |  |
|------------------------------|-------------|--|
| Factors of Safety            |             |  |
| Euler Buckling               | 1.502       |  |
| Crippling                    | 2.306       |  |
| Local Buckling               | 1.595       |  |
| Ultimate Failure             | 3.014       |  |
| Yielding                     | 2.883       |  |
| Weight of Each Strut (lbs)   | 150.013     |  |

#### DESIGN CONDITION TWO

-Appendix E, Appendix M for calculations in MATLAB (lines 281-336) This section utilizes all Titanium Struts, utilizing the material properties available in Table 2.

#### Total Weight (Design Condition 2 Only) = 889.029 lbs

Given By Equation 2:

 $Total Weight = 2 * Weight_{BC, CE_{NEW}} + 2 * Weight_{AB, DE} + 2 * Weight_{AC, CD}$ (2)

| Design Condition Two, Deflection              |       |  |
|-----------------------------------------------|-------|--|
| Deflection BC, CE (in) (new dimensions)       | 0.303 |  |
| Deflection AB, DE (in) (original dimensions)  | 0.249 |  |
| Deflection - Y BC,CE (in) (new dimensions)    | 0.249 |  |
| Deflection - Y AB,DE (in) (new dimensions)    | 0.237 |  |
| Factor of Safety BC, CE (new dimensions)      | 1.503 |  |
| Factor of Safety AB, DE (original dimensions) | 1.579 |  |
| New Information For BC, CE Struts             |       |  |
| Base (in)                                     | 6.000 |  |
| Height (in)                                   | 6.000 |  |

#### Table 8

| Thickness (in) Equivalent Thickness Used | 0.332         |  |  |  |
|------------------------------------------|---------------|--|--|--|
| Cross-sectional area (in^2)              | 7.527         |  |  |  |
| Moment of Inertia I (in <sup>4</sup> )   | 40.441        |  |  |  |
| Buckling coefficient $k_h$               | 4.000         |  |  |  |
| Failure Predictions New BC, CE           |               |  |  |  |
| Critical Load-Euler Buckling (lbf)       | 455,860.000   |  |  |  |
| Critical Load-Crippling (lbf)            | 662,390.000   |  |  |  |
| Critical Load-Local Buckling             | 1,477,800.000 |  |  |  |
| Critical Load-Ultimate Failure (lbf)     | 865,620.000   |  |  |  |
| Critical Load-Yielding (lbf)             | 827,980.000   |  |  |  |
| Factors of Safety                        |               |  |  |  |
| Euler Buckling                           | 3.006         |  |  |  |
| Crippling                                | 4.367         |  |  |  |
| Local Buckling                           | 9.744         |  |  |  |
| Ultimate Failure                         | 5.707         |  |  |  |
| Yielding                                 | 5.459         |  |  |  |
| Weight of Each Strut (lbs)               | 284.108       |  |  |  |

## DESIGN CONDITION THREE

-Appendix F, Appendix M for calculations in MATLAB (lines 210-280) This section utilizes Titanium and Boron Struts, utilizing the material properties available in Table 2.





| Requirements                            |               |  |  |
|-----------------------------------------|---------------|--|--|
| Limit Load (lbf)                        | 151,670.000   |  |  |
| Design Load (lbf)                       | 227,500.000   |  |  |
| Design Geometry                         |               |  |  |
| bti (in)                                | 5.775         |  |  |
| tti (in)                                | 0.120         |  |  |
| tbo (in)                                | 0.120         |  |  |
| bbo (in)                                | 5.175         |  |  |
| Length of strut (in)                    | 232.992       |  |  |
| Analysis Information                    |               |  |  |
| Cross-sectional area (in <sup>2</sup> ) | 7.516         |  |  |
| Moment of Inertia I (in <sup>4</sup> )  | 42.154        |  |  |
| Buckling coefficient $k_h$              | 4.000         |  |  |
| Failure Predictions                     |               |  |  |
| Critical Load-Euler Buckling (lbf)      | 475,170.000   |  |  |
| Critical Load-Crippling (lbf)           | 661,380.000   |  |  |
| Critical Load-Local Buckling            | 1,340,600.000 |  |  |

| Critical Load-Ultimate Failure (lbf) | 864,300.000 |  |  |
|--------------------------------------|-------------|--|--|
| Critical Load-Yielding (lbf)         | 826,720.000 |  |  |
| Deflection (in)                      | 0.303       |  |  |
| Factors of Safety                    |             |  |  |
| Euler Buckling                       | 3.133       |  |  |
| Crippling                            | 4.361       |  |  |
| Local Buckling                       | 8.839       |  |  |
| Ultimate Failure                     | 5.699       |  |  |
| Yielding                             | 5.451       |  |  |
| Deflection                           | 1.500       |  |  |
| Weight                               |             |  |  |
| Titanium (lbs)                       | 104.628     |  |  |
| Boron (lbs)                          | 41.670      |  |  |
| Total Strut Weight (lbs)             | 146.298     |  |  |

# FINAL DESIGN INFORMATION

| Tuble 10           |                          |                  |                           |  |  |
|--------------------|--------------------------|------------------|---------------------------|--|--|
| Strut              | Critical Failure<br>Mode | Factor of Safety | Weight per Strut<br>(Ibs) |  |  |
| AC, CD             | Yielding                 | 1.501            | 9.270                     |  |  |
| AB, DE             | Euler Buckling           | 1.505            | 151.135                   |  |  |
| BC, CE             | Deflection               | 1.500            | 146.298                   |  |  |
| TOTAL<br>STRUCTURE | -                        | -                | 613.410                   |  |  |

Table 10