Structural Analysis Tools

User’s Manual

Murat Gungor and Jim Fawcett

Electrical Engineering and Computer Science
Syracuse University

Syracuse NY

28 July 2006
Abstract:

This document is a User’s Manual for a set of tools developed as part of Murat’s doctoral research under Dr. Fawcett’s supervision. The tools include:

1. Static dependency based file analyzer, DepAnal
2. Strong component analyzer, StrongComp
3. Two-dimensional dependency structure viewer, DepView
4. A few other small tools, described within
5. A modest integrated environment, DepAnalMgr in which test tools run
The purpose of these tools is to evaluate the static dependency structure of a, possibly quite large, set of files, and to disclose interesting features of that structure

Table of Contents

1. Introduction

2. Synopsis of our research statement

3. Catalog of tools and what they do

4. Structure of the tool set

5. Computational flow

6. User’s manual for DepAnal and StrongComp

7. User’s manual for DepView

8. User’s manual for auxiliary tools

9. Example use on a very small project

10. Example use on the source code for this tool set

11. Screen shots from an analysis of Mozilla ver 1.4.1
Introduction

The purpose of the tools, describe in this document, is to evaluate the static dependency structure of a, possibly quite large, set of files, and to disclose interesting features of that structure. DepAnal, when run on the 6193 files in the Windows build for Mozilla, ver 1.4.1, required approximately four hours to complete successfully. Because of this efficient operation, these tools can be applied to very large systems where structural problems tend to be critically important.

You will find many examples of the use of these tools in Murat’s dissertation and our papers. Links to these resources may be found here:

http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/research.htm.

In this document, we will describe each of the tools in the tool set and provide a couple of detailed examples of their use.

Research Statement
The primary objective of this research is to understand

how to detect structural problems in large software development projects,

then, to generate algorithms and methods to diagnose specific structural flaws.

 Another objective is to provide tools needed to support analysis and project monitoring.

 The final objective is to explore possible corrective procedures and simulate

 their application, monitoring improvements in observed defects.

Our primary focus is for systems that are so large that no one person can understand the entire semantics of the project. That drives us to use methods that do not require semantic analysisP
P. We explore analysis methods, possible corrective procedures, simulate their implementation, and observe resulting improvements.

The number of source files, in these projects, is too large for individual attention to each file. We need a way to rank files based on their impact on system quality. We have several questions, which may help us to identify these files or groups of files. Which files contribute most to large strong component size? Can we order the risk of files by using each file’s interrelationships with other files in the system? How does internal quality of a file, and the files on which it depends, affect overall system quality?

Another aspect of software implementation is its malleability. It is easy to make changes to a small part of a software system, but much harder to understand the impact of such changes on the system as a whole. This has two potential difficulties: a change may improve the functioning of a small part, but in fact have undesirable repercussions on the larger system. In addition, change makes establishing reusable components more difficult, both because the components may change and become incompatible with other users in the larger system, or because the users change and can no longer correctly use the component.

Our goal is to enable a Project Manager to visualize his large code base and determine where corrective action is needed and continually monitor the development progress of his system. The static dependencies we have been discussing are visible on a micro scale. Each developer knows what other files her code depends on, but may not be aware of indirect dependencies and other files in the systems that depend on her code. The dependencies on a macro scale are invisible to humans, due to the overwhelming complexity of real large projects
PT.

Without the help of analysis tools, it is difficult to understand a large project, evaluate its quality, and track progress effectively. Therefore, we generated tools that can handle analysis of large-scale software systems
.
Catalog of Tools and What They Do

	DepAnal
	Analyze static dependencies between files, based on:

1. type definitions, creations, and member function invocations

2. global function definitions and invocations

3. global data definitions and access

	StrongComp
	Determine strong components in the dependency graph of a file set. That is, find all sets of files where each file depends, directly or indirectly, on every other file in the set.

	DepView
	Display a two dimensional representation of the strong components in a file set, arranged in a topological sort order.

	DepAnalMgr
	An integrator for all the tools in this set. One can set many properties that affect the way analysis unfolds.

	Other tools
	Other tools used for this analysis:
1. MetricAnal
 Analyzes function size and cyclomatic complexity

2. Matrix maker
 Solves matrix equations for Risk model

3. Risk Calculator
 Calculates product risk for each file in an analysis
 file set, based on importance and test risk
 (defined in dissertation document).

