

ES100
April 19, 1999
E. F. Thacher

Points of Discussion

- Review extra credit guidelines
- More accurate numerical integration for energy and distance
- Use of switch structure in place of if-blocks
- Using while and switch for the parametric study
- Workshop discussion

Extra Credit Guidelines

- The extra credit will be worth 10 pts
- Register with instructor before next Monday's lecture, April 19th
- The extra credit problem will be graded on an, all or nothing basis.
- The work is due on Monday, April 26
- The problem assigned for extra credit is 6.3.3, parts a and b.
- The problem must be the sole effort of one person.

Numerical Integration "Trapezoidal Rule"

Area = (average base)(height)

How It Could Be Done

$$
\begin{array}{ll}
\text { VL = V; } & \text { \% Save current V } \\
\text { V = V }+\mathbf{a}^{*} \mathrm{dt} ; & \text { \% Find new V }
\end{array}
$$

TL = T; \% Save current T
T = ... ; \% Find new T
$E=E+0.5^{*}\left(T L * V L+T^{*} V\right)^{*} d t ; \%$ Trap. Rule

Switch Structure

switch input expression (scalar or string)
case value 1 statement group 1
case value 2 statement group 2
otherwise (optional)
statement group n
end

SWITCH example

switch angle
case 45
disp ('Northeast')
case 135
disp ('Southeast')
case 225
disp ('Southwest')
case 315
disp ('Northwest')
otherwise
disp('Direction unknown')
end

SWITCH example II

switch angle

```
                                    Multiple conditions may
                                    exist for a single case by
                                    enclosing multiple values
case {90,-270} inside cell array brackets.
    disp('East')
case {-180,180}
    disp('South')
case {-90,270}
    disp('West')
otherwise
    disp(`Non-cardinal heading')
```

end

Parametric Study: A Way

\% VPARAM.M calls VEHICLE.M to do the parametric study
\% Here's where you initialize
while choice < 3
clc \% Otherwise the printing scrolls down
\% Menu here: choice=1, CD study; choice=2, mass choice $=$ input ('Enter number of choice: '); switch choice
case 1 \% Case 1: drag coefficient (mass constant)
\% Enter $C D(i)$ and M and call simulation ED(i) = vehicle (CD (i), M);
\% Here's where you print results and maybe \% count the next case
case 2 \% Case 2: mass (drag coefficient constant) \% Coding similar to case 1
end
end

