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Topics
● Reducing the airfoil lift data (CLFIT.M)

● Making decisions, part I

● Ground vehicle in steady motion

● Some vehicle geometry

● Lift and drag

● Vehicle wind tunnel testing

● Rolling resistance

● Making decisions, part II

● Coast-down tests; reducing data (COAST.M)



Making Decisions  I

● Relational operators

● Array z has 1’s where true, zero’s where
false

  Find where the angle of attack is not greater than 
  21 degrees.  Then fit a straight line to the data.

z = ( angle <= 21 )



CLFIT.M  I
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CLFIT.M  II
% Load and parse the data file
load a:\ld1.txt
V = ld1(:,4); % vector of air speeds 

%(m/s)
L = ld1(:,2); % vector of lifts (N)
D = ld1(:,3); % vector of drags (N)
angle = ld1(:,1);% vector of angles of 

% attack (N)
% Airfoil dimensions
c = 0.10152; % m
b = 0.254; % m
S = b*c; % planform area (m^2)



CLFIT.M  III

% Get pressure and temperature
HmmHg = input( ’Enter air pressure 
                (mm Hg): ’ );
p = mmhg2pa( HmmHg ); % air pressure 

% (N/m^2)
Tc = input( ’Enter temperature (C): ’ );
T = tk( Tc ); % convert to 

% absolute (K)

% Calculate air density
rho = airden ( p, T );



CLFIT.M  IV

% Calculate the lift coefficients
q = .5*rho*V.^2; % dynamic pressures

% (N/m^2)
cL = L./(S*q);

% Locate angles <= 21 degrees

z = ( angle <= 21 );

fprintf( ’\nThe array z:\n %g\n’, z)
limit_index = sum(z);   %count the 1’s



CLFIT.M  V
% Fit a straight line to the data subset
L = polyfit( angle(1:limit_index),…

 cL(1:limit_index), 1 );
fprintf( '\nThe slope is %g ; 
 the intercept is %g \n\n', L(1), L(2) )

% Predict cL at - and + angles
x = [-angle(limit_index)-6:1: …

angle(limit_index)+6];
y = polyval( L, x );



CLFIT.M  VI
% Plot cL and cL fit vs. angle of attack
plot ( angle, cL, ’square’, x, y, ’-’ );
legend (’lift coefficient’,…

 '10-point linear fit', 0 );
xlabel ('angle of attack (degrees)');
ylabel ('lift coefficient');
title (‘Lift Coefficient and Linear Fit vs .

 Angle of Attack')
grid



Demonstrate CLFIT.M

● Note: the prediction

   is true.
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Ground Vehicle in Steady Motion
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Ground Vehicle in Steady Motion

Summing Forces in x- and z-directions:

R = R1 + R2
N = N1 + N2

0cos

0sin

=−+
=−−−

λ
λ

WNL

WDRT=∑ xF

=∑ zF



Accelerating in X-Direction
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The effective mass, Me, accounts for the rotational
inertia of the wheels.  It is about 1.03 M, typically.



Some Vehicle Geometry

track wheel base, L

profile area, AD
(outlined in red)

pitch angle (up +)

“drag area” is cDAD, [m2]
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Drag Coefficient of Car
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Lift, Drag in Straight Ahead Flow

● Lift and drag depend on
■ The relative airspeed

■ The viscosity and density of the air
■ The shape and smoothness of the vehicle

– Including wheels and wheel wells, and the
– Ventilation system

■ The pitch angle of the vehicle
■ The proximity of the ground
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Utility of Model Tests

● Use cL and cD for full scale car
■ Geometrically similar car

■ Same Reynolds number

● However, drag of actual car usually
greater than model

– Model usually simplified
– Some full-scale test facilities exist



Reynolds Number

Re = ρVL/µ

Proportional to the
ratio of dynamic to viscous forces

acting on a fluid element 

( )
..

sec
sec

2

2

2

3

dn

m

N
m

N

m

N

m
m

m

kg

⇒=











 L is wheel base



Rolling Resistance

● Contact patch force
■ Proportional to N

● Bearing friction (small)
■ Proportional to V and W

● Wheel rotational drag (smallest)
■ Proportional to V

WVWR )cos( 21 µλµµ +==



Coast-Down Test to Measure
cDAD, µ1, µ2

● Measure W, p (pressure), and T (temp.
Celcius)