4. Reusability Index Calculator
 Calculates reusability index based on files fan-in,
 closure of fan-out, and internal metrics

Preconditions:

The analysis tools expect all input code to be syntactically correct and to have standard structure, e.g.:

Standard Structure for C and C++

1. Each header file starts with the preprocessor declarations:
 #ifndef FILENAME
 #define FILENAME
and ends with the statement:
 #endif
#include statements name only header files, those ending with .h

Static Structure Analysis Computational Flow
The dependency analyzer, DepAnal is a file-to-file static dependency analyzer for C/C++ source files. DepAnal was developed using C++ in .NET 2003, and has been build and run successfully with .Net 2005 on Windows XP platforms.
A previous design of DepAnal suffered from not being able to properly handle macro definitions in code. In order to get around this problem, a new design of DepAnal was implemented, in which we use only preprocessed files, so all macro definitions are expanded.
This new version, described in this document, uses three passes over the source code set. We can summarize the function of each passes in the following:

· First pass prepares source files for analysis

· Second pass collects user-defined types, global functions and global variables
· Third pass finds dependencies between source files by finding invocations of items collected in second pass.

[image: image1.emf]Pass 1 Pass 2

Preprocessed combined source file

(appending content of all files

after removing system includes)

Pass 3

Output

End

Start

Source Files

Preprocessed

files after removing

system and user

includes

Output

Collected items

(Types,

Global Functions,

Global Objects)

Resolve declarations and definitions files of items

(types, global function, global object)

Find the invocations: file to items dependencies.

Resolve invoked item’ s implementation files

to obtain file to file dependencies

File to file dependencies

Figure 1 – DepAnal data flow diagram

Pass 1:
The function of Pass 1 is to prepare files for subsequent analysis passes. It does this by creating a clone of the folder structure of the project under analysis in an output folder and copying the content of each source file into the output folder after removing system include declarations (those of the form #include < … >) and replacing local includes (those of the form #include “ … “) with the included text. Here are the steps that pass 1 takes.

1. For each file in the file set, remove system includes, and replace each local include with the specified header file. Then concatenate all the files into one source for preprocessing. Here, we are simply using the preprocessor to expand each macro. Any given header file may be included in several places, which would cause multiple declarations. However, if each header file is bracketed with preprocessor guard statements
, then the preprocessor expands each included file only once, eliminating the duplicate declarations. This is a necessary condition for proper operation, not only of our analysis tools, but also all C and C++ build tools. The output of this pass is input for the second pass, which collects declared types, global objects and global functions.
2. Remove system and local includes (those of the form #include “ … “) and save the content of each modified source file into the output clone folder for preprocessing. The output of this part is to be used by the third pass to resolve the file name of declared items and their invocations.
In summary, first pass generates two kinds of outputs: one is the concatenated source file with system header includes removed and local header includes replaced by the included text, the other is source files with both system and local header includes removed. Both these outputs are preprocessed after removing #include statements. These outputs are used by second and thirds passes respectively.
Pass 2:

The second pass analyzes the preprocessed concatenated source file to obtain fully-scope-qualified user defined types, functions, and objects. We ignore any definitions in function scopes, since all the type or object definitions are local to that function, and so will not cause file-to-file dependencies. In the second pass, we do not save the file information where each item is declared or defined. In the third pass, we take care of that issue.

Each properly structured C++ header file has preprocessor declarations that cause the preprocessor to ignore subsequent include statements for the same header file. If a header file is included inside some scope, this will hide an item’s real scope declared in that file. Therefore, we prepend the additional scope information for all the saved items in that file, e.g., classes, global functions, and global data. Because, no item exists with that scope in any of the source file, we will fail to find dependencies to that file. To get around this issue, we provided a check box in the user interface named “Ignore in-scope included …” as shown Figure 2. If we uncheck that box, third pass will add the items, which do not exist in the collected items obtained in second pass. One issue to consider here is that third pass uses files with no includes, if used macros in that file defined in one of the included header file, preprocessor will fail to expand those used macros. The remaining macros can degrade the accuracy of the dependency analyzer. To be on the safe side, this box should be checked during analysis. If the source code is free from macros, leaving unchecked is reasonable.
Pass 3:

Input files for the third pass have had all local and system header includes removed, before preprocessing. The third pass analyzes each preprocessed source file individually to find invocations of type member functions and global functions and all access to global variables. The third pass also resolves to which file each item belongs, since collected items in the second pass do not carry information about to which files they belong.
Possible Enhancement

If macros are not used in the project and test stubs are out of implementation files, DepAnal can skip Pass 1 and use source files as they are.
Current dependency analyzer sensitive to space in directory name, it will treat each space-delimited path name as file, causing missing file error.
Possible enhancement to FileDepUI in Applications tab it should check whether all the application exists or is missing.

