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A method for the prediction of far-field acoustics emanating from a complex supersonic
rectangular nozzle using machine learning techniques is presented. Complexity and lengthy
times associated with traditional experimental and numerical procedures motivate the use of
a rapid noise prediction system based on modern machine learning computational methods.
An artificial neural network (ANN) is employed to predict the far-field overall sound pressure
levels (OASPL) for a Multi Aperture Rectangular Single Expansion Ramp Nozzle (MARS). A
combination of experimental techniques and machine learning algorithms are utilized. The
results yield a simple, accurate, and computationally frugal method for the prediction of
far-field acoustic magnitudes and directions. Realistic operating conditions and geometric
properties serve as inputs to this model which calculates OASPL at multiple far-field locations.
This provides a basis for further exploration of geometric modifications and passive control
schemes while continuing to explore the effects of a newly installed splitter plate trailing edge
(SPTE) geometry. Preliminary Large Eddy Simulation (LES) data performed by The Ohio
State University have shown that the introduction of a spanwise wavenumber to the SPTE
results in a reduction of the 34 kHz tone associated with the shedding frequency of the splitter
plate. With this dominating tone greatly reduced, a more in depth study into the acoustic
effects of different aft deck lengths can be performed and ultimately optimized for a desired
acoustic output.

I. Nomenclature

!�( = Large Eddy Simulation
(%)� = Splitter Plate Trailing Edge
%�+ = Particle Image Velocimetry
#%' = Nozzle Pressure Ratio
#)' = Nozzle Temperature Ratio
(�'# = Single Expansion Ramp Nozzle
"�'( = Multi-Aperture Rectangular SERN
(�!� = Shockwave Boundary Layer Interactions
�ℎ = Hydraulic Diameter
V = Spanwise Wavenumber
�## = Artificial Neural Network
�## = Deep Neural Network
## = Neural Network
$�(%! = Overall Sound Pressure Level
3� = Decibels
!3 = Aft Deck Length
'"(� = Root Mean Square Error
"�%� = Mean Absolute Percentage Error
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II. Introduction

The aerospace industry continues to develop more advanced engines to improve aircraft capabilities and performance
[1]. The goal of flying faster and further has been enabled by the incorporation of complex nozzles. Design

alterations to these complex nozzles have utilized multiple high-velocity streams ejected through a non-axisymmetric
exit. An example of a modern design featuring a Single Expansion Ramp Nozzle (SERN) in a variable cycle engine was
discussed by Simmons [1] (see Figure 1). This features a rectangular SERN with an additional bypass stream.

Fig. 1 Variable Cycle Engine by Simmons [1].

This configuration has been shown to allow for decreased pressure drag compared to axisymmetric nozzles [2],
incorporated thrust vectoring [3], and improved off-design performance [1]. The system includes a secondary bypass
stream, referred to as the 3rd stream in this study. This cold, low pressure stream protects the aft-deck from the hot
core (combination of the fan and first bypass streams) stream while reducing noise and the resulting drag [4]. The
fundamental flow physics of this model have been explored utilizing a Multi-Aperture Rectangular SERN (MARS) at
Syracuse University (see Figure 2) .

Fig. 2 Cross-Section Rendering of MARS Jet [5]

The MARS separates the two canonical flows via a splitter plate with nominal conditions of Nozzle Pressure Ratio
(NPR) of 4.25 for the core flow and 1.89 for the 3rd stream (Mach 1.6 and 1.0, respectively). This supersonic operating
condition results in a complex, turbulent environment dominated by an acoustic emission centered around 60° from the
jet axis. Multiple studies,[5], [6], [7], [8], [9] have showed this instability compromises the beneficial effects of the
complex system. This has been attributed to the mixing of the two flows downstream of the splitter plate trailing edge
(SPTE). Generating a complex vortex shedding instability that deflects down into the aft-deck plate boundary layer
and propagates downstream. The varied-density streams, along with the supersonic nature of the nominal operating
conditions, create a series of reflected shock trains and expansion waves. These complex characteristics reflect off the
MARS, the aft-deck plate, and the resulting shear layers at the exit of the nozzle. Figure 3 shows the aerodynamic
features as described. This complex shock structure generates an assortment of noise that propagates downstream into
the far-field. Turbulent mixing noise is generated by the interaction of vortical structures produced by mean shear in the
jet, and jet screech is produced when the upstream propagating part of the acoustic field creates a feedback loop with
fluctuations originating at the nozzle lip [7].

