

Abstract

Today, software is found in almost all systems, vehicles, communication devices, medical
equipments, and entertainment, for example. The size and complexity of these systems has grown
continuously over the last forty years — the time span for modern computing. The latest release of
the Windows operating system, called Vista, is expected to be more than fifty million lines of code,
about 40% bigger than the previous version.

Some of the reasons for this are numerous feature demands and the need to support
multiple platforms, and need for compatibility with legacy software and hardware. Each line of
code, in these large systems, requires perhaps several technical decisions, often, but not always
simple. The sheer volume of this decision making process is daunting. No single human can fully
understand a system of high complexity. To help ameliorate this problem, systems are decomposed
into subsystems, libraries, modules, and classes. Most of these components have
interdependencies, in order to provide services, one to another. However, in systems of great size,
the dependencies often become a dense web of relationships. It is exactly this problem on which
we focus in this research.

We propose that static dependency structure is an important element to understand the state
of large software system. We conduct various analyses using well-known existing open-source,
commercial and expert developed projects, including our own projects to evaluate the overall
effectiveness of our approaches. We detect structural problems in large software development
projects, and present a structure metric to rank software files according to their risk contribution to
the software system. Additionally, we present a model that indexes software components
according to their potential for reuse. We design and conduct experiment to investigate the impact
of change in one file on other files. Furthermore, we provide tools needed to support analysis,
project visualization and monitoring. Finally, we investigate corrective procedures and simulate

their application, monitoring improvements in observed defects.

STRUCTURAL MODELS FOR LARGE SOFTWARE SYSTEMS

By

MURAT KAHRAMAN GUNGOR

B.S. Sakarya University, 1997
M.S. Syracuse University, 2001

DISSERTATION

Submitted in partial fulfillment of the requirements for the

degree of Doctor of Philosophy in Computer and Information Science

in the Graduate School of Syracuse University

July 2006

Approved:

Advisor Professor James W. Fawcett

Date

© Copyright 2006 Murat Kahraman Giingor

All rights reserved

The Graduate School
Syracuse University

We, the members of the Oral Examination Committee,

hereby register our concurrence that

Murat Kahraman Giingor

satisfactorily defended his dissertation on

July 2006

Examiners:
Ehat Ercanli
(Please sign)
Can Isik
(Please sign)
Daniel J. Pease
(Please sign)
Marek Podgormny
(Please sign)
Advisor:

James W. Fawcett

(Please sign)
Oral Exam Chair:

Yildiray Yildirim

(Please sign)

Contents

ADSEIACT ..ttt h bt e h ettt e bt e bt sh bttt e bt e b e nbeenaees 1
(01031 11S) 1L RO OO OO SOUP TSP OPPUPRPPRRRPN v
LISE OF TADIES ...eeiiiiieetie ettt ettt et et e e et e e e aseeeabeeeaseeenaeeensneeeenas viii
LIST OF FIGUIES ...eiiiiiieiie ettt et e et e et e e st eeetb e e e tbeeeabeeessbeesabaeesaeensseeensseensseans X
ACKNOWIEAGEMENLSvvieiiieiieiieiiesie ettt et et e s e et e et e e sbeesbeestaessaessseesseesseenseeseessaesssennnenns xii
Chapter 1 Introduction 1
| LY, (o 7z 10 s DO P U RUPRTSR 2
1.2. ProbIem StatEIMENLeeiiiiiieiieie ettt ettt ettt ettt ne et eneene e eneens 3
1.3. Other’s Statements Relating to Problems in Large Development Software.ccceeveeeee. 6
1.4. Goals and AcCOMPIISHMENTSieiiieiiieiieiie ettt et eneees 9
1.5. Method StateIMENLocuiiuiiiiiei ettt ettt e st et e e eneeneeeeeneeneas 13
1.5.1 Type Based Dependency ANaLYSIScccveriereierienieeiiiieeieeieesieesae e see e eseesseeseeenes 13
1.5.2 Qualitative and Quantitative Measures of System Quality..........cceoceevvereiienienienienenne, 14
1.5.3 Finding Mutual DependencCies..........ccc.vieuiiiiiiiiiiieiiiesieeeite et svee e e sveeeveeeseveesaae e 15
1.5.4 Visualizers Providing Comprehensible VIEW.........cccoocviviiiiiiiienie e 16
1.5.5 Monitoring Development Manuallyccocieriiiiiiiiiiiiiieesee e 16
1.5.6 Sample Analysis: Partial Analysis of Dependency Analyzer........c.ccccccvevevvieiiienieeeenneenns 17
1.6. Results and Contributions in Brief............cocoiiiiiiiiii e 20
1.7, LAteTature REVIEWeeuiiiiiiieieiteeiiete ettt sttt ettt ettt st 21
1.7.1 Dependency AIZOTItRMScoiuiiiiiiiieii ettt ettt e 21
1.7.2 Refactoring SOftWare SYSTEIMS.ccuuiiiiieiiiieceieeeiie ettt esteeetteesiveesbeeeeaeessseeeseeessseessnneenes 24
1.7.3 Analyzing Quality of SOUrce Filesccceoieriiiiiiiieiiciieteeee e 24
1.7.4 Internal Metrics Of FIIESooiiiiiiiiiiiicce e 27
1.7.5 Visualizing SoftWare PIOJECEScviiiiiiiiiieeeieeciie ettt ettt reeeseaeeeaae e 28
Chapter 2 Analysis of System Structure 30
2.1 BASIC MOACLS ...ttt ettt ettt 30
2.1.1 Problem: Large Fan-0uUt..........ccccuiiiiiiiiiiiiiie ettt et e 31
2.1.2 Problem: Large Strong COMPONENLSccveerveerreerreeieeieesreesiieseeesreeseeseeseesseesseessaesneens 32
2.1.3 Problem: Large Fan-Incccccoociiiiiiiiiiiiierie et e e snne e 34
2.1.4 Desirable Dependency SIUCLUIEc.eeruierierieiieeie ettt e sieeseae e ens 35
2.2. Dependency Analysis Tool, DepANal..........ccceeeeiiiiiiiiiiieieecee e 37
2.3, ANAlYSIS APPIICALIONS ...eeviiiiiiiiieiietiesitesete et eieesteesttestaessaeesaeesbeessaessaessaessseessaesseessaesssesseenns 42
2.3 1 DEPANAL ..ttt ettt ettt et e e teente e teesaaeenneens 43
2.3.2 Strong Component ANALYZET:cccuveiiuiieeieeeiieecieeeree et e ereeeteeesereesbaeeseseessseeesseesaseeas 46
2.3.3 Size and Complexity ANALYZET:c.ccvvieriierieeiieiie ettt ettt saeereebeebeesreesaeeseaessneens 47
2.3 4 DEPVIBW ..eeuiieiieeiieeie ettt et et e st s e e bt este e teestaessaessseasseanseensaessessseasseenseenseesaesseessaennneans 47
2.3.5 Dependency Analyzer User INterface........coiveeieniiiiniiiiiiinieiiccceccie e 49
2.3.60 CRANZE LLOZEETvieivieiiieiieiieciteeite ettt et ettt e st e st e et e esbe e te e st e s ssessbeesseesseesaesseessaessneans 50
2.3.7 MATIX MAKET ...ttt ettt et sb ettt st 51
2.4, SUIMIMATY «..eteeitieeiiee ettt ettt ettt e ettt e sttt e ettt e btee s bee e bt e e ssteeeabeeesabeeenbeeebbeesabeeenbeesnbeesnbaeesaseean 53
Chapter 3 Empirical Study 54

3.1. Empirical Study of the Open-Source Mozilla Project...........ccccvvevviivieniiniieiiecie e 54
3.1.1 Mozilla Data COIECTION ...c.eeuiiiiiiiiiiitieiete ettt e 55
3.1.2 Fan-in Data Extracted from Mozilla GKGFX Librarycccccevvieniieniiiiieieieeee 57
3.1.3 Fan-out Data Extracted from the Mozilla GKGFX Librarycccccceevvvevvieviienieesieennenee, 58
3.1.4 Strong Components in the Mozilla GKGFX Libraryccccoeceverierininieneieeieeen 59
3.1.5 Topologically Sorted Dependencies for Mozilla’s GKGFX Libraryc.cccecvevvenennee. 65

3.2 SUMIMATY ..viiiiiiieiiiie ettt ettt ettt e et e e et e e estee e tbeesasaeessseeasseeesseeessseesssesanssaessseeensesensseesnseeanes 72

Chapter 4 Software Product Risk Model 73

4.1 RISK MOGCL ...ttt ettt st b ettt ebe e 74
4.1.1 Dependency STIUCIUIEcccveieiiieiiieeiieeeieeeteeesiteesreeetreessreeeseeessseeesseeessseesssesensseessseeas 75
4.1.2 File IMPOTTANCE.....cccvieiietieiiesiieeiteeteeteeteesteesteesttessseesseesseesseesssesssessseesseesseesseesssesssessseans 76
4.1.3 Brief Discussion of Alpha Value Calculationcccoevierieriiniiiieeieeieesee e 78
4.1.4 File Testability, T ...c.ceouieeiieeieeie ettt ettt ettt ettt et e nteesaeeeaaeenaeens 79
4.1.5 Implementation Metric FACtOr, /5cccoiiiiieiiieieiiiieieie e 81
4.1.6 Case of Circular DePendenCyccviecuiieeiieiiiieeiie et e ereeeteeesereeebeeeseseessbeeesseeseseeas 82
4.1.7 Representation of Importance and Testabilityccoeeievieiieriiiiiiiieieeeeee e 84
4.1.8 Critical Dependency Density..........cceerieriierienieiieiie ettt e e 87
4.1.9 Product RISK MOAEL, Roooiiiiiiiiieeeee et 90

