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Abstract—A method for geometric optimization of an aft-
deck plate of a complex, supersonic jet nozzle is presented. A
combination of data fusion, experiments, and machine learning
techniques are utilized. The presented algorithm employs a
genetic algorithm in tandem with an artificial neural network.
This simultaneously predicts far-field overall sound pressure
levels while searching for optimal coordinates of the aft-deck plate
body points. The parameters of the genetic algorithm restrict the
resulting points to realistic positions in a 2D plane. The generated
deck plate geometries are experimentally tested to verify acoustic
spectra predictions while continuing to train the artificial neural
network. Results indicate an accurate incorporation of the genetic
algorithm into the artificial neural network while providing a
slight reduction in overall sound pressure levels.

Index Terms—genetic algorithms, shape optimization, complex
nozzle, neural networks, acoustic prediction

I. INTRODUCTION

The aerospace industry continues to develop more advanced
engines to improve aircraft capabilities and performance. The
goal of flying faster and farther has been enabled by the
incorporation of complex nozzles. Design alterations to these
complex nozzles have utilized multiple high-velocity streams
ejected through a non-axisymmetric exit. An example of a
modern design featuring a Single Expansion Ramp Nozzle
(SERN) in a variable cycle engine was discussed by Simmons
[6] (see Fig. 1). This features a rectangular SERN with an
additional bypass stream.

Fig. 1. Variable Cycle Engine by Simmons [6].

This configuration has been shown to allow for decreased
pressure drag compared to axisymmetric nozzles, incorporated
thrust vectoring, easier airframe integration, and improved off-
design performance. The system includes a secondary bypass
stream, referred to as the 3rd or deck stream in this study. This
cool, low pressure stream protects the airframe from the hot
core (combination of the fan and first bypass streams) stream

while reducing noise and the resulting drag. The fundamental
flow physics of this model have been explored utilizing a
Multi-Aperture Rectangular SERN (MARS) (see Fig. 2).

Fig. 2. Cross-Section Rendering of MARS Jet [2].

The MARS separates the two canonical flows via a splitter
plate with nominal conditions of Nozzle Pressure Ratio (NPR)
of 4.25 for the core flow and 1.89 for the 3rd stream (Mach
1.6 and 1, respectively). This supersonic operating condition
results in a complex, turbulent environment dominated by
an acoustic emission centered around 60° from the jet axis.
Multiple studies [2], [3], [7], [8] have showed this instability
compromises the beneficial effects of the complex system.
This has been attributed to the mixing aft of the splitter
plate of the two flows. This generates an incredibly complex
vortex shedding instability that deflects down into the aft-
deck plate boundary layer and propagates downstream. The
varied-density streams, along with the supersonic nature of the
nominal operating conditions, create a series of reflected shock
trains and expansion waves. These complex characteristics
reflect off the MARS, the aft-deck plate, and the resulting
shear layers at the exit of the nozzle. Figure 3 shows the
aerodynamic features as described.

Fig. 3. MARS Shock Structure [2].

Major flow characteristics have been simulated using Large
Eddy Simulations (LES) by Stack & Gaitonde [7] and experi-
mentally verified by Berry [2], and Magstadt [3]. Gist et al [9]



expand upon these prior results while continuing to explore the
aft-splitter plate region and resulting instabilities. Specifically,
the splitter plate shedding was explored in depth by Stack
& Gaitonde [8]. Simulations have been shown that altering
this splitter plate thickness reduces the energies associated
with the resulting shear instabilities [10]. The varied shear
conditions were also found to impact the directionality of the
far-field noise in the sideline plane [1]. Although the OASPL
is dominated by a characteristic 34 kHz instability and has
been heavily studied, other noise-inducing instabilities have
yet to be targeted for optimization. Low-frequency components
(<10,000 Hz) outside of the jet and in the far field are tied to
the dynamics associated with the bulk flow [1]. These com-
plex, reflected interactions can be impacted by the surrounding
geometries of the splitter plate and the aft-deck plate. The goal
of this study is to analyze these low-frequency components and
reduce the associated energies through geometric optimization.

