
MATLAB Guidelines

Style Guidelines

The purpose of Style Guidelines is to help you write code that is easier for a human to under-
stand. This important because:

• well-organized code is easier to debug

• it is easier to remember what a code that you wrote does, and how it does it

• it is easier for someone else to pick up your code and use it.

Below are a series of guideline that I have found useful in writing code. There are several
references available online that go into much more detail than below. See for example the
“MATLAB Style Guidelines 2.0”, written by Richard Johnson (March 2014). They can be found
at http://www.mathworks.com/matlabcentral/fileexchange/46056-matlab-style-guidelines-2-0.

File organization

Always write function files (and not script files). There are at least two good reasons for this:

• Variables associated with a function are only defined within the function (that is, they
have local scope). Therefore, each time you execute a function, you get a new set of
variables. Variables that were set earlier in your MATLAB session will not interfere with
your current function.

• Function files can include sub-functions. This is particularly useful since often something
you do will require small helper functions. If you write a script file, each of the helper
functions will need to be placed into its own file. Over time (for example, over the course
of a semester), the number of small files can get quite large and hard to manage.

A function file is one that starts with a function statement, such as:

function [x] = thomas(n, a, b, c, d);

Always surround function outputs with [] and inputs with (), even if the function consumes
no inputs and/or produces no outputs.

Always include a header comment immediately after the function statement, such as:

% thomas - solve a tridiagonal matrix using the Thomas algorithm
%
% [a1 c1] [x1] [d1]
% [b2 a2 c2] [x2] [d2]
% [b3 a3 c3] [x3] [d3]

Matlab Guidelines 1 Dannenhoffer

% [] [.] = [.]
% [...] [.] [.]
% [] [.] [.]
% [bn an] [xn] [dn]
%
% inputs:
% n size of matrix
% a array of diagonal elements
% b array of subdiagonal elements
% c array of superdiagonal elements
% d array of right-hand sides
% output:
% x array of solutions
%
% written by John Dannenhoffer

This header comment includes the following information:

• a brief description of what the function does

• a description of inputs (if any) including units, etc.

• a brief description of outputs that are produced

• the name of author of the function

Code formatting

Organize your code to make it easier to read. It sound trite, but a “good” code is one that
both functions properly (i.e., properly tells the computer what to do) as well as is easy to read
and hence debug.

To accomplish this, the following have been found to be useful:

• Line up code whenever possible. For example:

atri(ix) = 1 + 2 * Fo;
btri(ix) = - Fo;
ctri(ix) = - Fo;
dtri(ix) = T(ix,ntime);

• Use spaces around “big” operators and after commas.

• Use parentheses when precedence is not obvious; this is particularly useful in compound
Boolean operations such as:

Matlab Guidelines 2 Dannenhoffer

((a < b) || (a < c)) && (d > 0)

• Avoid long lines; anytime that you need to scroll left and right to read a line of code, it
is too long. When you break up a line of code, use the ellipsis (...) operator, such as:

xform = [cos(theta), -sin(theta), 0; ...
sin(theta), cos(theta), 0; ...
0, 0, 1];

• Use spaces between code “paragraphs”, which is a set of lines that accomplish some
sub-task.

• Use comments throughout code to define variables and to describe “what” is being done
(not “how”). There is a tendency to skip this step with the intention of filling in the
comments later. This is bad for two reasons:

– despite good intentions, writers of code seldom spend the time to do this later

– but more importantly, writing good comments when the code is being written makes
it easier to debug and often leads to discovery of errors

• Always use MATLAB’s suggested indentation, which is 4 spaces for if/elseif/else/end
constructs and for and while loops.

• Always put a comment after an end statement so that the reader knows what is ended.
For example:

for i = 1 : 10
:
if (i == 5)

:
elseif (i == 6)

:
end % if

end % for i

• Put a separator line between functions and sub-functions, such as:

%--

• Avoid putting more that one statement on a line, unless the statements are very tightly
coupled..

• Put parentheses around the logical parts of if and while statements, such as:

Matlab Guidelines 3 Dannenhoffer

if (a < b)

and

while (dist > 0)

Variable and function names

Define (variable and function) names carefully. Just using the first name that pops into your
mind generally is not best. Specific guidelines that are used by many code authors include:

• Use names that are descriptive, but not too long. In general, variable names between 3
and 20 characters seem best.

