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Definition of a truss

● A truss is a rigid frame consisting of slender
members connected at their endpoints.
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Simple Trusses

The simplest configuration for a stable truss is a
triangle as shown in red above.
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● The joint B is not moving and is therfore

said to be in static equilibrium.

● Physically speaking, this means that there
are no unbalanced forces so if we add all
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● The same is true for forces acting in the y-
direction
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Solving For Forces
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B

045sin500;0 =°−=∑ BCx FF

N1.707=BCF

045cos;0 =−°=∑ BABCy FFF

N500=BAF



Unique vs. Singular Systems

● Some systems of equations do not have
unique solutions.
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Statically Indeterminate Example

● Previously, we showed a system of two
equations that had two unknowns.    Now,
adding member BD and CD:
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Statically Indeterminate Example

● Previously, we showed a system of two
equations that had two unknowns.    Now,
adding member BD and CD:

A C

B D

C

0500 =+−=∑ BDxBCx FFF

At pin B:

0=−=∑ yy BABCy FFF

Hence, we have only
two equations for
three unknowns.



Expressing Sets of Linear Algebraic
Equations in Matrix Form

● Summation of the forces in the x and y directions
can be written as:
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● These two equations can be equivalently expressed
in matrix form as...
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Multiplication of Two Matrices



Generalized System of Linear
Equations
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Generalized Matrix
Representation of Linear System
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In matrix A, m is the index that identifies the row and n is the
index that identifies the column.  Thus, the requirement that the
number of unknowns must equal the number of equations in order
for a unique solution to exist, is at the root of matrix
multiplication.  i.e. m must be equal to n



Solution Techniques

● One method of solving involves successive
elimination of variables until only one
equation and one unknown variable remains.
Gauss Elimination

● Cramer’s Method is based on finding matrix
determinants for the system

● Another technique particularly suited to
MATLAB is based on the matrix inverse
method



Solution of Linear System Using
MATLAB

Start script file

Ask user for
number of equations

Call function build.m
to create matrix A

Call function build.m
to create matrix B

Send A and B to function
linsolve1.m

Display results

end file



Script matalg.m

● Calls the function build.m twice
• build.m performs a dedicated task to inout data

● Calls a separate function, linsolve1.m to do
the dedicated task of computing the solution

● Displays the answer



Function build.m

● Function uses a for loop to iterate through
matrix position.



Function linsolve1.m

● This function introduces use of the MATLAB

backslash( \ ),  matrix operator to solve
linear systems of the general form:

bAx =



MATLAB Demo

run matalg.m