4.2. Empirical Study of Risk Model on Mozilla Library, GKGFX.........ccccooiiiniiiiiiiiiee 91

4.3. Improving the RiSk MOlc.cociiiiiiiieiieiecie ettt sae e ees 93

4.4. Reusability Index, RIcociiiiiii ettt 94

4.5. Applying Reusability Index to a New Design for DepAnal............cccceeeviviicieiniicciieeeeee, 95

26, SUINIMATYevieiitieeiieeeiee ettt e stte ettt e stteeteeeasteeeaseeesaseeenseesnseesaseeansseeanseessseesnseeanseeennseessneennses 96

Chapter 5 Change Impact Factor Estimation 98

5L INEEOAUCTION ..ttt ettt et e bt e s bt e sateente et e eabeenseenaes 98

5.2. Back@round StUAYc.veviiiiiiiiiiieieesieece ettt ettt e bt e b e e steestaesabeerbeesbeenteesaeees 99

5.3. Change Impact Factor and Risk Model............ccoeeiiriiiiiiiiniieieieciece e 100

5.4. Experiment Design to Determine Alpha (O)coooiviiiiiiiieeeeeeeeeeeeeeeeeee e 103

5.5. Expected Outcome Prior to the EXPeriment.........c.cccvievvieriieriienieiiesieereereesieesreesiee e ens 106

5.6. Empirical Study Process DeSCIIPtiONecvverierieiieeieeiieieeseesiee e ereereeieessaessaesanessneens 107

5.7 OUE RESUILS .ttt ettt ettt ettt et e s s e s et e enteenteenseenbeesseesnnesnneens 109

5.8. Computing an Effective Single Alpha Value for a System...........ccoevveevieviiinienienieiieeiens 115

5.9. Risk Analysis with Measured Alpha Values..........ccccoevvieriienienieniesiecieeiceeesiee e 116

5.10. Contributions 0f thisS STUAYccvtiiiiiiiiieieee et ee e 119

5.11. Concluding COMIMENTS........ceruiierrieeiieieiieesteeeeiteeeteeeteeessseeereeessseessseeessseessseessseeessseesseens 120

Chapter 6 System Structure - Simulating Constructive Change 122

6.1. Eliminating Global Variables..........c.cccveiiiiienieiiiiis ettt 123
6.1.1 Analysis of GKGFX Library of MOzillaccccoevviiiiiiiiiiiiiie e 124
6.1.2 ANAlysiS OF MFCoiiiiiiiiiicce ettt ettt st e e et teesbeesabessseenseesses 128

6.2. Insertion of Interfaces and FACtOTIESc..eeieruiiieriiiieiee e 131

6.3. Redesign and System QUALILYc.eeriieiiirienie ittt 133
6.3.1 Discussion of Old DepAnal Desi@n.........c.cccccviiiiiiiiiiieiiieeiie et 134
6.3.2 Comparing Old vs. New DepAnal in Detail........c.ccccvevieriiniiiiiiiiiieiieieie e 135

6.4. Strong Component and Product RisK...........ccoooiiiiiiiiiiiiiieeeeeee e 139

6.5. Global Variable and QFccooiiioiiiieiee ettt 141

0.0, SUMIMATY ...eeeviiieiiiieeiie ettt ee et e et e et e s bt eetaeessseessseeasseesssaeesaeessseesnsseensseesnseessseensseens 142

Chapter 7 Conclusions and FUture Workiceiicceicncnecsseissssnsscnsissssssssssssssssssssssssssssssssssass 144

7.1. Study Results and COnNtribULIONScccueeiieriieriiesieeie ettt sieesaee e ens 145

T2 FULUTE WOTK oo e et e e e e e e e e e e e e e e e eeeeeaeaas 150

APPENUIX cuvvrierneressnressssrossanesssssssssesssssssssssssssssssssossassssssssssssssssssossassssssssssssessssssssassssassssssssssassssssssses 152
A.1. Relationship between Code Metrics and Change HiStoryccccveveerieiieiiieeiieeiieeeee 152
A.1.1. Project Wide Measure of Size and Changeccooerieieiiiieniiieese e 154
ALT.2, MErIC ANALYSIS ..eeuvieiieiieieieeii et et e sieesteseeete et ete e taeseaessseesseesseeseessaesseesssesnseenseenseennes 156
A.1.3. Analysis of Windows Build Rel€asesccceeriieriiiniiiiiiieiieeeeeece e 158
A.1.4. Some Techniques Used As Part of This Analysis.......c.ccccceeeviiiniiiincieeiiiecie e 159
A.1.5. Multiple Linear REGreSSIONco.eeiiiiiiiieieeiieieeit ettt 160
A.1.6. SuMmAry of Metric ANALYSISc.ccvierierieeieeieeieeitete e sreebeereesteestaesaeessaeenseesseenseennns 164
A.2. Software Development EffOrt........cccoooiiiiiiiiii e 166
A.3. Correspondence with Professional Interested in Tools like DepAnalcccoevvieienenncnn. 168
A.4. Demonstrating the Effect of AIPha.........cccovoiiiiiiiiiiiececeee e 170
LiSt Of ACTOMYIMS . cccicueririnriiiricssnressersssnncssnssssstsssssssssssosssssssassosssssssassssassssssssssasssssassssasssssnssssasssses 174
Bibliography........ccccveevverccnencnnne. 176
T L 184

vii

List of Tables

Table 2.1 — Selected developed tools fOr aNAlYSISccvevierieeiieiii e 43
Table 2.2 — Helper tools fOr analySisccciiiiiiiiiiieeiieeiie ettt ettt e e e e 52
Table 3.1 — Summary of generated outputs and files from Mozilla built..........c..ccceevveriinieiiiennnnn, 56
Table 4.1 — Calculation of importance, I of files in Figure 43..........ccccovevieriiiiiiiieeeeesee e 77
Table 4.2 — Example of testability, T of files in Figure 43.......cccoooeiieiieiiiieceeeeeeeee e 80
Table 5.1 — Information Regarding the Experimental Project...........coccoeoieiieiieniineiiiiceeeeen 107
Table 5.2 — Information in database regarding a file, where change occurred.c..cccoeevvenennen. 108
Table 5.3 — Change in risk ordering of files calculated by measured ... and estimated alpha,
compared to risk calculated by measured individual alphas............cccocereiiiiiiiiirienienie e 118
Table 6.1 — GKGFX 1ISK VAIUESccuviiiiiiieiii ettt ettt vee e e evae e 126
Table 6.2 = MFC 1iSK VAIUES.....cc.eiiiiiiiei et 130
Table 6.3 — Comparing structural quality of old and new design DepAnal.............ccccocereiinnnnen. 138
Table 7.1 — Results and CONtIIDULIONSc.uieiuiiiiiieeiii ettt eeveeeeaeeerae e 148
Table 7.2 — Consequential results of the StUAYc.ccocviiiiiiiiiiiicc e 149
Table 7.3 — Initial results of work that will continue 1ater.............ccoeirieiiiiiieiieeceee e 150
Table 1.1 — Cumulative Change Counts, 10 September 2004c.ccceeviieriienienienie e 154
Table 1.2 — Metrics used in this ANALYSIS.......cccuiiiiiiiiiiiiiiiieeiee ettt et eeree e evee e 157
Table 1.3 — Analyzed MoOzilla REICASES......c..ccviriiiiiiiiiiiieiieieeeee et 158
Table 1.4 — Results of Multiple Linear Regression, MozFindDIl, Release 1.4.1ccoccvvenennnen. 161
Table 1.5 — Correlation Matrix for MLR Model MozFindDIl, Release 1.4.1cooovvvvvvveeeennnn. 161
Table 1.6 — Results of Multiple Linear Regression. Windows Build of Mozilla, Release 1.4.1....163
Table 1.7 — Correlation Matrix for MLR Model. Windows Build of Mozilla, Release 1.4.1 163
Table 1.8 — Summary of MLR StatiStiCscccveriiiiiiiieiieieesite ettt 164
Table 4.1 — Dependency table of a strong component with 29 files from Mozilla.exe component
from Mozilla Project Ver. 1.4.1 processed by DepAnal and then proved manually. 172
Table 4.2 — Dependency Graph of a strong component from Table 4.2 does not show all the
dependency lines for readability.ccierieiiiiiiie e 173

viii

List of Figures

Figure 1.1 — Internal and external dependencies of component #57.c.ccccvveveieeeriienieeniiee e 4
Figure 1.2 — Internal dependencies of component #57 consisting of 60 files.........cccoeceviiieirnencen. 5
Figure 1.3 — Data Flow — During analysis and visualization of software system’s quality.............. 14
Figure 1.4 — New Design DepAnal Ver 1.7.a’s internal dependency structure. Consists of 30 files18
Figure 1.5 — Expansion of Strong Components — New-Design DepAnal Ver. 1.7.a........cccccueee.... 19
Figure 2.1 — Basic examples — [arge fan-0Utcccoevierierieeiieeie e sne e ens 31
Figure 2.2 — Example of excessive fan-out, dependency picture of DepAnal...........cccooeevirvinnnnnne 32
Figure 2.3 — Basic examples — Strong COMPONENLeeevieeriireririeerieesieesrieesereeereeenseeeseseeessseenenes 33
Figure 2.4 — Example of strong component, a strong component with four files..............c..ccceeeee. 34
Figure 2.5 — Basic examples — [arge fan-inc.ccccoevierieiieiiie e 35
Figure 2.6 — Basic examples — desirable dependency Structure...........cccoeeveveeriieieeniieneenie e 36
Figure 2.7 — Sample desirable fun-in and fan-out SIZES..........ccceevvieriieriierieiieiie e 36
Figure 2.8 — Analyzing DepANal itSCIf.c.cccuiiiiiiiiiiierieee e s 37
Figure 2.9 — DepAnal Ver 1.7.a’s internal dependency structure. Consists of 30 files.................... 38
Figure 2.10 — Expansion of Strong Components - DepAnal Ver. 1.7.a.......cccccceveevviiinirencieeeieeee. 39
Figure 2.11 — Fan-in Chart of DepAnal Ver. 1.7.accccooiiiiiiiiiiiieieeiieiesesve e 41
Figure 2.12 — Fan-out Chart of DepAnal Ver. 1.7.acccoceiiiiiiiiieiieeeese e 41
Figure 2.13 — DepAnal data flow diagramccceeeeieiiiiieiiieiie et e 45
Figure 2.14 — Collecting data from SOUICE COACuiiriiiriiiiiiiiieii ettt s 46
Figure 2.15 — DepView of DepAnal, components and files............cccoevverierciinciieiiienieniesee e 48
Figure 2.16 —DepView, dependencies of COMPONENE Occ.eevereiieriieniieniieiieeie et see e 48
Figure 2.17 — Settings for project to be analyzed and dependency options............ccceevvrerveeenreennne. 50
Figure 2.18 — Change Logger, records change information for change-impact-factor (CIF)