• Use uppercase characters for first letter of each word in a name, such as:

localPressure

• When dealing with collections (such as arrays), use variables that start with i, j, and k
to index a particular member of the set (array) and variables that start with m and n to
indicate the number of elements in the collection, such as:

for icircle = 1 : ncircle
area(icircle) = pi * radius(icircle).^2;

end % for icircle

• Avoid using reserved words for names. The command:

iskeyword

can be used to check is a name is one of MATLAB’s keywords. The current set of
keywords include break, case, catch, classdef, continue, else, elseif’, \verbend‘,
for, function, global, if, otherwise, parfor, persistent, return, spmd, switch,
try, and while.

• Be consistent in the names that you choose. For example, do not use r, R, rad, and
radius to mean the same thing.

• Avoid using l (the letter “el”) as a variable name, since it is hard to distinguish from
the number “1”. Similarly, avoid using O (the uppercase letter “oh”) since it is hard to
distinguish from the number “0”.

Matlab Guidelines 4 Dannenhoffer

Other Good Habits

• Pre-allocate matrices (arrays) whenever possible. This is done with statements such as:

x = zeros(nx+1, 1);
t = zeros(1, ntime+1);
T = zeros(nx+1, ntime+1);

or

circ = pi * ones(3, 5);

• Try to avoid using global variables. Every once in a while using global variables will make
a code more readable, but in general it is good to avoid them for at least two reasons:

– there is no protection for global variable, and so it is possible for two functions to
use the same global variable name to refer to different items. If you must use a
global variable, prefix the name with something (perhaps the name of the function)
to avoid global name conflicts.

– global variables are not automatically cleared when you enter a function, and hence
a running program may start with “cruft” left over from the previous run

• Initialize loop results immediately before the loop, as in:

length = 0;
for i = 1 : 10

length = length + width(i) * length(i);
end % for i

• When writing a fractional number (such as one-half), always put a digit before the decimal
point (such as 0.5) so that it is very obvious that the decimal point is part of the number
and not a nearby operator (such as .*) or field separator.

• Avoid testing if two floating point values are exactly equal to each other; instead test if
their values are sufficiently close to each other. For example,

if ((log(2) + log(2.5)) == log(5))

will fail, but the test:

if (abs((log(2)+log(2.5)) - log(5)) < 1e-10)

will pass.

Matlab Guidelines 5 Dannenhoffer

Reference Guide

Operators and special characters.
+ Plus; addition operator.
- Minus; subtraction operator.
* Scalar and matrix multiplication operator.
.* Array (element-by-element) multiplication operator.
^ Scalar and matrix exponentiation operator.
.^ Array (element-by-element) exponentiation operator.
\ Left-division operator.
/ Right-division operator.
.\ Array (element-by-element) left-division operator.
./ Array (element-by-element) right-division operator.
: Colon; generates regularly spaced elements and represents an entire row or

column.
() Parentheses; encloses function arguments and array indices; overrides prece-

dence.
[] Brackets; encloses array elements.
{ } Braces; encloses cell elements.
. Decimal point.
... Ellipsis; line-continuation operator.
, Comma; separates statements, and elements in a row of an array.
; Semicolon; separates columns in an array, and suppresses display.
% Percent sign; designates a comment, and specifies formatting.
’ Quote sign and transpose operator.
.’ Non-conjugated transpose operator.
= Assignment (replacement) operator.

Logical and relational operators.
== Relational operator; equal to.
~= Relational operator, not equal to.
< Relational operator, less than.
<= Relational operator, less than or equal to.
> Relational operator, greater than.
>= Relational operator, greater than or equal to.
& Logical operator, AND.
| Logical operator, OR.
~ Logical operator, NOT.

Matlab Guidelines 6 Dannenhoffer

Order of precedence.
Highest Parentheses, evaluated starting with the innermost pair.

Transpose and exponentiation, evaluated left to right.
Unary plus or minus and logical NOT (), evaluated left to right.
Multiplication and division, evaluated from left to right.
Addition and subtraction, evaluated from left to right.
Colon operator (:).
Relational operators, evaluated from left to right.
Logical AND (&), evaluated left to right.

