
ES100

March 29, 1999

E. F. Thacher

Topics
● Reducing the airfoil lift data (CLFIT.M)

● Making decisions, part I

● Ground vehicle in steady motion

● Some vehicle geometry

● Lift and drag

● Vehicle wind tunnel testing

● Rolling resistance

● Making decisions, part II

● Coast-down tests; reducing data (COAST.M)

Making Decisions I

● Relational operators

● Array z has 1’s where true, zero’s where
false

 Find where the angle of attack is not greater than
 21 degrees. Then fit a straight line to the data.

z = (angle <= 21)

CLFIT.M I

start
Load,

parse ld1

Airfoil
geom.

Get p, T

Density

cL

Locate
α<=21 dgr

Linear fit

Predict - and + cL

Plot Stop

CLFIT.M II
% Load and parse the data file
load a:\ld1.txt
V = ld1(:,4); % vector of air speeds

%(m/s)
L = ld1(:,2); % vector of lifts (N)
D = ld1(:,3); % vector of drags (N)
angle = ld1(:,1);% vector of angles of

% attack (N)
% Airfoil dimensions
c = 0.10152; % m
b = 0.254; % m
S = b*c; % planform area (m^2)

CLFIT.M III

% Get pressure and temperature
HmmHg = input(’Enter air pressure
 (mm Hg): ’);
p = mmhg2pa(HmmHg); % air pressure

% (N/m^2)
Tc = input(’Enter temperature (C): ’);
T = tk(Tc); % convert to

% absolute (K)

% Calculate air density
rho = airden (p, T);

CLFIT.M IV

% Calculate the lift coefficients
q = .5*rho*V.^2; % dynamic pressures

% (N/m^2)
cL = L./(S*q);

% Locate angles <= 21 degrees

z = (angle <= 21);

fprintf(’\nThe array z:\n %g\n’, z)
limit_index = sum(z); %count the 1’s

CLFIT.M V
% Fit a straight line to the data subset
L = polyfit(angle(1:limit_index),…

 cL(1:limit_index), 1);
fprintf('\nThe slope is %g ;
 the intercept is %g \n\n', L(1), L(2))

% Predict cL at - and + angles
x = [-angle(limit_index)-6:1: …

angle(limit_index)+6];
y = polyval(L, x);

CLFIT.M VI
% Plot cL and cL fit vs. angle of attack
plot (angle, cL, ’square’, x, y, ’-’);
legend (’lift coefficient’,…

 '10-point linear fit', 0);
xlabel ('angle of attack (degrees)');
ylabel ('lift coefficient');
title (‘Lift Coefficient and Linear Fit vs .

 Angle of Attack')
grid

Demonstrate CLFIT.M

● Note: the prediction

 is true.

)()(αα LL cc −=−

Ground Vehicle in Steady Motion

Ground Vehicle in Steady Motion

λ

● Neglect transverse forces and moments

x

z

Ground Vehicle in Steady Motion

λ

● Neglect transverse forces and moments

x

z

V

Ground Vehicle in Steady Motion

λ

● Neglect transverse forces and moments

x

z

V

D

drag

Ground Vehicle in Steady Motion

λ

● Neglect transverse forces and moments

x

z

V

D

dragx

W

weight

Ground Vehicle in Steady Motion

λ

● Neglect transverse forces and moments

x

z

V

D

dragx

W

weight

N1front wheels
reaction

Ground Vehicle in Steady Motion

λ

● Neglect transverse forces and moments

x

z

V

D

dragx

W

weight

N1front wheels
reaction N2

rear wheels
reaction

Ground Vehicle in Steady Motion

λ

● Neglect transverse forces and moments

x

z

V

D

dragx

W

weight

N1front wheels
reaction N2

rear wheels
reaction

L
lift

Ground Vehicle in Steady Motion

λ

● Neglect transverse forces and moments

x

z

V

D

dragx

W

weight

N1front wheels
reaction N2

rear wheels
reaction

L
lift

T

tractive force

V

Ground Vehicle in Steady Motion

λ

● Neglect transverse forces and moments

x

z

V

D

dragx

W

weight

N1front wheels
reaction N2

rear wheels
reaction

L
lift

T

tractive force

V

R1

front wheels
rolling resistance

weight

N1ront wheels
eaction

Ground Vehicle in Steady Motion

λ

● Neglect transverse forces and moments

x

z

V

D

dragx

W

weight

N1front wheels
reaction N2

rear wheels
reaction

L
lift

T

tractive force

V

R1

front wheels
rolling resistance

weight

N1ront wheels
eaction

R2

rear wheels rolling
resistance

D

N2

s

Ground Vehicle in Steady Motion

λ

● Neglect transverse forces and moments

x

z

V

D

dragx

W

weight

N1front wheels
reaction N2

rear wheels
reaction

L
lift

T

tractive force

V

R1

front wheels
rolling resistance

weight

N1ront wheels
eaction

R2

rear wheels rolling
resistance

D

N2

s

MP

pitching moment

Ground Vehicle in Steady Motion

Summing Forces in x- and z-directions:

R = R1 + R2
N = N1 + N2

0cos

0sin

=−+
=−−−

λ
λ

WNL

WDRT=∑ xF

=∑ zF

Accelerating in X-Direction

0cos

sin

=−+

=−−−

λ

λ

WNL
dt

dV
MWDRT e

The effective mass, Me, accounts for the rotational
inertia of the wheels. It is about 1.03 M, typically.

Some Vehicle Geometry

track wheel base, L

profile area, AD
(outlined in red)

pitch angle (up +)

“drag area” is cDAD, [m2]

Lift Coefficient of Car

2

2
1

VA

L
c

D

L

ρ
=

⇒







2
2)(

m

N
m

N cL is dimensionless

Lift Coefficient of Car

2

2
1

VA

L
c

D

L

ρ
=

⇒







2
2)(

m

N
m

N cL is dimensionless

lift coefficient

Lift Coefficient of Car

2

2
1

VA

L
c

D

L

ρ
=

⇒







2
2)(

m

N
m

N cL is dimensionless

lift coefficient
lift force

Lift Coefficient of Car

2

2
1

VA

L
c

D

L

ρ
=

⇒







2
2)(

m

N
m

N cL is dimensionless

lift coefficient
lift force

profile area

Lift Coefficient of Car

2

2
1

VA

L
c

D

L

ρ
=

⇒







2
2)(

m

N
m

N cL is dimensionless

lift coefficient
lift force

profile area
air density

Lift Coefficient of Car

2

2
1

VA

L
c

D

L

ρ
=

⇒







2
2)(

m

N
m

N cL is dimensionless

lift coefficient
lift force

profile area
air density

relative air speed

Drag Coefficient of Car

2

2
1

VA

D
c

D

D

ρ
=

profile area
air density

relative air speed

drag force

drag coefficient

⇒







2
2)(

m

N
m

N cD is dimensionless

Lift, Drag in Straight Ahead Flow

● Lift and drag depend on
■ The relative airspeed

■ The viscosity and density of the air
■ The shape and smoothness of the vehicle

– Including wheels and wheel wells, and the
– Ventilation system

■ The pitch angle of the vehicle
■ The proximity of the ground

Measuring cL and cD in Tunnel

V

wind tunnel

fan

flow straightener

velocity probe

data reduction

Measuring cL and cD in Tunnel

V

wind tunnel

fan

flow straightener

velocity probe

data reduction

force
balance

vehicle

pitch angle

Utility of Model Tests

● Use cL and cD for full scale car
■ Geometrically similar car

■ Same Reynolds number

● However, drag of actual car usually
greater than model

– Model usually simplified
– Some full-scale test facilities exist

Reynolds Number

Re = ρVL/µ

Proportional to the
ratio of dynamic to viscous forces

acting on a fluid element

()
..

sec
sec

2

2

2

3

dn

m

N
m

N

m

N

m
m

m

kg

⇒=











 L is wheel base

Rolling Resistance

● Contact patch force
■ Proportional to N

● Bearing friction (small)
■ Proportional to V and W

● Wheel rotational drag (smallest)
■ Proportional to V

WVWR)cos(21 µλµµ +==

Coast-Down Test to Measure
cDAD, µ1, µ2

● Measure W, p (pressure), and T (temp.
Celcius)

● No wind, horizontal road (ideally)
● Initial speed greater than about 40 mph
● Coast down in straight line and record V

at intervals

● [Note: µ means “rolling resistance
coefficient,” in this case -- not viscosity]

Reducing Coast Down Data

● Fit V(t), find , fit a quadratic in V to
it:

● Where

01
2

2)(aVaVatV ++=&

)(tV&

eee

DD

M

W
a

M

W
a

M

Ac
a 1

0
2

12 ,,
2

µµρ ===

Making Decisions II

● If the user selects numeric derivative
■ …then do that method and go on

● Else she wants to smooth the data first
■ …then do that and go on

● End of decision

First Derivative Approximations

t

VV

t

VV

dt

dV iittt

∆
−=

∆
−≈ +∆+ 1

t

VV

dt

dV ii

∆
−≈ −+

2
11

t

VV

dt

dV ii

∆
−≈ −1

Forward difference

Central difference

Backward difference

“i” ==> t

Numerical Derivatives II

V

tti-1 ti ti+1

central

backwards

forward

Vi-1

Vi

Vi+1

(use at nth point)

(use at 1st point)

COASTD.M Flow Chart I

start

Load and parse
CDTEST&CDDATA

Numerical
dVdt

cD, µ1, µ2

menu Print cD, µ1, µ2

stop

Smooth?

y

n

Smoothed
dVdt

cD, µ1, µ2

errors

Print errors

Numerical dV/dt

First point?Last point?