● No wind, horizontal road (ideally)
● Initial speed greater than about 40 mph
● Coast down in straight line and record V

at intervals

● [Note: µ means “rolling resistance
coefficient,” in this case -- not viscosity]



Reducing Coast Down Data

● Fit V(t), find           , fit a quadratic in V to
it:

●  Where
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Making Decisions  II

● If the user selects numeric derivative
■ …then do that method and go on

● Else she wants to smooth the data first
■ …then do that and go on

● End of decision



First Derivative Approximations
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Numerical Derivatives II
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COASTD.M Flow Chart  I
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Numerical dV/dt
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COASTD.M  I
% Load and parse the data file
load a:\cddata -ascii;
t = ld1(:,1); % vector of times (sec)
V = ld1(:,2); % vector of car speeds at 
                    % times (m/s)

% Car mass and profile area
load a:\cdtest -ascii;
Ap = cdtest(2); % m^2
M = cdtest(5); % kg
p = cdtest(6);
Tc = cdtest(7);
T = tk (Tc);
rho = airden (p*1000, T);



COASTD.M  II

% Menu
fprintf (’\nMENU:\n\t1. Unsmoothed data, 

numeric derivative.\n\t2. 
Cubic smoothing.\n\n\t’);

choice = input (’Enter number of 
choice: ’);



The “choice” if-block

If choice == 1

[un-smoothed data, numeric derivative
 statements]

else

[cubic-polynomial fitted to data, derivative
            is derivative of polynomial]

end



COASTD.M  III

% Start of “choice” if-block
if  choice == 1

   % Un-smoothed data, numeric derivative
   n = length(V);
   clear dVdt
   dt = t(2)-t(1);

   % Loop through all data points

 [next slide]



[if choice == 1, continued]

for i = 1:n
    if i == 1

  dVdt(i) = ( V(i+1)-V(i) )/dt;
    elseif i == n
      dVdt(i) = ( V(i)-V(i-1) )/dt;
    else
      dVdt(i) = ( V(i+1)-V(i-1) )/( 2*dt);
    end
end % End of loop through data
% Reduce the results
   a = polyfit (V, dVdt’, 2);
   [cDm mu1m mu2m] = reduce (a, cdtest);



COASTD.M   IV

else
% Try cubic smoothing
   b3 = polyfit (t, V, 3);
   Vf3 = b3(1)*t.^3 + b3(2)*t.^2 + …

b3(3)*t + b3(4);
   dVdt3 = 3*b3(1)*t.^2 + 2*b3(2)*t +…

b3(3);
% Reduce the results
   a3 = polyfit (Vf3, dVdt3, 2);
   [cDm mu1m mu2m] = reduce (a3, cdtest);
end % End of “choice” if-block



COASTD.M   V

% Print results
fprintf (’\nResults:\n\tcD = %g\n
   \tmu1 = %g\n\tmu2 = %g (s/m)\n\n’,...
    cDm, mu1m, mu2m);

% Calculate errors
errors (cDm, mu1m, mu2m, cdtest);



New Functions in COASTD.M  I

function errors ( cD, mu1, mu2, cdtest )

ecD = abs( (cD/cdtest(1)) - 1 )*100;
emu1 = abs( (mu1/cdtest(3)) - 1 )*100;
emu2 = abs( (mu2/cdtest(4)) - 1 )*100;
fprintf (’\n\tError in cD = %g %%\n

\tError in mu1 = %g %%\n
\tError in mu2 = %g %%\n\n’,...

   ecD, emu1, emu2)



New Functions in COASTD.M II
function [cD, mu1, mu2] = 

reduce(a, cdtest);
% Assign convenient names
AD = cdtest(2);
M = cdtest(5);
p = cdtest(6);
Tc = cdtest(7);
% Calculate T, rho, Me, and W
T = tk (Tc);
rho = airden (p*1000, T);
Me = 1.03*M;
W = M*9.807;



Function REDUCE.M, cont.

% Find cD, mu1, mu2.  Recall that:
%    a(1) = -.5*cD*AD*rho/Me;
%    a(2) = -mu2*W/Me;
%    a(3) = -mu1*W/Me;
cD = -a(1)*2*Me/(AD*rho);
mu1 = -a(3)*Me/W;
mu2 = -a(2)*Me/W;



Results from COASTD.M

● Effect of number of measurements
● Effect of standard deviation