Lowest Logical OR (—), evaluated left to right.

Special variables and constants.
ans Most recent answer.
eps Accuracy of floating point precision.
i,j The imaginary unit (square root of -1).
Inf Infinity.
NaN Undefined numerical result (not a number).
pi The number π.

Commands for managing a session.
clc Clears Command window.
clear Removes variables from memory.
doc Displays documentation.
exist Checks for existence of file or variable.
global Declares variables to be global.
help Displays help text in the Command window.
helpwin Displays help text in the Help Browser.
lookfor Searches help entries for a keyword.
quit Stops MATLAB.
who Lists current variables.
whos Lists current variables (long display).

Matlab Guidelines 7 Dannenhoffer

System and file commands.
cd Changes current directory.
date Displays current date.
delete Deletes a file.
diary Switches on/off diary file recording.
dir Lists all files in current directory.
get Returns diary status or filename.
load Loads workspace variables from a file.
path Displays search path.
pwd Displays current directory.
save Saves workspace to a file.
type Displays contents of a file.
what Lists all MATLAB files.
wk1read Reads .wk1 spreadsheet file.
xlsread Reads .xls spreadsheet file.

Input/output commands.
disp Displays contents of an array or string.
dlmwrite Writes formatted data to an ASCII file.
format Controls screen-display format.
fprintf Performs formatted writes to screen or file.
input Displays prompts and waits for output.
menu Displays a menu of choices
; Suppresses screen printing.

Numeric display formats
format short Four decimal digits (default)
format long 16 decimal digits.
format short e Five digits plus exponent.
format long e 16 digits plus exponents.
format bank Two decimal digits.
format + Positive, negative, or zero.
format rat Rational approximation.
format compact Suppresses some line feeds.
format loose Resets to less compact display mode.

Matlab Guidelines 8 Dannenhoffer

Array functions
cat Concatenates arrays.
find Finds indices of nonzero elements.
length Computes number of elements.
linspace Creates regularly spaced vector.
logspace Creates logarithmically spaced vector.
max Returns largest element.
min Returns smallest element.
size Computes array size.
sort Sorts each column.
sum Sums each column.

Special matrices
eye Creates an identity matrix.
ones Creates an array of ones.
zeros Creates an array of zeros.

Matrix functions for solving linear equations
det Computes determinant of an array.
inv Computes inverse of a matrix.
pinv Computes pseudo-inverse of a matrix.
rank Computes rank of a matrix.
rref Computes reduced row echelon from.

Exponential and logarithmic functions.
exp(x) Exponential; ex.
log(x) Natural logarithm; ln(x).
log10(x) Common (base ten) logarithm; log10(x).
sqrt(x) Square root of x.

Complex functions.
abs(x) Absolute value of x.
angle(x) Angle of a complex number x.
conj(x) Complex conjugate of x.
imag(x) Imaginary part of a complex number x.
real(x) Real part of a complex number x.

Matlab Guidelines 9 Dannenhoffer

Numeric functions.
ceil Rounds to the nearest integer toward ?.
fix Rounds to the nearest integer toward zero.
floor Rounds to the nearest integer toward -?.
round Rounds toward the nearest integer.
sign(x) Returns +1, 0, or -1, depending on sign of x.

Trigonometric functions.
acos(x) Inverse cosine; cos−1(x).
acot(x) Inverse cotangent; sec−1(x).
acsc(x) Inverse cosecant; csc−1(x).
asec(x) Inverse secant; sec−1(x).
asin(x) Inverse sine; sin−1(x).
atan(x) Inverse tangent; tan−1(x).
atan2(y,x) Four-quadrant inverse tangent of y/x.
cos(x) Cosine; cos(x).
cot(x) Cotangent; cot(x).
csc(x) Cosecant; csc(x).
sec(x) Secant; sec(x).
sin(x) Sine; sin(x).
tan(x) Tangent; tan(x).