S E:1 5 (0 s USRS 50
Figure 2.19 — Matrix Maker — creates matrix for risk analysis..........cccocevveveiienciieiiiienii e 51
Figure 3.1 — Mozilla GKGFX Library Fan-incccccceviieiiieiiieeiieiieieesiesee s eve e esree e sene v e 57
Figure 3.2 — Fan-in Histogram for GKGFX Libraryccccecveviieiienienieciecieeeeeeiee e 57
Figure 3.3 — Mozilla GKGFX Library Fan-outccccoccuiiiiiieriieeiiecieecee e 59
Figure 3.4 — Fan-out Histogram for GKGFX LiDrarycccccceevvieviieniienienieiieeieeeeesieesiee e 59
Figure 3.5 — Mozilla GKGFX Library Strong Components HiStogramc.cocceevververeenvennenns 61
Figure 3.6 — Mozilla GKGFX Library Strong Components by DepView.........cccccceeveerveneenieennnnne 61
Figure 3.7 — Dependencies of only two of the largest strong components with other components..62
Figure 3.8 — Internal - External dependencies of Component #57 consist of 60 files. 63
Figure 3.9 — Internal dependencies of Component #57 consist of 60 files.cccceeveerverirriiennrnne 63
Figure 3.10 — External dependencies to COmMPONENt 57ccceeevveeeiuiieriieiiieeereeeiie e esveeeeee e 63
Figure 3.11 — A strong component member file’ s fan-out to other files in GKGFX Library......... 64
Figure 3.12 — Topologically Sorted Strong Components before Expanding...........cccceeeveeeninncnne 65
Figure 3.13 — Topologically Sorted Strong Components after Expanding...........ccccoeceevvevinvinnnrnne 68
Figure 3.14 — Expansion of Strong Components after Topological Sort, Entire Mozilla................. 69
Figure 3.15 — Expansion of Strong Components after Topological Sort, MFCcccccceeoinineene. 70
Figure 3.16 — Dependencies between components of MFCcccooiiiiiiiiiiiiiiieeeee e 70
Figure 3.17 — Fan-in chart Of MEC..........ccooiiiiiiie et 71
Figure 3.18 — Fan-out chart Of MEFCcooiiiiiiiiiieeeee et s 71
Figure 4.1 — Simple dependency between filescccoviiiiiiiiiiiiieiieeee e 75

Figure 4.2 — Example of importance of a file and formula of importance calculation...................... 76

Figure 4.3 — Calculation of Test Risk of files, assuming / is 1 and « values are identical. 81
Figure 4.4 — Effect of circular dependency on importance.cceevvvervvereereenieesieerieenieeseesnesneens 82
Figure 4.5 — Effect of circular dependency on testability.coccoevieiieniiniiiiiciieeeeee e 83
Figure 4.6 — Importance, after removing circular dependency in Figure 4.4ccccoocvvevveeenneennne. 83
Figure 4.7 — Testability, after removing circular dependency in Figure 4.5........ccccevvviviiniinnnennnn, 84
Figure 4.8 — Matrix representation of iMpPOTtANCEcevueeruierieeieeriieiieriiesieesee et eeeeseeesiee e seee e 84
Figure 4.9 — Reading IMportance MatIiX.........ccueeevieeeieeiiieeiiieesieeeieeesireesreeesereessaeeesseeesssesessseesnnes 85
Figure 4.10 — Matrix representation of teStabilitycccvevieeviieiiieriieriiesiecie e 85
Figure 4.11 — Reading Testability IMatriX.......cccoecueeriieriieriienieeieeieesieeieesseesnesaeeseesseesseessaessnessnenns 85
Figure 4.12 — Three mutually depended files.cooiiiriiiiiiiiiiii e 86
Figure 4.13 — Two mutually depended files, assuming £ is 1 and « values are identical. 88
Figure 4.14 — Three mutually depended fIles.c.cooviiiiiiiiiiiiie e 88
Figure 4.15 — Four mutually depended flleS...........ccviviiiriiiieiie et 88
Figure 4.16 — Five mutually depended files.occooiiiiiiiiiiiiiii e 88

Figure 4.17 — Change in strong component size vs. change in & for Figure 4.13 thru Figure 4.1689
Figure 4.18 — Max Importance vs. Alpha (&) value for Mozilla GKGFX Library Version 1.4.1..92

Figure 4.19 — Risk values for files in GKGFX LiDIaryc.ccccoevievieniienieniesieeie e sne e 93
Figure 4.20 — Reusability Index of New Design DepAnal Ver. 1.9ccccoiiiiiiiiiiinieieeeee 96
Figure 5.1 — Alpha value repreSentationsc..ccceeeeiieeiieeiiieerieeereeeriieesreeeseeesreeeraeessseeesneeenes 100
Figure 5.2 — Alpha values between file D and depending files.ccceevvievienienienieniecieeieeenn 101
Figure 5.3 — Risk chart of New Design DepAnal [60]cccvevierierieiiiiiieiieieieeee e 103
Figure 5.4 — Change driving many Changes.cccocuerriieriienienie et 104
Figure 5.5 — Sample change flow and dependency between files.cccceevvievvenieiiiiciieiiiieen, 104
Figure 5.6 — Screen shot of Change LOZEETcc.eoviiiiiiieiieieecie et 109
Figure 5.7 — Alpha value calculator.occieiiiiiiiiiiieeie et 109
Figure 5.8 — Alpha value evaluation of Collector.cpp throughout the first release.ccccuue.. 111
Figure 5.9 — Alpha value evaluation in 1 month period between Collector.h and .cpp.................. 112
Figure 5.10 — Alpha values evaluation for 1 month period.ccoceeviriiiiiinie e, 113
Figure 5.11 — Alpha value evaluation of Collector.cpp throughout the first release. 114
Figure 5.12 — Alpha value evaluation for 1 month period...........cccceevevviieviienienienieciecreeee e 114
Figure 5.13 — O €valuation throughout the first release.coooeiiiiiiiiii, 116
Figure 5.14 — Q4,00 €Valuation for one-month period. ..., 116
Figure 5.15 — Product Risk with individually calculated alpha............ccccocvevvievieniiiiiieeiceieeen 116
Figure 5.16 — Product RiSK USING Gy rcqive «eevereerereerermmmmmeiiiiiiiiteiisieissscsssesesss s 117
Figure 5.17 — Comparison of outcome of Product Risk with alpha variancec.ccceieneenen. 118
Figure 6.1 — Components of GKGFX Library, on the right after removing global object
QEPENACIICIESeeeivieeetie ettt et e ettt e et e et e e st e e esteeesaseeessaeesseessseeersseesssesensseessseesnsaeensseeenseeanes 124
Figure 6.2 — Analysis of the component with size 45 in Figure 6.1coocoooiiiiiiiiniieceee 125
Figure 6.3 — Product Risk for GKGFX Lib, simulation of global obj. dep. removal...................... 126
Figure 6.4 — Shown dependencies caused by only global objects for GKGFX, two-way.............. 127
Figure 6.5 — Dependencies of GKGFX, caused by global objects only, one-way............ccccueuene. 128
Figure 6.6 — MFC Dependency reason and external dependencies of Component #6 129
Figure 6.7 — MFC, Internal - External dependencies of Component #6.............ccccevvereeeeeeneeennen. 130
Figure 6.8 — Risk values for files in MFC Library, before and after global object dependency
TEIMOVAL .ttt h ettt et e bt e s bt e sht e sat e e bt e bt e bt e bt e ebeeeat e et entean 131
Figure 6.9 — Risk Analysis of GKGFX Library..........ccccoecvevieniieriieiieeie ettt 132
Figure 6.10 — Analysis of Risk of new design DepAnal, sorted by increasing risk order 133
Figure 6.11 — Analysis of Risk of old design DepAnal, sorted by increasing risk order................ 134
Figure 6.12 — Expansion of Strong Components — New Design DepAnal Ver. 1.7.a........c.c...... 136

X

Figure 6.13 — Expansion of strong components, old design DepAnal.............cccevvevienviereenneennen. 137

Figure 6.14 — Product Risk Values, Old Design vs. New Design DepAnalcccccvveveerreneennen. 138
Figure 6.15 — Expected risk values before and after constructive changes.ccooceveieiiieenen. 139
Figure 6.16 — Dependency graph and its corresponding risk chart...........c.ccoovevieniinciinciiniiiieenn, 140
Figure 6.17 — DepView for basic project @bOVE.ceevuieriierierieiieeie et et et seveeee e 140
Figure 6.18 — Global variable dependency and alpha value (&)cccceevvevieviienieniicieciecveeeen 142
Figure 7.1 — GKGFX Library it€m COUNLS.......cevuereiiiiieiieiierieesieesaeeteereeseeseesseesseesssesssessseesens 146
Figure 1.1 — Total buggy change count number of source files...........cccoeeierienienieniriiieieeeeenn 155
Figure 1.2 — Average number of buggy change of all alive source files.ccccoevvreviienciieecnnnns 155
Figure 1.3 — Number of files in libraries by releaseccccvevierieiiieieiiieie e 158
Figure 1.4 — Variations of Metric Averages over all Files in GKGFX Library, By Release.......... 158
Figure 1.5 — Defect count bY TelEASEcuveiiviieiiieiiie ettt e et evae e e enree e 159
Figure 1.6 — Cumulative changes in library by 1elease..........ccccveviiiiiiieiiiinieniesiecieeeeeve e 159
Figure 1.7 — Predicted and actual changes for Mozilla’s MozFindDII librarycccceceveneenen. 162
Figure 1.8 — Predicted and actual changes for Mozilla’s XmlExtrasDII library............ccccccveueneen. 162
Figure 1.9 — Predicted and actual changes for Mozilla’s GKGFX libraryccccccceeviieniieennnn, 162
Figure 1.10 — Predicted and actual changes for Mozilla’s RAfIDII librarycccccccevvriencnencens 162
Figure 1.11 — Predicted and actual changes for Windows Build of Mozilla Release 1.4.1. 10