Tenney [1] applied data fusion and modern computational
techniques to develop a rapid far-field overall sound pressure
level (OASPL) prediction algorithm. The resulting neural
network supplements the inability to collect time-resolved full-
field velocity measurements. This is due to the short timescales
associated with the flow from the MARS nozzle in its cur-
rent configuration. This was the first application of machine
learning to this system and serves as a basis for this study.
Tenney’s [1] artificial neural network (ANN) is expanded upon
in this study to provide a rapid OASPL prediction technique in
tandem with a developed genetic algorithm (GA) with the goal
of designing optimized aft-deck plate geometries. The ANN
predicts OASPL to within ±4 dB utilizing simple operating
parameters and geometric properties for inputs [1].

Genetic algorithms have been shown to be excellent and
computationally efficient geometric optimizers. Holst & Pul-
liam [5] showed the ease of implementation for a GA when
applied to aerodynamic shape optimization. Valackaite et al [4]
found slight improvements to original geometric constraints
utilizing a simple GA optimizing points in a 2D plane. GA’s
typically rely on population sizes in the few hundreds to
few thousands to deliver reliable results. This leads to the
incorporation of the ANN to supplement a lack of available
(and testable) aft-deck plates. Without the use of a predictive
neural network, every individual of every population would
need to be manufactured and tested to analyze its fitness.
Currently, 27 deck plates have been manufactured and run at a
variety of conditions while probing far-field acoustic spectra. A
select few of these plates were employed to train the existing
ANN under varied operating conditions [1]. An example of
sampled far-field acoustic spectra is shown in Fig. 4.

The purpose of this paper is to develop a 2D geometric
optimization GA to work in tandem with a new NN with the
goal of reducing the low-frequency noise propagating from
the MARS system. The results from this investigation can
be manufactured and installed into the system for further
validation and improvement. Insights gained from these results
could be utilized to influence next-generation aircraft fighter
nozzle geometry and airframe integration.

Fig. 4. Acoustic Spectra for Nominal Conditions and Nominal Aft-Deck
Plate.

II. PROBLEM AND DATA DESCRIPTION

The aerospace industry is constantly plagued by noise in
both commercial and military applications. Noise is heavily
prevalent in the system described prior and is primarily
motivated by turbulent instabilities. Reducing the energies
of these instabilities can reduce the OASPL of the system.
The MARS was designed for research focused on the un-
derlying (and relatively unknown) flow physics. No analysis
was put into noise reduction, initially. Acoustic analyses and
considerations are often omitted from early commercial nozzle
design processes. This project aims to tackle one aspect of
noise reduction: reducing the acoustic propagation of low
frequency instabilities. Turbulent mixing noise is generated by
the interaction of vortical structures produced by mean shear
in the jet, and jet screech is produced when the upstream prop-
agating part of the acoustic field creates a feedback loop with
fluctuations originating at the nozzle lip [1]. Noise reduction
will be done by geometric optimization of the MARS aft-deck
plate. Preliminary experiments show a reduction in the OASPL
when comparing two original deck plate geometries created
by Magstadt [3] and Berry [2] (specifically a ”no deck” case
versus the nominal case, see Fig. 18). Modifying the aft-deck
plate geometries into more complex shapes can likely yield a
more ideal solution that reduces far-field noise.

An issue encountered with solving this issue comes with
the lengthy data acquisition process and lack of diverse deck
plate geometries. 27 deck plates are currently utilized with the
MARS. Due to these two issues, a low-dimensional rapid noise
prediction method is required. However, simulating acoustic
emissions for complex flows is difficult and computationally
expensive. Typically, Ffowcs Williams-Hawkings (FWH) sur-
faces are used in conjunction with CFD models to estimate
far-field noise [1]. Instead of using these traditional modeling
methods, can large amounts of data and artificial neural
networks be leveraged to make far-field OASPL predictions?
Can geometric optimization of the aft-deck plates reduce
energies of the low-frequency instabilities in this system? Can
a GA produce accurate results entirely dependent on using a
predictive a neural network as its fitness function?

Objectives:
• Expand neural network to include more abstract data

points.



• Restructure neural network to include and account for
the new splitter plate geometry, new deck plate geom-
etry inputs, and obtain corresponding training data sets
experimentally.

• Maintain similar accuracy achieved by prior neural net-
work model.

• Incorporate GA for deck plate optimization utilizing the
neural network to supplement the low population, serve as
the fitness function, and prevent the need to manufacture
and test potentially useless deck plates.

