

ES100
 March 29, 1999

E. F. Thacher

Topics

- Reducing the airfoil lift data (CLFIT.M)
- Making decisions, part I
- Ground vehicle in steady motion
- Some vehicle geometry
- Lift and drag
- Vehicle wind tunnel testing
- Rolling resistance
- Making decisions, part II
- Coast-down tests; reducing data (COAST.M)

Making Decisions I

- Relational operators

Find where the angle of attack is not greater than 21 degrees. Then fit a straight line to the data.

$$
\text { z = (angle <= } 21 \text {) }
$$

- Array z has 1's where true, zero's where false

CLFIT.M I

CLFIT.M II

\% Load and parse the data file
load a:\ld1.txt
$V=1 d 1(:, 4) ; \quad \%$ vector of air speeds
$\%(\mathrm{~m} / \mathrm{s})$
L = ld1 (: , 2) ;
\% vector of lifts (N)
$D=1 d 1(:, 3) ; \quad$ \% vector of drags (N) angle $=1 d 1(:, 1) ;$ vector of angles of
\% attack (N)
\% Airfoil dimensions
c $=0.10152 ; \quad$ \% m
$\mathrm{b}=0.254 ; \quad \% \mathrm{~m}$
$\mathrm{S}=\mathrm{b} \mathrm{C}_{\mathrm{c}}$;
\% planform area (m^2)

CLFIT.M III

\% Get pressure and temperature
HmmHg = input('Enter air pressure (mm Hg) : \quad);
$\mathrm{p}=$ mmhg2pa(HmmHg); \% air pressure
\% ($\mathrm{N} / \mathrm{m}^{\wedge} 2$)
TC = input ('Enter temperature (C): ');
$T=t k(T C) ;$
\% convert to
\% absolute
\% Calculate air density
rho $=$ airden (P, T);

CLFIT.M IV

\% Calculate the lift coefficients
q = .5*rho*V.^2; \% dynamic pressures \% (N/m^2)
$\mathrm{cL}=\mathrm{L} . /(\mathrm{S} * \mathrm{q})$;
\% Locate angles <= 21 degrees

$$
z=(\text { angle }<=21)
$$

fprintf($\quad \backslash n T h e$ array $z: \backslash n \% g \backslash n ', z)$ limit_index $=$ sum(z); \%count the 1^{\prime} s

CLFIT.M V

\% Fit a straight line to the data subset
$\mathrm{L}=$ polyfit(angle(1:limit_index) ,... cL(1:limit_index), 1);
fprintf('\nThe slope is \%g ; the intercept is \%g $\backslash n \backslash n^{\prime}, L(1), L(2)$)
\% Predict cL at - and + angles
x = [-angle(limit_index)-6:1:... angle(limit_index) +6];
$y=$ polyval (L, x) ;

CLFIT.M VI

\% Plot CL and CL fit vs. angle of attack plot (angle, cL, 'square', x, Y, \mathbf{I}^{\prime}) ;
legend ('lift coefficient',...
'10-point linear fit', 0);
xlabel ('angle of attack (degrees)');
ylabel ('lift coefficient'); title ('Lift Coefficient and Linear Fit vs. Angle of Attack')
grid

Demonstrate CLFIT.M

- Note: the prediction

$$
c_{L}(-\alpha)=-c_{L}(\alpha)
$$

is true.

Ground Vehicle in Steady Motion

Ground Vehicle in Steady Motion

- Neglect transverse forces and moments

Ground Vehicle in Steady Motion

- Neglect transverse forces and moments

Ground Vehicle in Steady Motion

- Neglect transverse forces and moments

Ground Vehicle in Steady Motion

- Neglect transverse forces and moments

weight

Ground Vehicle in Steady Motion

- Neglect transverse forces and moments

Ground Vehicle in Steady Motion

- Neglect transverse forces and moments

Ground Vehicle in Steady Motion

- Neglect transverse forces and moments

Ground Vehicle in Steady Motion

- Neglect transverse forces and moments

Ground Vehicle in Steady Motion

- Neglect transverse forces and moments

Ground Vehicle in Steady Motion

- Neglect transverse forces and moments

Ground Vehicle in Steady Motion

- Neglect transverse forces and moments

Ground Vehicle in Steady Motion

Summing Forces in x - and z -directions:

$$
\begin{aligned}
& \sum F_{x}=T-R-D-W \sin \lambda=0 \\
& \sum F_{z}=L+N-W \cos \lambda=0
\end{aligned}
$$

$$
\begin{aligned}
& R=R_{1}+R_{2} \\
& N=N_{1}+N_{2}
\end{aligned}
$$

Accelerating in X-Direction

$$
T-R-D-W \sin \lambda=M_{e} \frac{d V}{d t}
$$

$$
L+N-W \cos \lambda=0
$$

The effective mass, M_{e}, accounts for the rotational inertia of the wheels. It is about 1.03 M , typically.