Hyperbolic functions.
acosh(x) Inverse hyperbolic cosine..
acoth(x) Inverse hyperbolic cotangent.
acsch(x) Inverse hyperbolic cosecant.
asech(x) Inverse hyperbolic secant.
asinh(x) Inverse hyperbolic sine.
atanh(x) Inverse hyperbolic tangent.
cosh(x) Hyperbolic cosine.
coth(x) Hyperbolic cotangent.
csch(x) Hyperbolic cosecant.
sech(x) Hyperbolic secant.
sinh(x) Hyperbolic sine.
tanh(x) Hyperbolic tangent.

Matlab Guidelines 10 Dannenhoffer

Polynomial functions.
conv Computes product (convolution) of two polynomials.
deconv Computes ratio (deconvolution) of polynomials.
eig Computes the eigenvalues of a matrix.
poly Computes polynomial from roots.
polyfit Fits a polynomial to data.
polyval Evaluates polynomial.
roots Computes polynomial roots.

String functions.
findstr Finds occurrences of a string.
strcmp Compares strings.

Logical Functions.
any True if any elements are nonzero.
all True if all elements are nonzero.
find Finds indices of nonzero elements.
finite True if elements are finite.
isnan True if elements are undefined.
isempty True if elements are infinite.
isreal True if elements are real.
xor Exclusive OR.

Miscellaneous mathematical functions.
cross Computes cross products.
dot Computes dot products.
function Creates a user-defined function.

Cell array functions.
cell Creates cell array.
celldisp Displays cell array.
cellplot Displays graphical representation of cell array.
num2cell Converts numeric array to cell array.
deal Matches input and output lists.
iscell Identifies cell array.

Matlab Guidelines 11 Dannenhoffer

Structure functions.
fieldnames Returns field names in a structured array.
getfield Returns field contents of a structure array.
isfield Identifies a structure field array.
isstruct Identifies a structure array.
rmfield Removes a field from a structure array.
setfield Sets contents of a field.
struct Creates structure array.

Basic xy plotting commands.
axis Sets axis limits.
fplot Intelligent plotting of functions.
ginput Reads coordinates of the cursor position.
grid Displays gridlines.
plot Generates x-y plot.
print Prints plot or saves to a file.
title Puts text at top of plot.
xlabel Adds text label to x-axis.
ylabel Adds text label to y-axis.

Plot-enhancement commands.
axes Creates axes objects.
gtext Enables label placement by mouse.
hold Freezes current plot.
legend Legend placement by mouse.
refresh Redraws current figure window.
set Specifies properties of objects such as axes.
subplot Creates plots in sub-windows.
text Places string in figure.

Matlab Guidelines 12 Dannenhoffer

Specialized plot functions.
bar Creates bar chart.
loglog Creates log-log plot.
plotyy Enables plotting on left and right axes.
polar Creates polar plot.
quiver Plot velocity vectors as arrows.
semilogx Creates semilog plot (logarithmic abscissa).
semilogy Creates semilog plot (logarithmic ordinate).
stairs Creates stair plot.
stem Creates stem plot.

Three-dimensional plotting functions.
contour Creates contour plot.
mesh Creates 3D mesh surface plot.
meshc Same as mesh with contour plot underneath.
meshz Same as mesh with vertical lines underneath.
plot3 Creates 3D plots from lines and points.
surf Creates shaded 3D mesh surface plot.
surfc Same as surf with contour plot underneath.
meshgrid Creates rectangular grid.
waterfall Same as mesh with mesh lines in one direction.
zlabel Adds text label to z-axis.

Program flow control.
break Terminates execution of a loop.
case Provides alternate execution path within switch structure.
continue Passes control to the next iteration of a for or while loop.
else Delineates alternate block of statements.
elseif Conditionally executes statements.
end Terminates for, while, and if statements.
for Repeats statements a specific number of times.
if Executes statements conditionally.
otherwise Provides optional control within a switch structure.
switch Directs program execution by comparing input with case expressions.
while Repeats statements an indefinite number of times.

Matlab Guidelines 13 Dannenhoffer

Optimization and root-finding functions.
fminbnd Finds the minimum of a function of one variable.
fminsearch Finds the minimum of a multivariable function.
fminunc Finds the unconstrained minimum of a multivariable function
fmincon Finds the minimum of a multivariable function with constraints.
fzero Finds the zero of a function.
optimset Creates optimization options structure.

Histogram functions.
bar Creates a bar chart.
hist Aggregates the data into bins.