OCTODET 2003 ...ttt ettt et et e et e e ae e e et e et e e bt e bt e bt e s bt e ee et eneeen bt e bt e nbeesheeeaeeeaneens 163
Figure 1.12 — Predicted and actual changes for Windows Build of Mozilla Release 1.4.1. 10

OCLODET 2003 (LL0Z) +vveevvreiietieiieeie et et et et e bt esteestaestaessaeesseesseesseesseesssessseenseenseanseensaesssessnensseans 164
Figure 4.1 — Dependency graph and its corresponding risk chart, alpha =0.9............ccccceveeenns 170

X1

Acknowledgements

I would like to express my sincere gratitude to

Dr. James W. Fawcett for his support and guidance throughout this research. He always
encouraged me and gave me hope whenever I encountered problems during my research.
He is my advisor, my mentor, and my friend. I am unable to find right words to express

my appreciation for all he has done for me.

My dissertation committee members, Dr. Ehat Ercanli, Dr. Can Igik, Dr. Daniel J. Pease,

Dr. Marek Podgorny, and Dr. Yildiray Yildirim.

Many friends and colleagues for their support and valuable comments: Kanat Bolazar and
Bing Xue, I thank you for valued comments and criticisms. Arun V. Iyer thanks for your
collaboration on our early Mozilla data extraction, and contributions of several useful tools
Sergey Karamov, Biilent Cetinkaya and everyone from our research group thanks for your

support.

My wife, Reyhan, who shared my trials during my Ph.D. studies, for her support,

understanding, encouragement and patience.

My daughter, Nilufer Sena, and my son, Suat Emin for becoming a source of happiness in

our lives.

My mother, Ayse and my father Ali Riza Giingér and parents-in-law Nurhan and

Ismail Aydemir for everything they have done for me.

Xii

Chapter 1 - Introduction

Chapter 1

Introduction

The primary objective of this research is to understand

how to detect structural problems in large software development projects,

then, to generate algorithms and methods to diagnose specific structural flaws.

Another objective is to provide tools needed to support analysis and project monitoring.
The final objective is to explore possible corrective procedures and simulate

their application, monitoring improvements in observed defects.

Chapter 1 provides an overview of our research, discussing its focus, its methods, our
accomplishments, and their relationship with the work of others. Subsequent chapters explore
each of our focus areas, and the last chapter summarizes our conclusions and proposed areas for

future work.

Chapter 1 - Introduction

1.1. Motivation

Modern software systems are often very large and complex. For example, Windows
Vista, the latest version of the Windows operating system, will be released within a few months,
with more than 50 million lines of source code [2]. Each line of that code required perhaps
several technical decisions, often, but not always simple. The sheer volume of this decision
making process is daunting. No single human can fully understand a system of this complexity,
and, because the decisions are made by humans, not all will be correct.

To help ameliorate this problem, systems are decomposed into subsystems, libraries,
modules, and classes. Most of these components have interdependencies, in order to provide
services, one to another. However, in systems of great size, the dependencies often become a
dense web of relationships, as we will show in the next section, and in more detail in Chapter 3.
These dense relationships make development difficult. It is exactly this problem on which we
focus in this research. Our goal is to provide automated analysis of structure, and structural
problems, and to demonstrate explicit means to resolve problems, so discovered.

Our goal is to provide techniques for managers of large software projects to view the
current state of their project’s products, throughout software development and maintenance.
We have studied existing projects to try to understand ways to do that. Our current work has
shown that static dependency structure is an important element of that analysis.

Screening static structure provides both quantitative and qualitative information
regarding structural problems, as shown in Chapter 3. Structural data can be obtained
automatically via source code dependency analysis. For large software systems, this is a key
attribute of our analysis approach, showing how pieces are interconnected with each other.
Some of the important characteristics that dependency information reveals are size of fan-out,
fan-in and strong components (each strong component is a set of mutually dependent files).

For example, depending on scores of other files (large fan-out) may indicate a lack of

cohesion — the file is taking responsibilities for too many, perhaps only loosely related, tasks

Chapter 1 - Introduction

and needs the services of many other files to manage that. Fan-in is the number of files that
depend on a file. This indicates a lot of reuse, which is good, but high fan-in coupled with low
quality creates a high probability for consequential change, and risk to the cost and schedule of
the project. If we need to improve the widely reused file’s code, that may break the
implementation of many of its using files.

Strong components occur when files have mutual dependencies between them.
Understanding, testing, reusing and adding new features becomes harder due to complex
dependency among the members of component. In the following section, we explore these

specific structural problems.

1.2. Problem Statement

In order to understand large software systems, we analyzed the structural quality of some
existing software systems in terms of their dependencies. One of the software systems that we
studied was Mozilla, version 1.4.1, an open source browser project. Mozilla was targeted to
become the browser for Apple OSX.10 but Apple decided to build its own, Safari, based on the
KHTML rendering engine' [65]. This decision was based on the size, complexity, and
performance of the existing Mozilla base line [66]. The Mozilla project eventually abandoned
much of the 1.4.1 code base before continuing with development [66]. The large size — 6,193
source files — and acknowledged problems makes this code an interesting object for study. Can
we understand why this version of the product was unsuccessful? Can we find effective ways
of improving the system, without detailed knowledge of its low level design details? In an
attempt to answer these questions, we performed a type based file-to-file dependency analysis
over several of the Mozilla libraries, focusing especially on GKGFX, a major library, within
Mozilla with 598 files. We obtained a lot of interesting information about the structure of this

code, including Figure 1.1 and Figure 1.2 below.

' KHTML is another, competing, open-source browser project.

Chapter 1 - Introduction

¥ DepView 1.4 - 2D Dependency Viewer
Wi

[~ Show Dependency |7 Draw | [~ Alowpopup ¥ Fanln W FanOut ¥ ExtDep [NolntemalDep Clear

Smallest disk is a file

Dependency lines

A\

Number indicates the
size of a strong
component, in this
case 60 mutually
dependent files

R R W

A

Figure 1.1 — Internal and external dependencies of component #57.

The two figures, Figure 1.1% and Figure 1.2, represent dependency relationships within
the GKGFX library (Mozilla’s NGLayout Project [56]) from the Mozilla project version 1.4.1.
In this figure, the smallest disks represent individual source files; all larger disks represent
strong components, e.g. sets of mutually dependent files. The number at the center of each
circle indicates the size of a strong component (number of files). A line between circles shows
dependency among files.

Figure 1.1 shows internal and external dependencies of the largest strong component
within the GKGFX library. This figure reveals that the strong component uses services of many
individual files and members of other strong components. In addition, Figure 1.1 adds
dependencies on files, outside the same strong component, on files inside, indicating services it

provides to these files.

2 These figures were generated by our visualization tool, DepView.

Chapter 1 - Introduction

The large disk in the Figure 1.2 represents the same strong component shown in Figure
1.1, a collection of mutually dependent files, 60 in all. Every one of these files depends, either
directly or indirectly, on every other. The dependency relationships are shown by dense lines
within the disk. Each dot around the circle is one of the 60 files. If any file inside the strong
component is changed, it may break the operation or design of any other file in the component
and any of the external files using services of this component, as in Figure 1.1, e.g., 60 plus

many more.

Componenth?

Figure 1.2 — Internal dependencies of component #57 consisting of 60 files.

The complexity of these dependency relationships demonstrates that this component has
extremely poor testability characteristics. Should a developer find and fix a defect in one of
these files, a huge number of other files — more than 60° — need to be retested to demonstrate
that the change caused no other breakage. There are dense dependencies not only within the

strong components, but also among the strong components. This is an indication of high

* A change in a file inside this strong component requires retesting all sixty files inside the component, and all of the many files
outside the component, which depend on files within. These dependencies are the ones shown in Figure 1.1.

Chapter 1 - Introduction

coupling throughout the GKGFX library. Additionally, due to these dense dependencies,
making changes and tracking the effect of those changes is difficult. Therefore, extensibility -
new feature addition — becomes difficult.

The figures above reveal particular issues with the development of large software
systems in general. If dependency between components is dense, that causes several
undesirable attributes. First, it is very hard to reuse files from the component that, because they
depend on so many other files. Extracting them is very difficult, because each extracted file
depends on so many other files. Second, it is hard to test files in the component effectively
because every time a test uncovers a defect, which we fix, we have to retest all the previously
tested files in the component because of their mutually dependencies. Finally, it is very
difficult to understand the behavior of these systems because of their dense relationships.

In this section, we presented a few of the results of our analysis of the open-source
Mozilla project, version 1.4.1. We concluded that the source packaging of its GKGFX library
makes it difficult to test and understand its behavior. In the next section, we present some of
our views, and the views and conclusions of other researchers, concerning these issues.

1.3. Other’s Statements Relating to Problems in Large Development
Software.

It is a natural consequence of development that as a project gets larger, dependency
among its components gets denser and grows more complex. This dependency is necessary to
provide services from one component to another; on the other hand, excessive dependencies
make a system inflexible and fragile. The project becomes difficult for developers to
understand, test, maintain and reuse.