A few data sets are considered to complete these objectives.
First, the existing deck plate geometries were digitized to
describe their shape using 2D-coordinates. Existing plates
were previously generated utilizing three varied coordinate
points mirrored about the center axis, leading to a maximum
of 3 varied points (6 with symmetry). This is a limiting factor
of the prior design parameters, so these coordinates were
interpolated to show 76 distinct points. All outputting deck
plate geometries from the GA will include 76 points.

The sampled acoustic spectra output large data sets. The 10
far-field microphones sample at 100kHz. Employed acoustic
data sets were sampled in 10 second increments in a variety of
flow conditions with varied deck plate geometries. This output
includes 10 million distinct points for each test, 1 million from
each sampled microphone. These data sets are labeled and tied
to the input flow conditions and deck plate geometries. The
data deployed to train the neural network for prediction is
shown in 8. This is a visualization of the 290 training cases
and 10 validation cases. The markers are scaled by the length
of the aft deck plate length, with the smallest corresponding
to the no deck case. They are also colored to represent the
NTR of the core stream.

III. APPROACH

Modern computational methods were used in conjunction
with experimental techniques. Fusing the strengths of both
allows for validation of results and further training of the
NN. Experimental measurements were performed to provide
training data for the NN and verify its accuracy. These methods
encompassed a variety of basic flow inputs with differing
aft-deck plate geometries. The OASPL data was recorded,
processed and fed into the NN. The existing and tested deck
plate geometries were digitized as coordinates in a 2D plane to
accompany the recorded acoustic data. The GA utilized all of
these data sets to provide optimized aft deck geometries. The
geometries can then be manufactured and installed into the
MARS for experimental verification of the predicted results.

A. Experimental Methods

All experiments were performed in the Skytop Turbulence
Laboratories anechoic chamber located at Syracuse Univer-
sity’s south campus. This is a 206 m3 acoustically treated
chamber features near-field dynamic pressure transducers, a
particle image velocimetry (PIV) setup, and a far-field acoustic
array. The facility is fitted with 10 far-field microphones to

capture acoustics at a rate of 100 kHz. The facility is shown
in Figures 5 and 6.

Fig. 5. Anechoich Chamber at Skytop Turbulence Laboratories, Syracuse NY.

Fig. 6. Anechoic Chamber Layout: A. Plenum Chamber, B. Jet Feed Pipe
(to compressed air tanks), C. Bypass Air Flow Straightener, D. Jet Rig, E.
Anechoic Chamber, F. Plume Catcher, G. Far- Field Condenser Microphones,
H. Acoustic Fiberglass Wedges, I. Exhaust Path [2].

This experimental facility allows for an easily modifiable
test environment. Basic flow characteristics can be changed
along with varied aft deck-plate geometries easily and quickly.
Flow characteristics that were altered include the primary
stream nozzle ratio (NPR1), third stream nozzle pressure
ratio (NPR3), and the nozzle temperature ratio (NTR). Some
example deck plate geometries are shown in Figure 10.

The far-field acoustic microphone array is setup in the
same plane as the SERN but allows for off-plane sampling
if desired. The 10 microphones are G.R.A.S. 46BE free-field
condenser microphones and feature a dynamic range of 160
dB with a noise floor of 30 dB. The microphones were setup
in 15°increments from 90°to 20°from the jet axis in a semi-
circular arc 86.6 Dh from the nozzle exit plane. Figure 7 shows
the far-field microphone array.

To train the neural network, 300 test runs were performed
in 10 second sampling increments. The sampled acoustic data
was post processed to calculate the OASPL. The noise model
domain is shown in Figure 8 for the collected training and
validation data.

B. Computational Methods
A GA and a neural network were employed for this project.

The NN utilized Python with Keras as a high-level API along
with Google’s TensorFlow. These were chosen due to their
ease of use and proven abilities. Computation was performed
on an Alienware13, featuring an Intel i7 2.40 GHz processor,
16 GB of memory, and a dedicated NVIDIA GeForce GTX
860M graphics processor.



Fig. 7. Acoustic Array Layout [2].

Fig. 8. Noise Model Domain [1].