Major flow characteristics have been simulated using Large Eddy Simulations (LES) by Stack et al [8] and
experimentally verified by Berry et al [5], and Magstadt [7]. Gist et al [10] expanded upon these prior results while
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Fig. 3 MARS Flow Structure [6].

continuing to explore the aft-splitter plate region and resulting instabilities. Specifically, the splitter plate shedding
instability was explored in depth by Stack & Gaitonde [9]. Simulations have been shown that altering this splitter plate
thickness reduces the energies associated with the resulting shear instabilities [11]. The varied shear conditions were also
found to impact the directionality of the far-field noise in the sideline plane [12]. Although the OASPL is dominated by
a characteristic 34 kHz (for the nominal case) instability and has been heavily studied, other noise-inducing instabilities
have yet to be targeted for optimization. Low-frequency components (<10,000 Hz) outside of the jet and in the far field
are tied to the dynamics associated with the bulk flow [12]. These complex, reflected interactions can be impacted by
the surrounding geometries of the splitter plate and the aft-deck plate. However, they are difficult to analyze due to the
larger presence of the SPTE instability.

Gist et al [13] recently proposed a new splitter plate geometry that introduces a sinusoidal pattern to the SPTE. The
induced wavenumber V = 0.8 was determined by the High-Fidelity Computational Multi-Physics Laboratory at The
Ohio State University to effectively reduce the energy associated with the splitter plate shearing instability [13] and the
resulting noise. This new SPTE is shown in Figure 4. The spike shown in Figure 5 has been effectively eliminated when
employing this wave induced SPTE [13]. Ruscher et al [14] found that reducing the thickness of the SPTE had a similar
effect, but the wavy SPTE simulations promise more ideal results. The thickness remains the same in the new splitter
plate to focus on only the effects from the induced waveform. The sinusoidal SPTE geometry leads the two streams to
mix faster, following the formation of streamwise vortex structures and their subsequent interference with spanwise
vortices in the shear layer.

Fig. 4 CAD file for the new SPTE geometry for V = 0.8. [13]

Tenney et al [12, 15] applied data fusion and modern computational techniques to develop a rapid far-field overall
sound pressure level (OASPL) prediction algorithm for the nominal MARS geometric configuration. The resulting
neural network supplements the inability to collect time-resolved full-field velocity measurements. This is due to
the short timescales associated with the flow from the MARS nozzle in its current configuration. This was the first
application of machine learning to this system and serves as a basis for this study. Tenney showed that machine learning
methods can predict acoustics at the same accuracy when compared to linear stochastic estimation. Typically, Ffowcs
Williams-Hawkings (FWH) surfaces are used in conjunction with CFD models to estimate far-field noise [12]. This
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ensures that a NN is a viable option for exploring and relating characteristics of supersonic flows. Tenney’s [12] artificial
neural network (ANN) is expanded upon in this study to provide a rapid OASPL prediction technique for the newly
installed splitter plate. The original ANN predicts OASPL magnitudes to within ±4 dB and correct directionality
utilizing simple operating parameters and geometric properties for inputs [12].

Fig. 5 Acoustic Spectra for Nominal Conditions and Nominal Aft-Deck Plate.

The purpose of this study is to further the development of this existing neural network for implementation with the
newly designed SPTE geometry in Figure 4. This can be done by retraining a modified version of the NN following the
installation of the new splitter plate. The results will yield a fast and simple prediction method for overall sound pressure
magnitudes and directionalities. Following this, geometric modifications to the MARS will be explored. Specifically,
the aft-deck plate geometry will be optimized for different operating conditions using predictions from the NN. In the
absence of the dominating SPTE instability, more focus can be applied to the lower-frequency tones directly impacted
by the aft-deck lengths.

III. Experimental Methods
Modern computational machine learning methods are applied and used in conjunction with experimental techniques.

Fusing the strengths of both allows for validation of results and further training of the NN. Experimental measurements
are recorded to provide training data for the NN and verify its accuracy. These methods encompass a variety of basic
flow inputs with differing aft-deck plate lengths. The OASPL data is recorded, processed and acts as targets for the NN.

All experiments are performed in the Skytop Turbulence Laboratories anechoic chamber located at Syracuse
University’s south campus. This 206 m3 acoustically treated chamber features near-field dynamic pressure transducers, a
particle image velocimetry (PIV) setup, and a far-field acoustic array. The facility is fitted with 10 far-field microphones
to capture acoustics at a rate of 100 kHz per channel. The facility is shown in Figures 6 and 7.