It is very important to provide timely feedback to software engineers and project
management about the state of a software development project, emphasizing these
dependencies. This implies that monitoring the state of a large software development project is

important and will be a major focus of this research. Most of our work is concerned with

Chapter 1 - Introduction

dependency structure of large software systems. Early detection of structural defects will avoid
delays, difficulties and costs associated with fixes made later in the project lifecycle. Higuera

and Haimes [54] reported that:

“Many of the most serious issues encountered in system acquisition are the
result of risks that either remain unrecognized and/or are ignored until they

have already created serious consequences”.

Source code itself carries valuable information that we can monitor frequently.
Software source is always accessible to its developers and managers, and carries up-to-date
information, unlike project documentation, which may be out of date or may not exist.
Moreover, source code provides quantitative information that can be turned into qualitative
symptoms of several types of important problems. This can be used to provide timely feedback
to software engineers and project management about the state of the software development
project [40].

Software systems can be extremely complex. Developing large complex software
systems is difficult, not just due to structural complexity, but because features of that
complexity are essentially unique. When there are common implementation details in a
software system the common structures are factored out into a single service. Other complex
systems, VLSI chips, for example, use repeated structures, so understanding a modest number
of relatively small cells may translate into understanding a major subsystem. Here is what Fred
Brooks, Kenan Professor of Computer Science, University of North Carolina, Chapel Hill [1]

has to say about software complexity:

“Software entities are more complex for their size than perhaps any other

human construct, because no two parts are alike (at least above the

Chapter 1 - Introduction

statement level). If they are, we make the two similar parts into one, a
subroutine, open or closed. In this respect software systems differ
profoundly from computers, buildings, or automobiles, where repeated

elements abound.”

And later in the same reference [1], he says:

“Much of the complexity in a software construct is, however, not due to
conformity to the external world but rather to the implementation itself — its

data structures, its algorithms, its connectivity.”

This complexity, coupled with organizational factors, has been responsible for a
number of noted software disasters: Therac-25 X-Ray machine malfunction resulted in the
deaths of several patients, due to a race condition®, 1985-87 [3], the Denver Airport Baggage
System failure®, 1995 [4], Ariane 5 crash, due to arithmetic errors coupled with specification

and design errors:

“Very tiny details can have terrible consequences”, “That’s not surprising,
especially in complex software system such as this is”, Jacques Durand,

head of the Ariane 5 project, in Paris.

1996 [5], and Mars climate orbiters®, 1999 [6], to cite a few. Complexity causes not

only malfunctions in operational systems, but problems with the development process resulting

* This system is complex
° Problems with both mechanical and software complexity.
® Data in English units instead of metric in software application code.

Chapter 1 - Introduction

in cost and schedule overruns and project cancellations. The Standish Group published a
widely cited report claiming these survey’ results, 1995 [7]:

1. 15.5% of responders reported cost overruns of under 20%. The rest were higher.

2. 13.9% reported time overruns of under 20%. The rest were higher.

3. 31.1% of all projects were cancelled.

We have been examining several large systems: the open-source Mozilla and KHTML
projects, and the libraries MFC (Microsoft Foundation Class library, part of the Visual Studio
Software Developers Kit), and STL (Standard Template Library, part of the C++ standard
library). In addition, we analyzed our own tool implementations to verify our new methods,
algorithms and tools. This gives us a mix of open-source, commercial, and expert developed
code, on which to test our ideas. As you will see, the results are quite interesting. In the next

section, you will find the summary of our goals and accomplishments.

1.4. Goals and Accomplishments

The goal of this research is to understand how to detect structural problems in large
software development projects. Secondarily, we seek to devise algorithms and methods to
diagnose structural flaws. Finally, another goal of this research is to provide tools needed to
support analysis and monitoring of static structure.

Our primary focus is for systems that are so large that no one person can understand the
entire semantics of the project. That drives us to use methods that do not require semantic
analysis®. Lastly, we explore possible corrective procedures and simulate their implementation,
and observe resulting improvements.

The number of source files, in these projects, is too large to pay individual attention to
each file. We need a way to rank files based on their impact on system quality. We have

several questions, which may help us to identify these files or groups of files. Which files

7 Sample size of 365 respondents, representing 8,380 applications [7].
¥ Most of our analysis to-date is based on static type and function-based dependencies.

Chapter 1 - Introduction

contribute most to large strong component size? Can we order the risk of files by using each
file’s interrelationships with other files in the system? How does internal quality of a file, and
the files on which it depends, affect overall system quality?

Another aspect of software implementation is its malleability. It is easy to make
changes to a small part of a software system, but much harder to understand the impact of such
changes on the system as a whole. This has two potential difficulties: a change may improve
the functioning of a small part, but in fact have undesirable repercussions on the larger system.
In addition, change makes establishing reusable components more difficult, both because the
components may change and become incompatible with other users in the larger system, or
because the users change and can no longer correctly use the component.

Our goal is to enable a Project Manager to visualize his large code base and determine
where corrective action is needed and continually monitor the development progress of his
system. The static dependencies we have been discussing are visible on a micro scale. Each
developer knows what other files her code depends on, but may not be aware of indirect
dependencies and other files in the systems that depend on her code. The dependencies on a
macro scale are invisible to humans, due to the overwhelming complexity of real large
projects’.

Without the help of analysis tools, it is difficult to understand a large project, evaluate
its quality, and track progress effectively. Therefore, we generated tools that can handle
analysis of large-scale software systems'’. Chapter 2 covers generated tools and interpretation
of extracted textual and visual data by them. Chapter 3 documents an empirical study of a large
open-source project, which illustrates the value of these tools in understanding large software

systems.

°_ A project developing 5 million lines of code in two and a half years needs about 350 developers, from an example used in
CSE784 — Software Studio, details are in AppendixA.2 at page 166.

' We applied our dependency analysis tool, DepAnal, to the entire Mozilla system, all 6193 files. This processing consumed about
four hours on modern desktop computer. An earlier version of our code required more than 24 hours for this analysis.

10

Chapter 1 - Introduction

These observations led us to consider ranking files by their risk level. Files will be
ranked, according to their risk contribution to the entire system. Files with high risk ranking
then become the target on which developers focus first, in order to alleviate structural problems.
In Chapter 4, we introduce a software product risk model by considering dependency relations
among files and files’ internal metric properties. If a file has poor internal quality and the
system has many files that depend, directly or indirectly, on this file, its quality is a risk factor
for the system. The system risk would be smaller if very few other files depended on this file.
This idea is formulized in our risk model.

Additionally, this research focuses on the ability to identify components for potential
reuse. We describe a model that indexes software components according to their potential for
reuse. This reusability index ranks source code, in existing systems, based on its place in the
structure of the system and its internal metrics. This enables developers to evaluate a file for
reuse before looking at its code. Section 4.4 explains the details of our reusability index model
and its application.

While developing the risk model, we studied the relative frequency of required
consequential changes in files in the project, called Change Impact Factor (CIF). The product
risk model uses change impact factor for every dependency relationship between files in a
project. But, initially, we could supply only rough estimates for the values of these parameters.
So we designed and executed an experiment to measure the CIF factors, as functions of time,
for a real project. As part of this experiment, we developed a measurement process that can be
applied to other projects, as well. In this way, a more accurate assessment of risk is obtained, in
real time, as a project unfolds. Chapter 5 presents details of the experimental design, its
application, and its results.

After identifying potential dependency problems, we also explore the effects of
modifying different dependency types to improve the structure of a large system, without

needing a detailed understanding of its internal semantics. We simulate the effects of these

11

Chapter 1 - Introduction

changes to determine their value, in improving system structure. Chapter 6 presents the details

of this study.

12

Chapter 1 - Introduction

1.5. Method Statement

In this section, we describe study methods that we used to pursue this research.

1.5.1 Type Based Dependency Analysis

We focus on file level dependency information, since files are the unit of testing and
configuration management. We are not interested in portraying type-to-type or function-to-
function dependencies for the reason that we are dealing with large numbers of source files,
every file can define several types, and this would increase the volume of analysis information
to the extent that it would be difficult to draw conclusions about it. Note, however, that our
dependency analysis, in fact, uses this information, extracted from source code.

File dependency information can be obtained quickly, using our analysis tools.
Therefore, this information is always available, unlike project documentation, which may be out
of date or may not exist.

Briefly, the dependency model can be described as follows, first we collect declarations
of types, functions, and global variables, and then, we find invocations of these items across the
files. Finally, we determine the dependency among files based on the collected declaration and
invocation data. The dependency model used throughout this research is given below.
Dependency Model - file A depends on file B if:

- A creates and/or uses an instance of a type declared or defined in B

- Aisderived from a type declared or defined in B (inheritance)

- Ais using the value of a global variable declared and/or defined in B

- A defines a non-constant global variable modified by B

- A uses a global function declared or defined in B

- A declares a type or global function defined in B

- A defines a type or global function declared in B

- A uses a template parameter declared in B

13

Chapter 1 - Introduction

These rules intentionally do not acknowledge dependency of a base type on its derived
types even though it is possible that a derived type modifies protected data members of the base.
Doing so, we believe, would identify potentially many false-alarm dependencies in well-
designed systems. It would be interesting to compare analyses of a major system with this
assumption and with a model in which the base is declared to depend on all derived types if it

provides protected data.

1.5.2 Qualitative and Quantitative Measures of System Quality

We need quantitative inputs about a software system under study to evaluate the quality
of system. With the data extracted from dependency analysis, there are two possible ways to
proceed. One is to focus on mutual dependencies obtained from the dependency graph as strong
components; the other examines dependencies among individual files. We show data gathering

and processing flow we use during our analysis of software, in Figure 1.3.