1) Genetic Algorithm: The Canonical GA is used to pro-
vide the desired results of this project and all optimization
methods. Canonical GA’s specifically operate with selection,
then crossover, then mutation. GA’s operate by discretely
describing the optimization space using a number of genes,
xi

n. The i-subscript corresponds to the gene number and the
n-superscript shows the generation. Each individual (aft deck
plate) has a set of genes that describes it, in this case the
coordinates of the aft deck plate end points. The set of genes
is referred to as the chromosome, given by:

X j
n(x1,j

n, x2,j
n, ..., xi,j

n, ..., xN,j
n) (1)

Where Xj
n is the jth chromosome for the nth generation of N

genes. For shape optimization, bit strings are used to represent
genes while the GA operators directly operate these bit strings.
Real-number encoding is typically used to represent all genes.
This has been shown to be more computationally efficient [5].
Specifically, y coordinates compose the chromosome, such as:

X = (y1, , y2, ..., , yN) (2)

Next, the initial generation is formed, represented by:

G0 = (X1
0, X2

0, ..., X j
0, ..., XN

0) (3)

Following the initial creation of the first generation, fitness
functions are evaluated for each individual. The fitness func-
tion is determined by magnitude of the average OASPL. This

will utilize the developed neural network for rapid prediction
of the OASPL without the need for manual experimentation
and data acquisition. This value was normalized.

Next, the first operation is applied, selection. This will deter-
mine which individuals will undergo the additional operations.
Selection will be fitness-proportionate, often referred to as
roulette-wheel selection. This selects the parents subjected
to crossover, the next GA operator. This creates offspring
from the selected parents to create the next generation. The
offspring from one generation will also be accompanied by
some particularly high fitness individuals, which is referred to
as elitism.

Crossover can take multiple forms, such as single point
and double point crossover. Typically the crossover selection
percentage is typically high, on the order of 80%. Both single
point, two point, uniform, and random average crossover will
be examined and compared. For example, random average
crossover is implemented by the following:

xi,j
n+1 =

1

2
(xi,j1 + xi,j2) for i = 1, 2, ..N (4)

Pairs of individuals are grouped to perform crossover. This
is followed by mutation, which prevents premature conver-
gence by maintaining genetic diversity. Here, a gene randomly
changes its value with a probability pm. Mutation magnitude
values will be limited to restrict generating unrealistic individ-
uals.

The population must remain constant so the remaining
individuals are discarded. Duplicate individuals are deleted.
Limits were set to individuals as well. Unrealistic individuals
will be discarded. For example, a constraint on distance
between two distinct points (or genes) is set to prevent an
unmanufacturable deck plate. Individuals that violate this rule
will be discarded. There is also a base and finite limit for y
coordinates, meaning a two foot long deck plate is unrealistic
and will be discarded. This process repeats for the defined
generations N.

The GA settings are summarized in the following table:

Fig. 9. Genetic Algorithm Features.

As mentioned prior, the deck plate geometries were digi-
tized and normalized for incorporation into the genetic algo-
rithm. An example of commonly used plates is shown in Fig
10. This includes the nominal case, no deck case, ”infinite”
width case, and two extended length cases, including the
maximum allowed length of 233 mm.



Fig. 10. Example Aft Deck Plates.

All current plate distinct coordinates points were measured
by hand and recorded. See Fig. 11 for a visual example.

Fig. 11. Example Aft Deck Plate With Highlighted Coordinate Points

This figure is an example of the symmetry present with
only 3 distinct coordinate points. Simpler shapes exist, such
as the left of Fig. 12. Despite only having one distinct point,
interpolation methods were utilized to apply multiple points
to the shape for use in the GA, as seen visually on the right
of 12.

Fig. 12. Simple Aft Deck Plate Example.

A few normalization methods were utilized for the deck

plate geometries. First, the x-coordinates were normalized
about the width of each plate, which is constant at the base
(this is required for installation on the SERN). This width
is 152 mm. Because of this, the deck plates were split into
152 x-coordinates spaced evenly apart, with analysis only
focused on 76 while assuming symmetry of the plates. This
was done because the base x-coordinates for every plate are
the same, which led to a chromosome containing 76 genes.
The genes themselves are the y-coordinate lengths of the
deck plate, as measured in distance from the base of the
plate. Here, the nominal case has a constant length of 143
mm, while the no deck case has a constant length of 53
mm. The chromosomes for these two plates are 76 instances
of the value 143, and 76 instances of 53, respectively. For
plates with varying shapes (most are triangles, trapezoids, or
hexagons), the varied second y-coordinate was recorded with
the corresponding x-coordinate location. For triangles, the tip
of the triangle is simply the y-coordinate in last bit of the
chromosome (the halfway point in the plate). For trapezoids
and hexagons, the bits were interpolated between the two
distinct y-coordinate points on the plate. These methods allow
for consistent and agreeable x-coordinates with customization
of the y-coordinate genes. Output chromosomes can easily be
plotted and created in CAD software before manufacturing and
implementation.