This experimental facility allows for an easily modifiable test environment. Basic flow characteristics can be changed
along with varied aft-deck plate geometries efficiently. Flow characteristics altered include the primary stream nozzle
ratio (NPR1), third stream nozzle pressure ratio (NPR3), and the nozzle temperature ratios (NTR). Previous efforts
focused on capturing the flow for a wide range of operating conditions [12]. This campaign narrowed the focus to a
wider range of deck plate lengths and a constant ratio between the NPRs. Furthermore the total number of test runs
conducted with the new SPTE was increased from 300 to 503 and the number of different deck plates tested increased
from 3 to 42. With the deck lengths (!3) non-dimensionalized by the nozzle hydraulic diameter �ℎ = 44.5 mm, and
decks varying in length by steps of 0.1 !3/�ℎ . Some example aft-deck plate geometries are shown in Figure 8.

To train the neural network, 503 test runs are performed with 10 second sampling increments. The sampled acoustic
data is post processed to calculate the OASPL. The noise model domain for the collected training and validation data
from the previous and current studies can be seen in Figure 9a and 9b respectively. The markers are scaled by the length
of the aft-deck plate, with the smallest corresponding to the no deck case. They are also colored to represent the NTR of
the core stream. The shift from the data set over a wide range of operating conditions towards the larger data set with
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Fig. 6 Anechoich Chamber at Skytop Turbulence Laboratories, Syracuse NY.

Fig. 7 Anechoic Chamber Layout: A. Plenum Chamber, B. Jet Feed Pipe (to compressed air tanks), C. Bypass
Air Flow Straightener, D. Jet Rig, E. Anechoic Chamber, F. Plume Catcher, G. Far- Field Condenser Microphones,
H. Acoustic Fiberglass Wedges, I. Exhaust Path [6].

Fig. 8 Example aft-decks (left) and mounted aft-deck (right)

less variation between the operating conditions and more deck plates allowed for an increased focus into the effects that
the aft deck length has on the acoustic output of the system.

The far-field acoustic microphone array is used to capture the acoustics in the same plane as the SERN. The 10
microphones are G.R.A.S. 46BE free-field condenser microphones and feature a dynamic range of 160 dB with a noise
floor of 30 dB. The microphones are setup in 15°increments from 90°to 20°from the jet axis in a semi-circular arc 86.6
Dh from the nozzle exit plane.
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(a) Noise Model Domain previous SP [12] (b) Current Noise Model Domain

IV. Machine Learning Computational Methods
A neural network is employed for this project. The NN utilized Python with Pytorch. These were chosen due to

their ease of use and proven abilities.
A simulation approach is utilized with the neural network. As explained prior, this NN outputs OASPL magnitudes

and directionalities, while inputting basic flow and geometric parameters. Neural networks consist of artificial neurons
connected to each other with assigned weights and biases. Deep neural networks (DNN) expand upon an ANN by
adding additional hidden layers. At each layer, a summation of the linear combinations of input variables is given by:

B = -, + 1 (1)

With a nonlinear activation function example given as:

5 (B) = 1
1 + 4-s (2)

For this neural network, Rectified Linear Units, or ReLU activation function is utilized. This was done to avoid the
possible vanishing gradient problem with sigmoid activations [12]. To train the network, a backpropagation algorithm
is used. The initial weights and biases between each node are randomly generated. These values are tweaked by
training the algorithm, where the experimentally determined output is compared to the initially generated output. This
comparison calculates the error as root mean squared error (RMSE). The network cycles through epochs until the error
reaches a global minimum. The backpropagation is updated using the following equation:

Fkj
i+1 = Fkj

i − U X�

XFkj
(3)

Where wkj is an element of the weight matrix, C is the cost function, and U is the learning rate. The weights for this
neural network are updated using gradient descent. The inputs to the model are restricted to simple, non-dimensional
geometric and flow conditions. This allows for analysis of possible contributors to noise parameters common to the
nozzle design process. The feature space is shown in Table 1.

Input Feature

#%'1

#%'3

!3/�ℎ
)1/273 
#)'1

#)'3

Table 1 Features of Predictive Neural Network
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OASPL is calculated by integrating the frequency dependent sound pressure level (SPL), with the frequency
non-dimensionalized by the hydraulic diameter Dh and and the jet exit velocity Uj.

$�(%! =

∫
(%! ( 5 )35 (4)

Where the frequency dependent sound pressure level is given by:

(%! ( 5 ) = 20 log 10
%rms ( 5 )
%ref

3� (5)

And Pref was 20 `Pa. The current neural network settings are summarized in Table 2:

Hidden Layers 2
Nodes 500

Train/Test Split 80/20
Training Epochs 5000

Hidden Activations ReLU
Kernel Initializer Random Normal

Objective Mean Squared Error
Optimizer Adam

Learning Rate 0.001
Table 2 Neural Network Settings

V. Results

A. Verifying NN Accuracy
The neural network is shown to correctly predict OASPL to within 1.6 dB at its worst with most results falling within

±0.6 dB. This showed an improvement from the previous model that predicted OASPL to within 4 dB at its worst with
most results falling within ±1 dB [12]. The NN also correctly predicts the direction of peak noise as well as trends in
directionality.The peak noise emission directs consistently to 25° from the jet axis as expected. Figure 10 shows the
predicted results versus experimentally determined results for two random test cases. This clearly shows the accuracy of
both predicted magnitudes and directionality of the NN.