(2D-Drawing) Views

DepView | Dependency %v *v
% v

Strong Components

StrongComponent
(Component Analysis)

DepAnal —FileDependency
(Type Analysis)

—File Setp

Internal Metrics . .
RiskCalculator ng
; ol
(Risk Analysis) Reusability4> o

Figure 1.3 — Data Flow — During analysis and visualization of software system’s quality

We first find dependencies between source files, and record this information, along with

each files’ internal metrics, using DepAnal. After obtaining this textual information, we

14

Chapter 1 - Introduction

visualize dependencies, using DepView, and run our risk model-based analysis tool,
RiskCalculator, to localize potential problems.

The level of detail, at which information is presented, is very important. Too much
detail weakens comprehensibility. However, we need detailed enough information to
understand the quality of the static structure, and need detailed enough information to locate the
origin of structure problems. The two dimensional drawings in Figure 1.1 and Figure 1.2
immediately disclose the web of dependencies and size of interdependent file groups, within the
file set analyzed. In addition, risk analysis merges file internal metric information with
dependency information and provides an effective level of detail. Moreover, risk analysis
enables us to identify files that may adversely affect the quality of the system.

Type Analysis is carried out by our dependency analyzer, DepAnal, a file-to-file static
dependency analyzer for C/C++ source files, section 2.3.1 provides more detail. Two-
dimensional Visualization is obtained by our tool DepView. Product Risk analysis is performed
by using information generated by DepAnal in conjunction with our parsing tool called Matrix
Maker. Additionally, we included a MatLab generated linear system solver'' to evaluate the
matrix equations that describe our risk model.

As shown in Figure 1.3, Product Risk Analysis uses internal metric information, along
with file-to-file dependency data. During risk analysis, we use function size and cyclomatic
complexity, but other potentially useful quantitative metrics could also be used - details are

provided in section 4.1.5.

1.5.3 Finding Mutual Dependencies

After obtaining file level dependency information, we build a dependency graph,
analyze its strong components, to find mutual dependencies, and then perform a topological sort

of the components. This last sorting step is useful for visualization and is also useful in

" A stand-alone executable file.

15

Chapter 1 - Introduction

developing test plans. In a classical test process, we start with the files that depend on no
others, and then continue by testing only those files that depend on already tested files. For
systems with strong components, this is not possible, due to mutual dependencies. Thus, the
number and size of strong components gives important insights regarding how well a software
project is packaged. The dependency density within strong components discloses how strongly
coupled files are, and the strength of this mutual coupling is a compelling measure of test risk,

because it measures potential for the need to retest large numbers of files.

1.5.4 Visualizers Providing Comprehensible View

Our DepAnal results are in text format. Drawing conclusions from these text files is
almost as hard as reading source code. We developed the 2D dependency viewer, DepView, to
obtain comprehensible views of large software systems. The 2D interactive views of
dependency information discloses qualitative information about the system in an easily

understood fashion — see Figure 1.1 and Figure 1.2.

1.5.5 Monitoring Development Manually

Our risk model depends on three things: dependency relationships, analyzed by
DepAnal, internal metrics, analyzed by a program called Analyzer, and the probability that a
change in some file will cause changes to be required in other files in the system. The first two
items are analyzed by our tools, but the third is not.

In order to estimate the probabilities for change in files, due to changes in other files in
the same system, we designed an experiment to explore propagation of changes throughout a
project’s development lifetime. DepAnal was redesigned and implemented from scratch, and
each change carefully recorded. Then the data, so obtained, was analyzed to determine the

change impact factor values (CIF).

16

Chapter 1 - Introduction

1.5.6 Sample Analysis: Partial Analysis of Dependency Analyzer

We studied our own project, which has 30 source files. We know our project in detail,
such as which files are hard to understand and which files need to be re-factored. However, we
were not sure about the size of the strong component dependency between its files. The results
we obtained, shown below in Figure 1.4, are encouraging by illustrating the effectiveness of the
approach even for relatively small size software projects. Charts below expose high-level
structural information. Performing a product risk analysis provides a finer level of detail, so

that we can identify high-risk files.

17

Chapter 1 - Introduction

Topological sort of the [® DepView 1.4 - 2D Dependency Viewer

ﬁles Wig

<-MOSt Independent I Show Dependency 125 Dirawe | I Alowpopup W Fanln W FanOut W ExtDep [Molntemal Dep Clear_l
TOK.CPP Syntan?.cpp reimplZ.h Mgin.cpp Component4
ITest.h

regexpr2.h
regexpr2.cpp
restack.h Componerts
syntax2.h
FILEINFO.CPP
FILEINFO.H
NAV.CPP
NAV.H
TOK.H
SEMI.CPP
SEMI.H
Utilities.cpp
Utilities.h
IncludeMngr.cpp
IncludeMngr.h
Grammar.cpp
Grammar.h
Scopelnfo.cpp
Scopelnfo.h
Collector.cpp
Collector.h
DepRecorder.cpp
DepRecorder.h
DepFinder.cpp
DepFinder.h
Main.cpp
reimpl2.h
syntax2.cpp
TOK.CPP
Most Dependent ->

Ready... Least Dependent -> A

Figure 1.4 — New Design DepAnal Ver 1.7.a’s internal dependency structure. Consists of 30
files

Figure 1.4 illustrates file level dependency structure of DepAnal. Before seeing this
picture, we were not aware that DepAnal has a strong component with size of 4 files. The
largest strong component carries more than 25% of the new source files in the project'>. This

view demonstrates detailed information without using our developer knowledge of this project.

"2 Some of the files taken, without development, from other libraries and projects.

18

Chapter 1 - Introduction

As a developer of DepAnal, we know our code in detail; however, we were not aware of the

existence of this component and this dense interaction between files.

In Figure 1.5, below each dot indicates dependency between two files. The count of

dots shows the degree of communication density. A dot’s distance to diagonal indicates

whether a file’s communicates with a file in its neighborhood or not. Moreover, if a dot is below

the diagonal, it indicates existence of a mutually depended group of files.

Dephnal Version 1.7.a

* e
LR R

* *

* * ¥ »

*
*
*

*

* * ¥ »

Depended on Library Files
* 4
LR N R R R 2
* + +
* *r r r
|+ + *

L B K B R R

* * ¥ »

*

+*

+
+

* *
* *

* * .
+ *

*

Least Dependent ->

[Y RSV SN D) Reo BoN Ko vl (o)
I

Figure 1.5 — Expansion of Strong Components — New-Design DepAnal Ver. 1.7.a

910111213 141516171

81

a9z

T T T T

021222324252

Depending Library Files

62

L T+

728293031

Most Dependent

1 TOK.CPP
2 syntax2.cpp
3 reimpl2.h
4 Main.cpp
5 DepFinder.h
6 DepFinder.cpp
7 DepRecorder.h
8 DepRecorder.cpp
9 Collector.h
10 Collector.cpp
11 Scopelnfo.h
12 Scopelnfo.cpp
13 Grammar.h
14 Grammar.cpp
15 IncludeMngr.h
16 IncludeMngr.cpp
17 Utilities.h
18 Utilities.cpp
19 SEMILH
20 SEMI.CPP
21 TOK.H
22 NAV.H
23 NAV.CPP
24 FILEINFO.H
25 FILEINFO.CPP
26 syntax2.h
27 restack.h
28 regexpr2.cpp
29 regexpr2.h
30 ITest.h

Least Dependent

In Figure 1.5, we see strong components expanded into their individual files, each dot

represents a dependency relationship. For any dot, the file vertically below it (x) depends upon

the file horizontally to its left, on the ordinate (y). Any dot under the diagonal indicates the

existence of a strong component. Each rectangle represents a strong component as shown in

19

MADADAADAADAAAD DD AAMMMMmMMAMMmMMmMMMMMZAO 0D

Chapter 1 - Introduction

Figure 1.4. The table on the right in Figure 1.5 shows the topologically sorted files. R indicates
the file reused, E indicates file was created for this project.
The methods used to obtain this information have the capability of analyzing large-scale

software, as described in a footnote on page 10.

1.6. Results and Contributions in Brief

This section briefly describes the thesis’ results and contributions.

- Developed methods to uncover existing structural problems in software from source
code.

- Developed tools to provide immediate feedback to software developers and managers
about structural state of software development project, even for every large projects.

- Developed source file ranking algorithms using notions of product risk, importance, and
testability of a file.

- Introduced a model that indexes software components according to their potential for
reuse.

- Designed and conducted an experiment to evaluate change impact factor between
source files. For this purpose we redesigned DepAnal, and during that implementation
we monitored and recorded each change.

- Applied our tools on industrial projects to observe and report on the applicability and
quality of estimation.

- The study also enables the identification of components, which need individual
attention and suggest possible ways to avoid impending problems before they become
chronic.

- The study enables a software manager to monitor a software project rapidly without
waiting for documentation files to be produced, directly obtaining structural quality

information from source code.

20

Chapter 1 - Introduction

- Our empirical study has demonstrated that useful information about significant
problems in both large and small systems can be identified without a detailed
knowledge of the entire code base.

- The product risk model predicts that as the density of dependency relations increases in
strong components of the dependency graph, Risk factor grows and becomes
unbounded at critical densities.

- We explored the effect of different dependency types over dependency structure of a
large system without a detailed understanding of its internal semantics.

- We have applied the model to a library from the Mozilla open-source project. The
model predicted that most of the development risk is in about 10% of the library files.
That good news was probably unknown to the Mozilla designers.

- We conducted statistical analysis of file properties versus change potential from

Mozilla change database, using Multiple Linear Regression.

1.7. Literature Review

In the bibliography, we cite over 70 papers that are related to our work or have provided
insight or inspiration for this effort. Here, we review some of them that have been particularly

useful, and cited in this chapter.

