Simple Truss Problems and Linear Algebraic Systems

ES100 February 22, 1999 T.S. Whitten

Definition of a truss

• A truss is a rigid frame consisting of slender members connected at their endpoints.

Simple Trusses

The simplest configuration for a stable truss is a triangle as shown in red above.

Simple Trusses

The simplest configuration for a stable truss is a triangle as shown in red above.

The Triangular Truss

The Triangular Truss

The Triangular Truss

• The joint **B** is not moving and is therfore said to be in *static equilibrium*.

- The joint **B** is not moving and is therfore said to be in *static equilibrium*.
- Physically speaking, this means that there are no unbalanced forces so if we add all of the forces acting in the x-direction, their sum should be zero.

- The joint **B** is not moving and is therfore said to be in *static equilibrium*.
- Physically speaking, this means that there are no unbalanced forces so if we add all of the forces acting in the x-direction, their sum should be zero.
- The same is true for forces acting in the ydirection

Solving For Forces

Unique vs. Singular Systems

• Some systems of equations do not have unique solutions.

 Previously, we showed a system of two equations that had two unknowns. Now, adding member BD and CD:

 Previously, we showed a system of two equations that had two unknowns. Now, adding member BD and CD:

 Previously, we showed a system of two equations that had two unknowns. Now, adding member BD and CD:

 Previously, we showed a system of two equations that had two unknowns. Now, adding member BD and CD:

At pin B: $\sum F_x = 500 - F_{BC_x} + F_{BD} = 0$ $\sum F_y = F_{BC_y} - F_{BA_y} = 0$

Hence, we have only two equations for three unknowns. Expressing Sets of Linear Algebraic Equations in Matrix Form

• Summation of the forces in the x and y directions can be written as:

$$-F_{BC}\sin 45^{\circ} + (0)F_{BA} = -500$$
$$F_{BC}\cos 45^{\circ} - (1)F_{BA} = 0$$

• These two equations can be equivalently expressed in matrix form as...

Multiplication of Two Matrices

Generalized System of Linear Equations

 $a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2$
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$

Generalized Matrix Representation of Linear System

In matrix A, m is the index that identifies the row and n is the index that identifies the column. Thus, the requirement that the number of unknowns must equal the number of equations in order for a unique solution to exist, is at the root of matrix multiplication. i.e. m must be equal to n

Solution Techniques

- One method of solving involves successive elimination of variables until only one equation and one unknown variable remains. *Gauss Elimination*
- *Cramer's Method* is based on finding matrix determinants for the system
- Another technique particularly suited to MATLAB is based on the matrix inverse method

Solution of Linear System Using MATLAB

Script matalg.m

- Calls the function build.m *twice*
 - build.m performs a dedicated task to inout data
- Calls a separate function, linsolve1.m to do the dedicated task of computing the solution
- Displays the answer

Function build.m

• Function uses a for loop to iterate through matrix position.

Function linsolve1.m

 This function introduces use of the MATLAB backslash(\), matrix operator to solve linear systems of the general form:

$\mathbf{A}\mathbf{x} = \mathbf{b}$

MATLAB Demo

run matalg.m