2) Neural Network: Due to the lengthy time with manu-
facturing and testing aft deck plates, it would be unrealistic
to determine the fitness of every generated geometry from
the GA. Rather, a simulation approach was utilized with a
neural network. As explained prior, this NN predicts OASPL,
which serves as the objective minimization for the GA. Neural
networks consist of artificial neurons connected to each other
with assigned weights and biases. Deep neural networks
(DNN) expand upon an ANN by adding additional hidden
layers. At each layer, a summation of the linear combinations
of input variables is given by:

s = XW + b (5)

With a nonlinear activation function example given as:

f(s) =
1

1 + e-s (6)

For this neural network, a Rectified Linear Units, or ReLU
activation function was utilized. This was done to avoid the
possible vanishing gradient problem with sigmoid activations.

To train the network, a backpropagation algorithm was used.
The initial weights and biases between each node are randomly
generated. These values are tweaked by training the algorithm,
where the experimentally determined output is compared to the
initialyl generated output. This comparison calculates the error
as root mean squared error. The network cycles through epochs
until the error reaches a global minimum. The backpropagation
are updated using the following equation:

wkj
i+1 = wkj

i − α
δC

δwkj
(7)



Where wkj is an element of the weight matrix, C is the cost
function, and α is the learning rate. The weights for this neural
network were updated using gradient descent.

The inputs to the model were restricted to simple, low-
dimensional geometric and flow conditions. This allows for
analysis of possible contributors to noise parameters common
to the nozzle design process. The feature space is shown in
Fig. 13, with a summary of settings shown in 14.

Fig. 13. Feature Space of Predictive Neural Network [1].

OASPL is calculated by integrating the frequency depen-
dent sound pressure level (SPL), with the frequency non-
dimensionalized by the hydraulic diameter Dh and and the
jet exit velocity Uj.

OASPL =

∫
SPL(f)df (8)

where the frequency dependent sound pressure level is given
by:

SPL(f) = 20 log 10
P rms(f)

P ref
dB (9)

Where Pref was 20 µPa.
The neural network settings are summarized in Fig. 14.

Fig. 14. Summary of NN Features.

IV. RESULTS

As a base for comparison, OASPL was determined for
nominal conditions with a varied NPR3. As seen in Fig. 15,
all 3 conditions are within 0.5 dB of one another at the far-
field angle. The peak noise emission directs consistently to
25° from the jet axis. The nominal condition exhibits a 4 dB
spike in the OASPL 60° from the jet axis.

This experimental result serves as a basis of comparison to
the predictive capabilities of the neural network. Out of the
300 total data cases used for the neural network (see Fig. 8),
results for the 10 validation cases were plotted in a similar
manner. These 10 cases featured varied operating conditions.
The neural network was shown to correctly predict OASPL

Fig. 15. OASPL Directivity [1].

to within 4 dB at its worst with most results falling within
±1dB. This also correctly predicts the direction of peak noise
as well as trends in directionality. Figures 16 and 17 show the
predicted results versus experimentally determined results for
two cases. This clearly shows the incredible accuracy of both
predicted magnitudes and directionality of the system.

Fig. 16. OASPL Predictive Results.

Fig. 17. OASPL Predictive Results.

This shows the results are reliable enough to serve as a
rapid predictive method for OASPL. This allows the GA to
accurately predict results for varied deck plate geometries and
use the neural network as a model for its evaluation.