1.7.1 Dependency Algorithms

Vassilios Tzerpos [10] developed a file to file dependency analyzer by looking at
#include statements so that “newcomers can grasp the overview of the system much faster,
designers can inspect the quality and modularity of the system structure, and programmers have
much clearer view of which part of the system they are actually developing”. In the same way,
one of our goals is to find dependencies between source code files based on static type analysis.
Unlike Tzerpos [10], we ignore include-based dependencies, as developers are occasionally

careless about the files they include, causing dependency false alarms. Unnecessary

21

Chapter 1 - Introduction

dependencies affect build efficiency but do not affect design or compilation breakage due to
change. Instead, we focus on type-based file dependencies. Note also, that analyzing type
dependencies affords the opportunity to base risk analysis and corrective actions on the types of
dependencies encountered.

Kazman, S.J. Carriere [52] identified the necessity of tools in order to extract
architectural information from source code, and explain how they achieve this by a workbench,
Dali, a set of analysis tools. They have written scripts to extract “file depends on file” relations
from make input file (makefiles). In our case we do not need any other information except
source files themselves to extract dependency information. In addition, like #includes, make
files sometimes carry incorrect dependency information, reducing the accuracy of the analysis.

Ferenc et al. [53] explain the reverse engineering framework, Columbus, which
supports project handling, data extraction, representation, storage, filtering and visualization. It
is a framework to help developers to comprehend the system under development. File to file
dependencies are not their tools’ direct output, but can be derived from its resulting output.
This work focuses on specific type dependencies, while our focus is more specific towards
source file dependency and its visualization. Files are the unit of testing and configuration
management, and so file dependencies are a more appropriate measure of the system structure
than its internal type details — we use these internal type details, but focus on the file-to-file
dependencies they determine as a measure of system quality.

Martin Fowler [50] talks about dependencies (Coupling), and says they are necessary
but should be reduced. One way to reduce dependencies, he suggests, is to use interfaces. And
he stresses the need to avoid cycles". He is concerned with a macro view of systems, similar to
our study, and sees excessive dependency as a structural design problem. He has one basic rule

that is “fo visualize high level dependencies and then rationalize them, separating the interface

'3 Cycles are what cause mutual dependencies, e.g. strong components.

22

Chapter 1 - Introduction

and implementation to break dependencies.” This is one of several techniques, which can be
applied to remedy structural design problems — we have already shown that type of dependency
can be one of the effective directions to pursue.

Robert Martin [47] also studied general dependencies between modules. He classifies
good (interface) and bad (concrete class) dependencies and considers the affect of dependencies
on reuse. He introduces two metrics for instability and abstraction based on types, to define
groups of files, which cannot be reused without one another, named Class Categories. We use,
in our study file-based instability; Martin uses class-based instability.

Yijun et al. [25] use, parsing technologies CPPX or Datrix, which are similar to
Columbus [53] for system analysis. File-to-file dependencies are not their tools’ direct output,
but can be derived from it. What they do is to extract a “code dependency graph” from the
output of the parsers. However, we developed our own parser and dependency analyzer, and
compiled into one standalone compact application without the need of other tools.

Rotschke and Krikhhaar [57] describe a tool with the goal of extracting automated
UML information between the members of source files. Their tool has, however, an
intrinsically different purpose, which is to understand architectural quality of software. For the
large systems, UML discloses detailed relationships between pieces of software, which will be
too much to comprehend. Granularity of our tools is file level, which, we believe, provides the
right amount of detail for human consumption to understand structural quality of software.
Similar to [57], Yu and Rajlich [28] consider hidden dependencies and change propagation. For
data collection and analysis they consider type dependencies but not file to file dependencies.

To find file-to-file dependencies, using source files as input, we have developed model
and implementation for C/C++ projects [59]. The model can be extended to object oriented

programs like Java, C-Sharp etc.

23

Chapter 1 - Introduction

1.7.2 Refactoring Software Systems

Yijun et al. [25] present a graph algorithm to remove unnecessary dependencies among
files. They do this by reorganizing the header files using a class partitioning process. If a file
depends only on some portion of a class in a header file, they distribute class into two or more
classes, and as a result, they will have new header files. By eliminating unnecessary
dependencies, they speed up compilation. However, they change the semantics of the code in a
way that will cause a lot of retesting. Our study is different from theirs; we are not generating
new code or partitioning classes into new classes. We use analysis and simulation to estimate
the effects of constructive changes in Chapter 6. We have a similar goal to reduce dependency
among source files, however our method is more applicable in our context, which focuses on

multiple sources of dependencies, not just class-based.

1.7.3 Analyzing Quality of Source Files

Jungmayr [8] has explored analysis testability using a static dependency model, which
was the inspiration of ours. He has proposed a definition of testability relating to the direct and
indirect fan-out of components'*, proposes a metric methodology, without endorsing specific
metrics, and reports on several experiments'” using this approach. We differ in several ways
from his work 1) by considering importance, 2) in distinguishing types of dependency
relationships, 3) and in providing what we believe to be a more realistic'® weighting of indirect
dependencies. Inspired by a discussion by Jungmayr [8] on testability, we developed a file rank
algorithm that ranks each file based on its testability — a function of its internal quality and the
testability of the files it depends upon, and its importance — a measure of the number of files

that depend on it. Just a note our work can be viewed as a further exploration of the same ideas.

'* We have shown [11] that fan-out is highly correlated with change for the large Mozilla project.

'3 Jungmayr does not provide any technical details in [8] and we are unable to locate any concrete descriptions by him on these
experiments.

' The merits of this weighting are argued in Chapter 5

24

Chapter 1 - Introduction

Furthermore, unlike Jungmayr, we classify and treat differently dependency types, e.g., mutual,
global, callback and simple type usage dependencies. One reason for doing this is that only
dependencies based on simple type usage can be manipulated without breaking code, simply by
rearranging code packages. All the other types are breaking changes. That is, we must change
some aspect of the design to modify the dependency structure for these types.

Inoue et. al. [45] proposed a usage-based file rank procedure. Their goals are to retrieve
components from a storage repository. Our ranking procedure is risk based with the goal of
identifying components that have high risk of propagating changes. The methods of our study
and the former have some similarities but the algorithms and final results are quite different.
Our study uses a two-level structure with Test Risk and importance as the bases for ranking.

In our study, a file with high rank — one that needs to be corrected and tracked — has
high importance and poor testability. The rank is essentially based on both micro qualities —
those of the file being ranked — and macro qualities — how it relates to other files in the code
base. Its importance is much like the importance of a web page. Many search engines on the
internet use page ranking algorithms, as in Google, named PageRanks [41][42][43]. Mostly
these rankings are determined by the number of unique external visitors. Similarly, another
study was conducted to find impact analysis of publications, named “influence weight” [44].
And most recently, Component Rank method [45], based on abstract use relationships, for
ranking software components to retrieve components from a storage repository, propagating
significance throughout the use relations.

We have explored the use of a software metric set supporting examination of large
systems and found a few to be useful, based on an empirical study supported by Multiple Linear
Regression analysis. We have published a paper documenting these results [11] and another
which uses a neural network [62] . Our methods, described here, use a function size metric and
the cyclomatic complexity metric, demonstrated by Capiluppi and Ramil [9] to be effective, for

the analyses of large systems.

25

Chapter 1 - Introduction

Strong components, mutually dependent files, introduce the possibility of a chain of
forced consequential changes when a single component member file is changed, perhaps to
repair a latent defect or improve system performance. Lehman [55] states that when a system
grows in volume and complexity, it may arrive at a point such that any further change to the
system causes, on the average, one extra fault, at which point, the system becomes unstable or
unmanageable. One of the goals of this research is to identify those characteristics to minimize
such consequential changes. We have shown, using a risk model discussed below, that test risk
becomes unbounded when density of mutual dependencies increases beyond a critical point'”.

We develop a file-rank algorithm, similar in concept to the page-rank algorithms used
by some search engines, to identify particular risk areas, localize them to specific files, and
suggest means for diminishing their risks. We have written research papers about this
“Software Development Risk Model” [60][61]. This algorithm is novel, and uses direct and
indirect dependencies to characterize testability and importance. When important files have
poor testability properties, we have shown that larger than normal numbers of changes are
likely.

Change impact analysis can be used to estimate the effect of proposed changes to other
parts of the software. We have developed procedures to calibrate the change impact factor
between source code files. Michelle L. Lee [71] considers, in her dissertation, the impact of
change on types, global functions and global data, such as how many classes are going to be
affected by a change. In this dissertation, we are interested in a coarser level of impact analysis,

that of file-to-file change impact, as in the product risk model.

'7 The value of critical dependency density is a function of probability of an original change in a file causing consequential changes
in dependent files.

26

Chapter 1 - Introduction

1.7.4 Internal Metrics of Files

For purposes of testing and change control, it is important to find ways to estimate the
effect of a change in one file on other files, which use the services of the changed file.
Dependencies among source files reveal important information about possible impacts of a new
change over a set of dependent files. However, not only file-to-file dependency information but
also internal implementation quality of files should be considered. Capiluppi and Ramil have
reported an analysis of cyclomatic complexity [9] [51], as it relates to what they term “release-
touches”, the number of releases in which a file has changed. They have shown that cyclomatic
complexity is related to frequent change. And they stated “... the source files which are subject
to the higher change rate include a large portion of highly complex functions”. Based on these
findings we chose to include cyclomatic complexity as part of our measure of file quality.

Parallel research has been carried out by Ping Yu, et. al. [40] and Basili et. al. [46].
Using regression analysis, they studied the relationships between 10 object-oriented metrics and
the fault-proneness of a class. At the beginning of their research, they developed several
hypothesis about the effect of metrics suits on fault-proneness, and they try to find out whether
their hypothesis are supported by the subject system, which is written in Java with 123 classes.
Some of the results that they report, Fan-in, Lines Of Code (LOC), and Number of Methods per
Class (NMC) have statistically significant effects on fault-proneness. Most of their metrics are
internal to a class, and their unit for this analysis is the class.

These four papers, along with our own, which relates metric values to observed changes
in the Mozilla project [11], are important for this work because we use fan-in, fan-out, and
complexity metrics, as well as others, as the basis for our characterization of large systems and
file-rank algorithm is also utilizes these measures.