Statistical functions.
cumsum Computes the cumulative sum across a row.
erf(x) Computes the error function, erf(x).
mean Computes the mean.
median Computes the median.
std Computes the standard deviation.

Random number functions.
rand Generates uniformly distributed random numbers between 0 and 1; sets and

retrieves the state.
randn Generates normally distributed random numbers; sets and retrieves the

state.
randperm Generates random permutations of integers.

Polynomial functions.
poly Computes the coefficients of a polynomial and its roots.
polyfit Fits a polynomial to data.
polyval Evaluates a polynomial and generates error estimates.
roots Computes the roots of a polynomial from its coefficients.

Interpolation functions.
interp1 Linear and cubic-spline interpolation of a uni-variable function.
interp2 Linear interpolation of a function of two variables.
spline Cubic-spline interpolation.
unmkpp Computes the coefficients of cubic-spline polynomials.

Matlab Guidelines 14 Dannenhoffer

Numerical differentiation and integration functions
diff(x) Computes the differences between adjacent elements in a vector x
polyder Differentiates a polynomial, a polynomial product, or a polynomial quotient.
quad Numerical integration with adaptive Simpson’s rule.
quad1 Numerical integration with Lobatto quadrature.
trapz Numerical integration with the trapezoidal rule.

ODE solvers.
ode23 Nonstiff, low-order solver.
ode45 Nonstiff, medium-order solver.
ode113 Nonstiff, variable-order solver.
ode23s Stiff, low-order solver.
ode23t Moderately-stiff, trapezoidal rule solver.
ode23tb Stiff, low-order solver.
ode15s Stiff, variable-order solver.
odeset Creates integrator options structure for ODE solvers.

Predefined input functions.
gensig Generates a periodic sine, square, or pulse input.
sawtooth Generates a periodic sawtooth input.
square Generates a square wave input.
stepfun Generates a step function input.

Functions for creating and evaluating symbolic expressions.
class Returns the class of an expression.
digits Sets the number of decimal digits used to do variable precision arithmetic.
double Converts an expression to numeric form.
ezplot Generates a plot of a symbolic expression.
findsym Finds the symbolic variables in a symbolic expression.
numden Returns the numerator and denominator of an expression.
sym Creates a symbolic variable.
syms Creates one or more symbolic variables.
vpa Sets the number of digits used to evaluate expressions.

Matlab Guidelines 15 Dannenhoffer

Functions for manipulating symbolic expressions.
collect Collects coefficients of like powers in an expression
expand Expands an expression by carrying out powers.
factor Factors an expression.
poly2sym Converts a polynomial coefficient vector to a symbolic polynomial.
pretty Displays an expression in a form that resembles typeset mathematics.
simple Searches for the shortest form of an expression.
simplify Simplifies an expression using Maple’s simplification rules.
subs Substitutes variables or expressions.
sym2poly Converts an expression to a polynomial coefficient.

Symbolic solution of equations.
solve Solves symbolic equations.
dsolve Returns the symbolic solution of a differential equation or set of equations.

Symbolic calculus functions.
diff Returns the derivative of an expression.
dirac Dirac delta function (unit impulse).
heaviside Heaviside function (unit step).
int Returns the integral of an expression.
limit Returns the limit of an expression.
symsum Returns the symbolic summation of an expression.
taylor Returns the Taylor series of a function.

Symbolic linear algebra functions.
det Returns the determinant of a matrix.
eig Returns the eigenvalues (characteristic values) of a matrix.
inv Returns the inverse of a matrix.
poly Returns the characteristic polynomial of a matrix.

Laplace transform functions.
ilaplace Returns the inverse Laplace transform.
laplace Returns the Laplace transform.