Dependency Analyzer User Interface
Dependency Analyzer is console application, which needs “settings.txt” to acquire information about the project to be analyzed. Content of “settings.txt” is covered in detail below. There are currently three sections, titled Project Settings (Figure 2), Environmental Settings (Figure 3), and Applications (Figure 4).
Project Settings
Settings file is text based configuration of the analysis project to be executed. Each line in the settings file carries variable name and value separated by equal sign, such as “OUTPUT_PATH=C:\Temp\”. If the name chosen is other than “settings.txt”, two copies of settings will be generated. Dependency analyzer looks for file named “settings.txt”; therefore custom named settings file’s content is duplicated and saved in settings.txt as well. Everything in the user interface is saved into settings file for persistency.

[image: image2.png]' Dependency Analyzer Manager Ver 1.6

Flo Tools Help

[PisR5T 558 Envtormenta Setings | Appicaios |

Setings Fie Name

setings
Floot Folder

Output Folder

% Use Input File

€ huratsFiles\PHOS udies\Papers\ChangelmpactF actorE stmation' Usedraphic 5

Input File Name for Ful Path Project's Source Fies

Shared Path of Source Fies

[ClofE simationtUsedGraphics\FileDepdnalysis\FieDepFiesOnlE volvedFies it

[CMuralsFies\PROStudies\Codes\FleDep

Consider During Dependency Caleulation
¥ Global Objects

¥ Types
¥ Global Functions

Job Manager
Save

Use preprocessed s
I~ with no ncludes duing
averallanaysis

Ignere inscope Included
o Type/Obi/Func

¥ Run Preprocessor

Estra Prasessing Optian

I~ Replace Missing Headers
Incluces Alrady

I™ Removed (Defatit
Unchecked

Consider Dupicate
I~ Global Objects

I™ Types

I~ Global Functions

Genste et D Oepeercs | [T

Setings saved

Figure 2 – Settings for project to be analyzed and dependency options

There are two ways of providing source files to be analyzed. One is just to give root folder of a project to be analyzed, and the other is to give list of full-path source file names through an input file. When an input file name is provided, shared path of source files should be provided as well. Because, dependency analyzer will create exact folder structure in output folder, to eliminate creation of unnecessary folders, it needs shared path. Output folder and source files directory names should not contain space in it.
 [image: image6.png]¥ Run Preprocessor

Estra Pracessing Optian
I~ Replace Missing Headers
Incluces Alrady

I™ Removed (Defatit
Unchecked

Dependencies are created by type usage, global function call and global object invocation. There is an option to find out the effect of each dependency type overall projects static dependency structure. We can select all the options to see the projects general dependency structure. Alternatively, we can find out by eliminating global variable what would be like the dependency structure, and so on.
We may want to analyze with different analyzing choice. In the case, if we want to change the dependency options, such as “Consider during dependency calculation”, we do not need to rerun the preprocessor.[image: image7.png]Consider During Dependency Calculation
¥ Global Objects

¥ Types

¥ Global Functions

 Hence, there is a check box whether to Run Preprocessor or not. For the first time of analysis of a project, this box must be checked. After successfully preprocessing, we do not need to preprocess again. If Run Preprocessor is checked, there are two extra options enabled; Replaces missing header and Includes already removed options.
Replace missing header option only be used if an included file does not exist in the computer. Preprocessor gives fatal error, if any include is missing. By checking this option, empty file name created in output folder to enable preprocessor to continue as if file exists.
In order to extract declaration and definition of types, functions and objects, second pass uses preprocessed source files with user include (include with quotes). For this reason, system includes are removed before preprocessing. When preprocessor fails due to some reason such as missing include file or macro definitions, we need to rerun preprocessor but not include removing task. By checking “Includes already removed option”, we avoid redoing this job. Just a note, we are ignoring system includes, since we are interested in only dependencies between the source files of a project for comprehensibility. Including system files in to the picture will complicate seeing project itself dependency structure. Moreover, main reason for using preprocessed files is to expand macros.
[image: image8.png]Consider Duplicate.
I~ Global Objects