However, due to the ongoing Covid-19 Pandemic and
deadlines of this project, analysis and results were altered
slightly. Access to the experimental facility has been paused
for the near future and prevented the ability to obtain data
to train the newly formatted neural network. Many old data
sets were also unobtainable due to restrictions with accessing
campus computers and files. With the restrictions in place,
an old NN was utilized as a predictive OASPL measure for
a slightly modified GA. This was again done because new
training data for the reformatted NN was unobtainable. The



shape optimization was restricted to a mean deck length to
accommodate the original NN settings, which was originally
trained with only 4 characteristic deck lengths. With this
method, the GA consistently converges to resulting individuals
featuring the maximum allowed deck length of 233 mm. The
minimum predicted peak OASPL magnitude was 125.2 dB,
which only varied slightly for less fit individuals and was
accompanied by slightly higher average results for each trail
run. The GA averages a 53 second run time. The results may
be attributed to the dominant 34 kHz signature present in every
case. This is likely preventing the GA from producing more fit
individuals due to the inability to adjust to that signature. It is
also likely impacting the NN’s predictive OASPL capabilities.
This instability can hopefully be eliminated in the coming
months when a new splitter plate geometry is installed, which
has been shown in simulations to drastically reduce the energy
of the structures formed in the aft-splitter plate region.

V. DISCUSSION

Despite the limited conditions, real progress was made on
this project and has formed a solid base for continued im-
provement in the near future. Specifically, the neural network
was modified to accommodate more specific and diverse deck
plate geometric data. Although this was unable to be trained
or used, it is prepared and ready once experimental training
data can be obtained. A GA to work in tandem with this
NN was also developed with the ideal geometric properties
discussed. Again, this will be used with the new NN once
training data is obtained. However, to satisfy the needs of this
project, a GA was produced that optimized the mean deck
length rather than the full coordinate system discussed prior.
This was used in tandem with an old NN model that was able
to be trained with old data. This showed a direct correlation
between decreased OASPL to increased mean deck plate
length. Although the results only yielded a 1-2% decrease,
it agrees with prior experiments and turbulence theory. For
example, see the following figure, which compares the far-field
spectra for the ”no deck” (53 mm) case versus the maximum
length case (233 mm). The 34 kHz instability is seen in
both examples, but the ”no deck” case features other spikes
in the acoustic spectra caused by other turbulent structures
contributing to the OASPL.

Fig. 18. Experimentally Recorded Spectra Comparison of No Deck Case
(Left) vs. Maximum Deck Length Case (Right).

This also shows the domination of the far-field spectra by
the 34 kHz structure. This may be preventing more accurate

or achievable optimization due to the OASPL being so heavily
influenced by this instability in every deck case.

Overall, this further verifies that the NN proves to be a far
more efficient method for rapid predictions compared to other
computational methods, such as CFD.

VI. FUTURE AND ONGOING WORK

This project was again unfortunately impacted due to the
COVID-19 Pandemic. This has delayed progress significantly,
pushing expected progress months into the future. At the time
of this paper submission, Skytop Turbulence Laboratories was
recently deemed essential personnel for Syracuse University
and allowed to return to work. Although delayed, this will
allow for immediate continuation on the remainder of this
investigation. Specifically, continuation of acquisition of ex-
perimental data for the existing deck plates will continue. This
data will be used to train the NN for use with its newly adapted
parameters. This will prove to be a time consuming process
to replicate the last training data set but with 27 deck plates
compared to the original 4. Once this is completed, the correct
GA can be implemented with the NN to produce the originally
desired results. These results will then be manufactured and
tested to verify results.

Within the coming weeks, a new splitter plate (half thickness
to the current) will be installed. Data will be recorded for this
along with all of the existing deck plates. All of this data will
continue to be fed to the neural network to continue training.
This will require reformatting the neural network to incorpo-
rate the new splitter plate input setting. This is also expected
to eliminate the characteristic 34 kHz instability dominating
the OASPL values. This should drastically improve the NN
and GA’s abilities to analyze and optimize the reduction of
energies in the lower frequency instabilities.

For the genetic algorithm, more deck plates can be produced
to increase the material population size and available data.
Verification on the produced results can commence to provide
qualitative accuracy data.

More dimensional freedom could be added to the GA.
Perhaps a width alteration could be explored on the basis of
the current ”infinite” width plate. This will likely delay if not
prevent vortex instabilities forming in the aft corner regions of
the MARS, further reducing the OASPL. This has been found
to slightly reduce OASPL in previous experiments.
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