Fig. 10 OASPL Predictive Results

To further increase the confidence in the Neural Networks predictive capabilities, K-fold cross validation is performed
with k = 10. The testing/training data is split into k equal parts. On these parts or "folds" training/testing is performed in
k iterations such that within each iteration one fold is used for testing while the other 9 are trained on. This process
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seeks to eliminate bias within the overall regression model and ensure its ability to correctly predict future data in
addition to providing an adequate fit of the testing data [16]. The average testing and training RMSE from the k-fold
cross validation as well as the overall MAPE for the regression model can be seen in Table 3

K-fold Training '"(� 0.674 dB
K-fold Testing '"(� 0.712 dB

Overall "�%� 0.43 %
Table 3 NN Error Metrics

B. Predicting New Deck Plates
As an additional method to verify the accuracy of the NN model and to test its ability to act as a complete model of

how the farfield acoustics are affected with a changing deck length, three additional deck plates were manufactured. The
decks, measuring !3/�ℎ = 0.76, 1.86, and 2.64 respectively had lengths that lied in between those that the model was
originally trained/tested on. Tests are conducted on these deck plates with common operating conditions and the farfield
OASPLs recorded. Furthermore these new deck lengths were fed into the NN model with those same nozzle parameters.
Figure 12 shows the measured and predicted OASPL values for these deck plates that the NN has never seen before. The
NN was able to correctly capture the trend of the data with a marginally lower accuracy , MAPE for these trials was
0.55%. The microphone that showed the highest error was located at 60°from the jet plume. Past research has shown
this microphone to be the most susceptible to picking up the tones related to the shedding frequency of the splitter plate
as the jet nears the nominal operating conditions [12]. The inaccuracy of the model with this microphone in particular
could relate back to the modifications made to the SPTE.

Fig. 12 OASPL Predictive Results for new deck lengths
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C. Exploring Different Aft Deck Lengths
With the NN proven to be accurate within 99.6 % when predicted OASPL for the far-field acoustics a study into the

effects of the aft deck length is conducted. Figure 13 shows the predicted average OASPL for all 42 deck plates tested
over a range of operating conditions. As expected increasing the #%'1 leads to an increase in OASPL for all deck
plates. The relationship between the deck length and the average OASPL is not simply linear. Across all of the different
operating conditions tested the variation of average OASPL with respect to deck length was relatively minor. However,
there is indication of a slight periodic relationship between these variables. At lower speeds the quietest deck plate
length is the longest. As the #%'1 approaches 4.25, coinciding with a Mach 1.6 core flow, the minimum noise deck
lengths shifts towards a !3/�ℎ of 1.8.

Fig. 13 Variation between OASPL for all decks over different operating conditions

VI. Conclusions and Future Work
To understand the effects of the newly implemented wave number to the splitter plate trailing edge within a Multi

Aperture Single Expansion Ramp Nozzle and create a model that can predict far-field OASPL for a variety of operating
conditions and aft deck lengths an Artificial Neural Network (ANN) was used. This ANN consisted of 4 layers: input,
output and 2 hidden layers. A large data set consisting of 503 test runs and 42 different aft deck lengths was supplied to
Neural Network (NN). The NN was shown to accurately predict the OASPL for a variety of deck lengths and operating
conditions. The NN model was also shown to effectively predict OASPL for deck lengths that it has never seen before.
With the accuracy of the model verified the relationship between the deck length and OASPL over different operating
conditions was investigated. It was shown that the relationship between these two values is not linear, and exhibits
a slight periodic pattern. Furthermore the minimum noise configuration across nozzle operating conditions is not a
constant.

Additional test runs are to be performed to expand the data set utilized in the NN training . Specifically test runs at
higher temperature ratios, runs with a varied relationship between the first and third stream NPR’s, as well as more
runs near the nominal operating conditions. More runs at these conditions will allow for additional comparisons of the
OASPL findings with existing PIV databases that require higher temperatures than the runs conducted in this study. PIV
will allows a look into the flow physics and shock structure of the nozzle perhaps providing insight into the periodic
nature of the deck length and OASPL. Furthermore a fusion of previous data with the nominal SPTE with current data
of the SPTE with a wavenumber into a single Deep Neural Network could provide insight into the differences between
the configurations with respect to the OASPL.
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