Fwd diffBack diff

l = 1

Central diff

I = N? I = I + 1

Quadr. Fit dVdt to V cD, µ1 µ2

[output
section]

y

n n

n

y

y

First derivative numerically

COASTD.M I
% Load and parse the data file
load a:\cddata -ascii;
t = ld1(:,1); % vector of times (sec)
V = ld1(:,2); % vector of car speeds at
 % times (m/s)

% Car mass and profile area
load a:\cdtest -ascii;
Ap = cdtest(2); % m^2
M = cdtest(5); % kg
p = cdtest(6);
Tc = cdtest(7);
T = tk (Tc);
rho = airden (p*1000, T);

COASTD.M II

% Menu
fprintf (’\nMENU:\n\t1. Unsmoothed data,

numeric derivative.\n\t2.
Cubic smoothing.\n\n\t’);

choice = input (’Enter number of
choice: ’);

The “choice” if-block

If choice == 1

[un-smoothed data, numeric derivative
 statements]

else

[cubic-polynomial fitted to data, derivative
 is derivative of polynomial]

end

COASTD.M III

% Start of “choice” if-block
if choice == 1

 % Un-smoothed data, numeric derivative
 n = length(V);
 clear dVdt
 dt = t(2)-t(1);

 % Loop through all data points

 [next slide]

[if choice == 1, continued]

for i = 1:n
 if i == 1

 dVdt(i) = (V(i+1)-V(i))/dt;
 elseif i == n
 dVdt(i) = (V(i)-V(i-1))/dt;
 else
 dVdt(i) = (V(i+1)-V(i-1))/(2*dt);
 end
end % End of loop through data
% Reduce the results
 a = polyfit (V, dVdt’, 2);
 [cDm mu1m mu2m] = reduce (a, cdtest);

COASTD.M IV

else
% Try cubic smoothing
 b3 = polyfit (t, V, 3);
 Vf3 = b3(1)*t.^3 + b3(2)*t.^2 + …

b3(3)*t + b3(4);
 dVdt3 = 3*b3(1)*t.^2 + 2*b3(2)*t +…

b3(3);
% Reduce the results
 a3 = polyfit (Vf3, dVdt3, 2);
 [cDm mu1m mu2m] = reduce (a3, cdtest);
end % End of “choice” if-block

COASTD.M V

% Print results
fprintf (’\nResults:\n\tcD = %g\n
 \tmu1 = %g\n\tmu2 = %g (s/m)\n\n’,...
 cDm, mu1m, mu2m);

% Calculate errors
errors (cDm, mu1m, mu2m, cdtest);

New Functions in COASTD.M I

function errors (cD, mu1, mu2, cdtest)

ecD = abs((cD/cdtest(1)) - 1)*100;
emu1 = abs((mu1/cdtest(3)) - 1)*100;
emu2 = abs((mu2/cdtest(4)) - 1)*100;
fprintf (’\n\tError in cD = %g %%\n

\tError in mu1 = %g %%\n
\tError in mu2 = %g %%\n\n’,...

 ecD, emu1, emu2)

New Functions in COASTD.M II
function [cD, mu1, mu2] =

reduce(a, cdtest);
% Assign convenient names
AD = cdtest(2);
M = cdtest(5);
p = cdtest(6);
Tc = cdtest(7);
% Calculate T, rho, Me, and W
T = tk (Tc);
rho = airden (p*1000, T);
Me = 1.03*M;
W = M*9.807;

Function REDUCE.M, cont.

% Find cD, mu1, mu2. Recall that:
% a(1) = -.5*cD*AD*rho/Me;
% a(2) = -mu2*W/Me;
% a(3) = -mu1*W/Me;
cD = -a(1)*2*Me/(AD*rho);
mu1 = -a(3)*Me/W;
mu2 = -a(2)*Me/W;

Results from COASTD.M

● Effect of number of measurements
● Effect of standard deviation