I™ Types

I~ Global Functions

Some cases we face duplicate items (types, global functions and global variables). Considering those duplicate items during dependency calculation can exhibit system more complex than actually it is. By default, all boxes are unchecked. We determine an item as duplicate, if it is declared in more than one source file.
[image: image9.png]Use preprocessed fes
I~ with no ncludes duing
averallanaysis

Ignere inscope Included
o Type/Obi/Func

The options on the left have rare usage. While running preprocessor to prepare input file for the second pass, if we face fatal error and do not want to resolve at that time. We can tell the dependency analyzer use the input files for third pass in second pass as well by checking “Use preprocessed files with no “includes” during overall analysis”.
Preprocessor process included file only once, however sometimes #include statement is placed in a scope (class or namespace). During collecting items, it will qualify item with that scope name. This will prevent from finding dependencies via items that is in-scope included file. By un-checking we add those items into item tables in the third pass. By default, this should be checked. Since, it may spoil the items collected in second pass.

Environmental Settings
Dependency Analyzer uses preprocessor (cl) to remove macros by expanding them. To invoke preprocessor, necessary environmental variables for that computer need to be set. Additionally, some include files are spread into system directories, we need to provide include paths for the preprocessor to look into those directories before throwing fatal error. Figure 3 shows the environmental settings as well as extra project specific preprocessor options. During compilation, all these preprocessor options are automatically provided by .NET, therefore preprocessor accomplishes the task smoothly. Here, in the case of missing include paths or preprocessor options; we need to provide manually.
[image: image3.png]' Dependency Analyzer Manager Ver 1.6
Fie Tols Felp

Pt Setings (EFVTSRSRTSIRGS) Apkoatons |

Parameter Name. Parameter Valie

INCLUDE [CMuralsFies\PROStudies\Codes\FleDep

LIBPATH=C WIND WS Microsoft NE T VFramework w2 050727
LIBPATH=C:\Program Files\hicrosolt Visual Studio BWCWATLMFCALIE
INCLUDE <C:\Program Files\Miciosoft Visual Studio 8WEAATLMFCAINCLUDE
\Program Files\Miciosolt Visual Studio 8\VCINCLUDE
\Program Files\Miciosolt Visual Studio 8\ C\PlatformS DK include
\Program Files\Miciosolt Visual Studio 8SDK\2 Qinclude:
\Program Files\Miciosoft Visual Studio 8\CommonTIDE
‘\Program Files\Miciosolt Visual Studio BWCABIN
\Program Files\Miciosolt Visual Stuio 8\Common7\Tools
\Program Files\Miciosolt Visual Studio 8\Common7\Took\bin
\Program Files\Miciosoft Visual Studio 8WC\PatformS DK bin
\Program Files\Microsolt Visual Stuio B\SDK\v2 Dbin
AWINDOWS\Microsalt NET\Framewerk\v2.0,50727
\Program Files\Mictasolt Visual Studio BWCWCPackages
\Program Files\biciosolt Visual Stuio BWCVATLMFCALIE
\Program Files\Miciosoft Visual Studio BWCALIE
\Program Files\Miciosolt Visual Studio B\ C\PltformSDK'ib

Extra Preprocessor ptons

7T

Setings saved

Figure 3 – Setting environmental variables and extra preprocessor options.

Applications

Here are the used applications to accomplish static dependency analysis and extract fact about the state of the project. There are currently five integrated tool with Dependency Analyzer Manager as shown in Figure 4.

[image: image4.png]' Dependency Analyzer Manager Ver 1.6
Fie Tools Felp

Project Settings | Environmental Setlings { Appications |

Dependsncy Analyzer [Fiedepere
FileInernal Metics Anslyzer [ANALYZER.oxe

Sttong Component Ansheet [StiongCampénall21203 exe
2D Dependsncy Viswer [epviowers

Matrix Maker [MatiMakerere
Risk Calculator [RiskCaloulaorove

Figure 4 – All the applications used during dependency analysis
[image: image10.png]M Dependency Analyzer Manager Ve

Pl | Tocs Heb
[P FrdDspendences |
Show 2D Dependencies
5 Generats Metrs
’E Run Matrix Maker
* Fun i Caodor

—_—

Outout Felder

Matrix maker generates importance and testability matrix and their results to be used by Risk Calculator. Risk calculator uses those outputs to calculate product risk of each source file. Matrix Maker should be called before Risk Calculator. In the tool menu, shown on the left, each application can be executed in the order from the top. Since, one application’s output is the input of other one.
Possible Problems and Solutions

Problem: Missing include file
Possible Solution 1: Search the file in your local disk, if found add the path name into environmental settings as INCLUDE path.
Possible Solution 2: Ignore that include file by checking Replace Missing Headers check box before running preprocessor, shown in Figure 2.

