Simple Truss Problems and

Linear Algebraic Systems

ES100
February 22, 1999
T.S. Whitten

Definition of a truss

- A truss is a rigid frame consisting of slender members connected at their endpoints.

Simple Trusses

The simplest configuration for a stable truss is a triangle as shown in red above.

Simple Trusses

The simplest configuration for a stable truss is a triangle as shown in red above.

The Triangular Truss

The Triangular Truss

The Triangular Truss

Static Equilibrium

Static Equilibrium

- The joint \mathbf{B} is not moving and is therfore said to be in static equilibrium.

Static Equilibrium

- The joint \mathbf{B} is not moving and is therfore said to be in static equilibrium.
- Physically speaking, this means that there are no unbalanced forces so if we add all of the forces acting in the x -direction, their sum should be zero.

Static Equilibrium

- The joint \mathbf{B} is not moving and is therfore said to be in static equilibrium.
- Physically speaking, this means that there are no unbalanced forces so if we add all of the forces acting in the x -direction, their sum should be zero.
- The same is true for forces acting in the y direction

Solving For Forces

F_{BA}

Solving For Forces

Solving For Forces

B

$$
\begin{array}{r}
\sum F_{x}=0 ; \quad 500-F_{B C} \sin 45^{\circ}=0 \\
F_{B C}=707.1 \mathrm{~N}
\end{array}
$$

F_{BA}

$$
\begin{array}{r}
\sum F_{y}=0 ; \quad F_{B C} \cos 45^{\circ}-F_{B A}=0 \\
F_{B A}=500 \mathrm{~N}
\end{array}
$$

Unique vs. Singular Systems

- Some systems of equations do not have unique solutions.

Statically Indeterminate Example

- Previously, we showed a system of two equations that had two unknowns. Now, adding member BD and CD :

Statically Indeterminate Example

- Previously, we showed a system of two equations that had two unknowns. Now, adding member BD and CD :

Statically Indeterminate Example

- Previously, we showed a system of two equations that had two unknowns. Now, adding member BD and CD :

Statically Indeterminate Example

- Previously, we showed a system of two equations that had two unknowns. Now, adding member BD and CD :

Expressing Sets of Linear Algebraic Equations in Matrix Form

- Summation of the forces in the x and y directions can be written as:

$$
\begin{aligned}
-F_{B C} \sin 45^{\circ}+(0) F_{B A} & =-500 \\
F_{B C} \cos 45^{\circ}-(1) F_{B A} & =0
\end{aligned}
$$

- These two equations can be equivalently expressed in matrix form as...

Multiplication of Two Matrices

$$
\underbrace{\left[\begin{array}{cc}
-\sin 45^{\circ} & 0 \\
\cos 45^{\circ} & 1
\end{array}\right]}_{\text {coefficients }} \cdot \underbrace{\left[\begin{array}{c}
F_{B C} \\
F_{B A}
\end{array}\right]}_{\text {variables }}=\left[\begin{array}{c}
-500 \\
0
\end{array}\right]
$$

Generalized System of Linear Equations

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
\vdots \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=b_{m}
\end{gathered}
$$

Generalized Matrix Representation of Linear System

$$
\mathbf{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \cdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right] \quad \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

In matrix \mathbf{A}, m is the index that identifies the row and n is the index that identifies the column. Thus, the requirement that the number of unknowns must equal the number of equations in order for a unique solution to exist, is at the root of matrix multiplication. i.e. m must be equal to n

Solution Techniques

- One method of solving involves successive elimination of variables until only one equation and one unknown variable remains. Gauss Elimination
- Cramer's Method is based on finding matrix determinants for the system
- Another technique particularly suited to Matlab is based on the matrix inverse method

Solution of Linear System Using MATLAB

Script matalg.m

- Calls the function build.m twice
- build.m performs a dedicated task to inout data
- Calls a separate function, linsolve1.m to do the dedicated task of computing the solution
- Displays the answer

Function build.m

- Function uses a for loop to iterate through matrix position.

Function linsolve1.m

- This function introduces use of the Matlab backslash(
), matrix operator to solve linear systems of the general form:

$$
\mathbf{A x}=\mathbf{b}
$$

MatLab Demo

run matalg.m