Some Vehicle Geometry

"drag area" is $\mathrm{C}_{\mathrm{D}} \mathrm{A}_{\mathrm{D}},\left[\mathrm{m}^{2}\right]$

Lift Coefficient of Car

$$
c_{L}=\frac{L}{A_{D} \frac{1}{2} \rho V^{2}}
$$

$\frac{N}{\left(m^{2}\right)\left(\frac{N}{m^{2}}\right)} \Rightarrow \mathrm{c}_{\mathrm{L}}$ is dimensionless

Lift Coefficient of Car

lift coefficient

$$
c_{L}=\frac{L}{A_{D} \frac{1}{2} \rho V^{2}}
$$

$$
\frac{N}{\left(m^{2}\right)\left(\frac{N}{m^{2}}\right)} \Rightarrow \quad \mathrm{c}_{\mathrm{L}} \text { is dimensionless }
$$

Lift Coefficient of Car

lift coefficient

$c_{L}=\frac{L \longleftarrow}{A_{D} \frac{1}{2} \rho V^{2}}$ lift force

$\frac{N}{\left(m^{2}\right)\left(\frac{N}{m^{2}}\right)} \Rightarrow \mathrm{c}_{\mathrm{L}}$ is dimensionless

Lift Coefficient of Car

lift coefficient

$$
\frac{N}{\left(m^{2}\right)\left(\frac{N}{m^{2}}\right)} \Rightarrow \quad \mathrm{c}_{\mathrm{L}} \text { is dimensionless }
$$

Lift Coefficient of Car

lift coefficient

$$
\frac{N}{\left(m^{2}\right)\left(\frac{N}{m^{2}}\right)} \Rightarrow \quad \mathrm{c}_{\mathrm{L}} \text { is dimensionless }
$$

Lift Coefficient of Car

lift coefficient
profile area

$$
\frac{N}{\left(m^{2}\right)\left(\frac{N}{m^{2}}\right)} \Rightarrow \quad \mathrm{c}_{\mathrm{L}} \text { is dimensionless }
$$

Drag Coefficient of Car

drag coefficient

$$
\frac{N}{\left(m^{2}\right)\left(\frac{N}{m^{2}}\right)} \Rightarrow \mathrm{c}_{\mathrm{D}} \text { is dimensionless }
$$

Lift, Drag in Straight Ahead Flow

- Lift and drag depend on

■ The relative airspeed
\square The viscosity and density of the air
$■$ The shape and smoothness of the vehicle

- Including wheels and wheel wells, and the
- Ventilation system
$■$ The pitch angle of the vehicle
- The proximity of the ground

Measuring c_{L} and c_{D} in Tunnel

Measuring c_{L} and c_{D} in Tunnel

Utility of Model Tests

- Use C_{L} and C_{D} for full scale car
- Geometrically similar car

■ Same Reynolds number

- However, drag of actual car usually greater than model
- Model usually simplified
- Some full-scale test facilities exist

Reynolds Number

Proportional to the

ratio of dynamic to viscous forces acting on a fluid element

Rolling Resistance

- Contact patch force
- Proportional to N
- Bearing friction (small)

■ Proportional to V and W

- Wheel rotational drag (smallest)

■ Proportional to V

$R=\mu W=\left(\mu_{1} \cos \lambda+\mu_{2} V\right) W$

Coast-Down Test to Measure $c_{D} A_{D}, \mu_{1}, \mu_{2}$

- Measure W, p (pressure), and T (temp. Celcius)
- No wind, horizontal road (ideally)
- Initial speed greater than about 40 mph
- Coast down in straight line and record V at intervals
- [Note: μ means "rolling resistance coefficient," in this case -- not viscosity]

Reducing Coast Down Data

- Fit $\mathrm{V}(\mathrm{t})$, find $\dot{V}(t)$, fit a quadratic in V to it:

$$
\dot{V}(t)=a_{2} V^{2}+a_{1} V+a_{0}
$$

- Where

$$
a_{2}=\frac{c_{D} A_{D} \rho}{2 M_{e}}, \quad a_{1}=\frac{\mu_{2} W}{M_{e}}, \quad a_{0}=\frac{\mu_{1} W}{M_{e}}
$$

Making Decisions II

- If the user selects numeric derivative
\square...then do that method and go on
- Else she wants to smooth the data first

■...then do that and go on

- End of decision

First Derivative Approximations

Forward difference

$$
\frac{d V}{d t} \approx \frac{V_{t+\Delta t}-V_{t}}{\Delta t}=\frac{V_{i+1}-V_{i}}{\Delta t} \quad \because \mathrm{ci}=\mathrm{t}
$$

