Calculation requirements(10')

Plot details(6')

Shaker Experiment(4 plots total)(1')(include error bars)

Amplitude vs. Frequency plot (3 length) (for each plot it should include 2 lines: input & output. Seems like the plot in the lab video)-use shaker.txt data file()

Wd & wn plot (3length)(put wd and wn in one plot, it should looks like 6 single points)

Hammer Experiment (18 plots total - 6*3 different length)(3=6*0.5')(include error bars)

- 1. Voltage vs. Time (Input) -use hammardat.txt data file
- 2. Voltage vs. Time (Output) -use hammardat.txt data file
- 3. **Amplitude vs. Frequency (Input)** -use hammar**fft**.txt data file
- 4. Amplitude vs. Frequency (Output) -use hammarfft.txt data file
- 5. Magnitude of response vs. Frequency (which is |H(f)|) -use hammarfft.txt data file
- 6. Phase Lag vs. Frequency (which is arctan(f)) -use hammarfft.txt data file

Simulation (8 plots total- 2*4 effects)(2=4*0.5')

(Effects of length, damping coefficient, end mass, material type)

- 1. Magnitude of Response vs. Frequency
- 2. Phase Angle vs. Frequency

Tables(3')

All experiment items should ± uncertainty (4'=6*0.5'+1'(uncertainty))

Simulation 3.1-

Length (inches) Theoretical	Frequency(Hz) Simulated	Theoretical Natural
		Frequency(Hz)
16		
20		
24		

Simulation 3.2-

Damping Coefficient	Theoretical ωn(rad/s)	Simulated Natural Frequency (Hz)	Damping Ratio (ζ)	Damped Frequency (Hz)
1				
3				
5				
7				
9				

Simulation 3.3.1-

End Weight (kg)	Theoretical Frequency (Hz)	Simulated Natural Frequency (Hz)	Theoretical ωn(rad/s)
0.25			
0.40			
0.60			

Simulation 3.3.2-

Material	Theoretical Frequency (Hz)	Simulated Frequency (Hz)	Theoretical ωn(rad/s)	Spring Constant Keq(KN/m)
Stainless Steel				
Carbon Steel				
Aluminum				

Shaker Experiment-(±uncertainty)

Length of	Theoretical	Damped	Experimental	Damping	Spring
Beam(inches)	Natural	Frequency	Natural	Ratio(ζ)	Constant Keq
	Frequency	$\omega d(rad/s)$	Frequency (Hz)		(KN/m)
	ω n(rad/s)				
16 ± 1/64					
20 ± 1/64					
24 ± 1/64					

Hammer Experiment-(±uncertainty)

Length of beam(inches)	Theoretical Natural Frequency ωn(rad/s)	Damped Frequency ωd(rad/s)	Experimental Natural Frequency (Hz)	Damping Ratio(ζ)	Spring Constant Keq (KN/m)
16 ± 1/64					
20 ± 1/64					
24 ± 1/64					

Code(5')

Write up (5')

Tips:

where x_0 and x_1 are amplitudes of any two successive peaks.

For system where $\zeta \ll 1$ (not too close to the critically damped regime, where $\zeta pprox 1$).

$$\zetapproxrac{\ln(rac{x_0}{x_1})}{2\pi}$$

x is the magnitude of the systems output.

System Transfer Function: $H(f) = \frac{\hat{y}(f)}{\hat{x}(f)}$ Where $\hat{x}(f)$ is the input to the system, and $\hat{y}(f)$ is the output of the system.

Use fast Fourier transform funvtion------fft()

$$\hat{x}(f = \text{fft(input)};$$

 $\hat{x}(f\hat{y}(f) = \text{fft(output)}.$

Magnitude of Response: $|H(f)| = \sqrt{\operatorname{Re}(H(f))^2 + \operatorname{Im}(H(f))^2}$

Phase Lag/Lead: $\phi(f) = \operatorname{atan}\left(\frac{\operatorname{Im}(H(f))}{\operatorname{Re}(H(f))}\right)$