Matlab Guidelines 16 Dannenhoffer

Sample Program (MatlabGuidelines.m)

function [] = MatlabGuidelines()
% MatlabGuidelines - this program simulates unssteady 1d heat
% condduction with (unsteady) temperatures prescribed
% at the boundaries
%
% inputs: (none)
% outputs: (none)
%
% written by John Dannenhoffer

% get all inputs
xmax = input(’Enter xmax: ’); % maximum depth (m)
nx = input(’Enter nx: ’); % number of points in x direction (-)
tmax = input(’Enter tmax: ’); % maximum time (d)
ntime = input(’Enter N: ’); % maximum number of time steps (-)

alfa = 0.52 * 3600 * 24 / 2050 / 1840; % diffusivity (m2/d)
fprintf(1, ’Enter alfa: %f\n’, alfa);

dx = xmax / nx; % distance between nodes (m)
dt = tmax / ntime; % time step (d)

Fo = alfa * dt / (dx^2); % Fourier number

% pre-allocate arrays
x = zeros(nx+1, 1);
t = zeros(1, ntime+1);
T = zeros(nx+1, ntime+1);

atri = zeros(nx+1 ,1);
btri = zeros(nx+1, 1);
ctri = zeros(nx+1, 1);
dtri = zeros(nx+1, 1);

% set up space array and initial temperatures
for ix = 1 : nx

itime = 1;
x(ix) = (ix-1) * dx; % spatial position (m)
t(itime) = 0; % initial time (d)
T(ix,itime) = 20; % initial temperature (C)

end % for ix

% step through remaining times
for itime = 2 : ntime+1

Matlab Guidelines 17 Dannenhoffer

t(itime) = (itime-1) * dt;

% set up the coefficients...

% ...left boundary condition
atri(1) = 1;
btri(1) = 0;
ctri(1) = 0;
if (t(itime) < 60) % left boundary temperature (C)

dtri(1) = -15;
else

dtri(1) = +20;
end % if

% ...interior (governing equation)
for ix = 2 : nx

atri(ix) = 1 + 2 * Fo;
btri(ix) = - Fo;
ctri(ix) = - Fo;
dtri(ix) = T(ix,ntime);

end % for ix

% ...right boundary condition
atri(nx+1) = 1;
btri(nx+1) = 0;
ctri(nx+1) = 0;
dtri(nx+1) = 20; % right boundary temperature (C)

% use the Thomas algorithm to solve the tridiagonal system
Tnew = thomas(nx+1, atri, btri, ctri, dtri);

% put the "results" into the temperature array
for ix = 1 : nx+1

T(ix,itime) = Tnew(ix);
end % for ix

end % for itime

% find the minimum depth for which T > 0
mindepth = x(nx+1);

for ix = nx : -1 : 1
okay = 1;

for itime = 1 : ntime+1
if (T(ix,itime) < 0)

okay = 0;

Matlab Guidelines 18 Dannenhoffer

end % if
end % for itime

if (okay == 1)
mindepth = x(ix);

end % if
end % for ix

fprintf(1, ’\nMinimum depth that pipe can be buried is approximately %f(m)\n’, mindepth);

% plot a contour of the results
for itime = 1 : ntime+1

for ix = 1 : nx+1
tt(ix,itime) = t(itime);
xx(ix,itime) = x(ix);

end % for ix
end % for itime

[cs,h] = contourf(xx, tt, T); ...
colorbar
title(’Contours of temperature (C)’)
xlabel(’x (m)’)
ylabel(’t (d)’)

end % function MatlabGuidelines

%--

function [x] = thomas(n, a, b, c, d);
% thomas - solve a tridiagonal matrix using the Thomas algorithm
%
% [a1 c1] [x1] [d1]
% [b2 a2 c2] [x2] [d2]
% [b3 a3 c3] [x3] [d3]
% [] [.] = [.]
% [...] [.] [.]
% [] [.] [.]
% [bn an] [xn] [dn]
%
% inputs:
% n size of matrix
% a array of diagonal elements
% b array of subdiagonal elements
% c array of superdiagonal elements
% d array of right-hand sides
% output:

Matlab Guidelines 19 Dannenhoffer

% x array of solutions

% Forward elimination
p(1) = - c(1) / a(1);
q(1) = d(1) / a(1);

for i = 2 : n
p(i) = - b(i) / (a(i) + c(i) * p(i-1));
q(i) = (d(i) - c(i) * q(i-1)) / (a(i) + c(i) * p(i-1));

end % for i

% Back substitution
x(n) = q(n);

for i = n-1 : -1 : 1
x(i) = p(i) * x(i+1) + q(i);

end % for i

end % function thomas

Matlab Guidelines 20 Dannenhoffer