Central difference

$$
\frac{d V}{d t} \approx \frac{V_{i+1}-V_{i-1}}{2 \Delta t}
$$

Backward difference

$$
\frac{d V}{d t} \approx \frac{V_{i}-V_{i-1}}{\Delta t}
$$

Numerical Derivatives II

COASTD.M Flow Chart I

Numerical dV/dt

COASTD.M I

\% Load and parse the data file
load a:\cddata -ascii;
$\begin{array}{ll}t=\operatorname{ld} 1(:, 1) ; & \text { \% vector of times (sec) } \\ \mathrm{v}=\operatorname{ld} 1(:, 2) ; & \text { \% vector of car speeds at } \\ & \text { \% times }(\mathrm{m} / \mathrm{s})\end{array}$
\% Car mass and profile area
load a:\cdtest -ascii;

```
Ap = cdtest(2);
% m^2
M = cdtest(5);
% kg
p = cdtest(6);
Tc = cdtest(7);
T = tk (Tc);
rho = airden (p*1000, T);
```


COASTD.M II

\% Menu
fprintf ('\nMENU:\n\t1. Unsmoothed data, numeric derivative. $\ \mathrm{n} \backslash \mathrm{t} 2$. Cubic smoothing. $\left.\backslash n \backslash n \backslash t^{\prime}\right)$;
choice $=$ input ('Enter number of choice: ');

The "choice" if-block

If choice == 1

[un-smoothed data, numeric derivative statements]

else
[cubic-polynomial fitted to data, derivative is derivative of polynomial]
end

COASTD.M III

\% Start of "choice" if-block
if choice == 1
\% Un-smoothed data, numeric derivative
$\mathrm{n}=$ length (V);
clear dVdt $d t=t(2)-t(1) ;$
\% Loop through all data points
[next slide]

[if choice == 1, continued]

for $i=1: n$
if i == 1
$d V d t(i)=(V(i+1)-V(i)) / d t ;$
elseif $i==n$ $d V d t(i)=(V(i)-V(i-1)) / d t ;$
else
dVdt (i) $=(\mathrm{V}(i+1)-\mathrm{V}(i-1)) /(2 * d t) ;$
end
end
\% End of loop through data
\% Reduce the results
$a=p o l y f i t(V, d V d t ', ~ 2) ;$
[cDm mulm mu2m] = reduce (a, cdtest);

COASTD.M IV

else
\% Try cubic smoothing
b3 = polyfit (t, V, 3);
$\mathrm{Vf} 3=\mathrm{b} 3(1) * t . \wedge 3+\mathrm{b} 3(2) * t . \wedge 2+\ldots$ $\mathrm{b} 3(3)$ *t $+\mathrm{b} 3(4)$;
$d V d t 3=3 * b 3(1) * t . \wedge 2+2 * b 3(2) * t+\ldots$ b3 (3) ;
\% Reduce the results
a3 = polyfit (Vf3, dVdt3, 2);
[cDm mu1m mu2m] = reduce (a3, cdtest);
end
\% End of "choice" if-block

COASTD.M V

\% Print results
fprintf ('\nResults: \n\tcD $=\% \mathrm{~g} \backslash \mathrm{n}$
$\backslash t m u 1=\% g \backslash n \backslash t m u 2=\% g(s / m) \backslash n \backslash n^{\prime}, \ldots$. cDm, mu1m, mu2m);
\% Calculate errors
errors (cDm, mu1m, mu2m, cdtest);

New Functions in COASTD.M I

function errors ($C D, m u 1, m u 2$, cdtest)
ecD = abs((cD/cdtest (1)) - 1)*100;
emu1 = abs ((mul/cdtest (3)) - 1)*100;
emu2 = abs ((mu2/cdtest (4)) - 1)*100;
fprintf ('\n\tError in $C D=\% g \% \% \backslash n$
\tError in mul $=\% \mathrm{~g} \% \frac{\mathrm{O}}{\mathrm{O}} \mathrm{n}$
\tError in mu2 $=\% \mathrm{~g} \% \% \backslash \mathrm{n} \backslash \mathrm{n}^{\prime}, \ldots$
ecD, emu1, emu2)

New Functions in COASTD.M II

```
function [CD, mu1, mu2]=
                                    reduce(a, cdtest);
% Assign convenient names
AD = cdtest(2);
M = cdtest(5);
p = cdtest(6);
Tc = cdtest(7);
% Calculate T, rho, Me, and W
T = tk (Tc);
rho = airden (p*1000, T);
Me = 1.03*M;
W = M*9.807;
```


Function REDUCE.M, cont.

```
% Find CD, mu1, mu2. Recall that:
% a(1) = -. 5*cD*AD*rho/Me;
% a(2) = -mu2*W/Me;
% a(3) = -mu1*W/Me;
CD = -a(1)*2*Me/(AD*rho);
mu1 = -a(3)*Me/W;
mu2 = -a(2)*Me/W;
```


Results from COASTD.M

- Effect of number of measurements
- Effect of standard deviation