Problem: Preprocessor fatal error due to missing macro definition
Sample Error: C:\Program Files\Microsoft Visual Studio 8\VC\INCLUDE\eh.h(30) : fatal error C1189: #error : "eh.h is only for C++!"

Just open the error-indicating file, and find the line with error description. In the case above, we faced with the following code lines
#ifndef __cplusplus

#error "eh.h is only for C++!"

#endif

Possible Solutions: There are two solutions to this either we can let preprocessor source file type specification by /Tp option. “The /Tp option specifies that filename is a C++ source file, even if it doesn't have a .cpp or .cxx extension” [1]. Alternatively, source file missing definition of “__cplusplus”, we can define explicitly with /D__cplusplus option. Figure 3 shows the former solution.
Different

Pass 1

1. Remove system includes from all files and concatenate all of these info a single txt file AllProjectFiles.txt
(To avoid duplication of headers, every headers must have #ifdef and #define)

2. Run preprocessor to expand macros and definitions (Input to Pass 2) AllProjectFiles.txt,ppf

3. Remove all system and user includes for each separate source file, preprocess than copy into a new reproduction of the original directory structure (Input to Pass 3)

[image: image5.emf]x.h

x.cpp

y.cpp

y.h

AllProjectFiles.txt

Preprocessor

AllProjectFiles.txt,ppf

Remove

system

includes

Pass 2

· Analyze AllProjectFiles.txt,ppf for declaration of type, global object and global functions keeping track of scope
Fully qualified Type Table, Global Data Table, Global Function Table
(Complete set of file locations for declarations and definitions)

Pass 3

· Analyze each preprocessed file, from the second output from Pass 1, to find invocations of global and member functions and access to global data.
Full qualified Type Invocation Table, Global Function Invocation Table, Global Object Access and Invocation Table
(Complete set of file locations for declarations and definitions)

Post Processing

Find dependencies from file lists in tables from Pass 2 and Pass 3

DepTable.txt, FanInForEachFile.ini, FanOutForEachFile.ini etc

Run StrongComp

Builds dependency graph from DepTable.txt

topo.txt, adjList.txt, dfs.txt, dfsrev.txt, dfsrev.txt

Run DepView

Builds GUI view of strong components and fan-in / fan-out dependency

Risk Calculator:

Build matrix of Importance and Testability with alphas (Internal Metrics), calc risk file rank

Reusability Index:

Fan-in/Fan-out and internal metrics table -> reusability file rank

[1] MSDN, http://msdn.microsoft.com

TP�PT Most of our analysis to-date is based on static type and function-based dependencies.

TP�PT A project developing 5 million lines of code in two and a half years needs about 350 developers, from an example used in CSE784 – Software Studio.

� We applied our dependency analysis tool, DepAnal, to the entire Mozilla system, all 6193 files. This processing consumed about four hours on modern desktop computer. An earlier version of our code required more than 24 hours for this analysis.

� Preprocessor guards are statements of the form #ifndef FILENAME, #define FILENAME, and #endif.

PAGE
1

_1214862711.vsd
Pass 1

Pass 2

Preprocessed combined source file
(appending content of all files
after removing system includes)

Pass 3

Output

File to file dependencies

End

Start

Source Files

Resolve declarations and definitions files of items
(types, global function, global object)
Find the invocations: file to items dependencies.
Resolve invoked item’ s implementation files
to obtain file to file dependencies

Preprocessed
files after removing
system and user
includes

Output

Collected items
(Types,
Global Functions,
Global Objects)

_1213222470.vsd
The height of the text box and its associated line increases or decreases as you add text. To change the width of the comment, drag the side handle.

x.h

x.cpp

y.cpp

y.h

AllProjectFiles.txt

Preprocessor

AllProjectFiles.txt,ppf

Remove system includes