Software source code itself carries valuable information for monitoring the state of a

project quickly; additionally software source code is always accessible and carries up-to-date

27

Chapter 1 - Introduction

information, unlike project documentation. As stated in [40] “Software metrics provide
quantitative information that can be used in many ways to make assessment of the software
products and the development process, to help engineers in coding practices and project
manager in decision making... metrics data provides quick feedback to software engineers...”
Our work uses a two level measure of software risk: internal metrics, like those
discussed in this section, are used to define a notion of risk for a file in isolation. We combine
that with test risk derived from the files it depends on, and a measure of a file’s importance,
based on the number of files that depend on it, to evaluate software risk of each file in a

development project.

1.7.5 Visualizing Software Projects

Bassil and Keller surveyed and analyzed many software visualization tools, they stated
in their paper [49] “Today’s software systems are increasingly large and complex, and their
development and maintenance typically involves the collaboration of many people. This makes
the tasks of programming, understanding, and modifying the software more and more difficult,
especially when working on other people’s code”, in their survey, one of the conclusions is “the
more the visualized software systems is large, the more important it is to visualize it graphically
and the less useful it is to pass directly to the source code.”

Another publication of Bassil and Keller [48] covers what are the most desired and used
properties of Software Visualization (SV) tools. It states, “concerning code analysis aspects, it
seems only a low number of these aspects are supported by current SV tools”. And “Calculation
of metrics were the least supported, but were sometimes desired”. They stress the necessities of
software visualization tools.

While we have worked on analysis of large software systems, the complexity of the
systems that we study brought us to the same conclusion. For this reason, we developed a 2D

file level dependency viewer (DepView, covered in section 2.3.4).

28

Chapter 1 - Introduction

In the next chapter, we discuss elementary structural properties of software systems,

and illustrate these properties with an analysis of the source code of our research tools.

29

Chapter 2 - Analysis of System Structure

Chapter 2

Analysis of System Structure

We have studied several open source software projects, mainly focusing on the Mozilla
project, discussed in Chapter 3. Because it has very well maintained release information, code base
controlled by release and each release is accompanied with a change history. Beside Mozilla, we
have looked at KHTM, MFC and STL library files. However, we are not showing KHTML and
STL analysis. These studies were carried out with static source code analysis. In the following
sections, we will discuss system structural properties we believe to be important, and tools we

developed to analyze these properties for large software systems.

2.1. Basic Models

First, we present some hypothetical structural problems and desirable structures. In this
section, we present the charts that we use to analyze a software project; these are all very small

examples for illustration. In a later section, we will use the same charts for large software projects.

30

Chapter 2 - Analysis of System Structure
2.1.1 Problem: Large Fan-out

Depending on scores of other files - large fan-out - may indicate a lack of cohesion — the
file is taking responsibilities for too many, perhaps only loosely related, tasks and needs the
services of many other files to manage that.

The chart in Figure 2.1, below demonstrates the case of large fan-out along with a
topologically sorted diagram of the files. Any file depends directly only on the files indexed by

points in the diagram vertically above it.

o A A
© o =N WA OO
T S Tt
.
g
)
+ vJ
*
*
.
g

15 | | 14 | | 10 | |4,5,6,7,8,9,12

*

o
Depended Upon Source Code Files

oA N WA OO N®
P S S R

- - * - .
* * \ g * g

0M12345678910111213141516
ost Mos!

t
Dﬂ Depending Source Code Files HD

After topological sort

Structure Chart — Large Fan-out

Figure 2.1 — Basic examples — large fan-out

The topological sort order of the files is [15-14-13-12-11-10-9-8-7-6-5-4-3-2-1]. Each of
these numbered files depend only on files with lower numbers, but do not necessarily depend on
every file with lower number.

We see in the chart above, file number 3 depends on nine other files directly, and depends
on one other file indirectly, not shown by the chart for ease of interpretation. In the later phases of
development, if a change is requested in file 3, it is hard to retain information about what each of
the nine files are used for. Even the developer of that file can easily forget the details of those 9
files. Another drawback is, if a change occurs in any of those nine files, file 3 has to re-tested to

make sure those changes do not break its compilation or operation. When operation of code in file

31

Chapter 2 - Analysis of System Structure

3 is defective, the problem can be in file 3 or in any of the 9 files, it depends on. Therefore, fan-out
should be limited, excessive fan-out reduces reuse; makes code harder to understand and
modification more difficult.

Below in Figure 2.2, we see a dependency view of DepAnal. The picture only shows the
fan-out of dependency of DepFinder.cpp, as we see it depends on many other files. This will make
testing of this file harder. Change in depended files likely force DepFinder.cpp to change, this will

require frequent testing and reduces the manageability of the file.

T

E® DepView 1.4 - 2D Dependency Viewer,

On the left, we see that DepFinder.cpp uses
services of many other source files.

An error fix or update of DepFinder.cpp will
require understanding of all depended files.
This reduces flexibility of accepting new

changes.

Ready Y

Figure 2.2 — Example of excessive fan-out, dependency picture of DepAnal

If someone wants to use DepFinder.cpp, he needs to add scores of other files used by
DepFinder.cpp. Consequently, reusability of DepFinder reduces. This is an undesirable property

and increasing the size of the project.

2.1.2 Problem: Large Strong Components

A strong component, within a dependency graph, is a set of mutually dependent files.
When topologically sorted, a strong component will have dependency relations that appear below

the diagonal of the dependency matrix, as shown in Figure 2.3.

32

Chapter 2 - Analysis of System Structure

©

0
23 *
T
37 - -
S
5 ® 6 .
5
35 * *
(7]
) J s ¢ *
6 Q
4 23 . If there is a dot under the
8 diagonal, it indicates there
g 2 * are mutually depended files.
y §1
s [7 N 2l S .
0 1 2 3 4 5 6 7 8 9
DD Depending Library Source Code Files DD

After topologically sorting, strong components

Structure Chart — Strong component are expanded

Figure 2.3 — Basic examples — strong component

The existence of strong components, in a set of files, makes it impossible to carry out an
ideal testing process on the set, as discussed below.
Ideal testing process:

- Test those files with no dependencies, and then test all files depending only on files

already tested.
For testing, a strong component must be treated as a unit, because they cannot be put into a total
order. The larger a strong component becomes, the more difficult it is to adequately test.

Change management becomes tougher, due to consequential changes that may occur when
we fix latent errors or performance problems. The chart shows circular dependency among the
files 5, 4, 3 and 2. There is no topological sort possible among these files; this will cause difficulty
picking a file to start testing. In addition, this makes code hard to understand and any change of a
file in a strong component requires all the files in the strong component to be re-tested. If the size
of a strong component increases, it makes testing, maintaining and adding new features much

harder to accomplish. This is a serious sign of structural problems.

33

Chapter 2 - Analysis of System Structure

{18 DepView 1.4 - 2D Dependency Viewer

View

¥ Show Dependency |34 Draw | [Allowpopup ¥ Fanln W FanOut ¥ ExtDep [WolwtemalDep Clear
EED Tomponert? oF R

Fleady, Y

Figure 2.4 — Example of strong component, a strong component with four files

This is the topological sort of the files [8-7-6-5-4-3-2-1]. The order given is the best we
can achieve for testing. Numbered files depend only on files with lower number, but do not
necessarily depend on all files with lower number. Files 2, 3, 4, and 5 cannot be ordered.

From the re-use perspective, a developer would not want to include a lot of files in his
project just for a couple of features; since it will complicate testing, increase the size of the project,

and reduce comprehensibly. As a result, large strong components reduce software reuse.

2.1.3 Problem: Large Fan-In

High Fan-in is not inherently bad. It implies significant reuse, which is good. However,
poor quality of a widely used file will be a problem.

High fan-in coupled with low quality creates a high probability for consequential change.
By consequential change we mean a change induced in a depending file due to a change in the
depended upon file

The chart in Figure 2.5, below demonstrates the case of a large fan-in along with its
topologically sorted diagram of the files. Any file is used only by the files indexed by points in the

horizontal line passing through the used file on the ordinate.

34

Chapter 2 - Analysis of System Structure

16
15 *
14 4 *
13
12
11 A .
10

*

*
*

Depended Upon Source Code Files

* .

| 2,3,4,5,6,7,8 |

4 5 6 7 8 9 10 11 12 13 14 15 16

Mos’EJ vz i i Most
Iil DH Depending Source Code Files HD
12

After topological sort

O AN wWh OO N®

Structure Chart — Large Fan-in

Figure 2.5 — Basic examples — large fan-in

File 10 is used by 8 files, this shows file 10 is highly used, this is a good thing, however if
a change occurs in file 10, all the depending files have to be re-tested to make sure that the
introduced change does not break their functionality. Sometimes a change can cause a chain of
secondary changes to depending files. Excessive fan-in is risky as in the case of excessive fan-out.

This is the topological sort of the files [15-14-13-12-11-10-9-8-7-6-5-4-3-2-1]. Numbered
files depend only on files with lower numbers, but do not necessarily depend on every file with

lower number.

2.1.4 Desirable Dependency Structure

Each component (file) depends only on its close neighbors. All files have low fan-in and
fan-out. There is no call back to upper level components, or deep call forward.
Figure 2.6, below demonstrates the desirable dependency structure on the left along with

its topologically sorted dependency diagram of the files on the right.

35

Chapter 2 - Analysis of System Structure

] H
©

>

Depended Upon Source Code Files

No dots under the diagonal

|

i

s | L] [+ 1

0 1

2

3

4

5

7
y DH Depending Source Code Files [[][Independend
]

6

I

After topologically sorted strong components

Structure Chart

Figure 2.6 — Basic examples — desirable dependency structure

expanded

With this structure, testing can be organized in a straightforward way — test all files that

depend on no others; then test files that depend only already tested files. There is no circular

dependency, and each file depends only a couple of files, which enables developer to comprehend,

to reuse, and to test the project easily. Moreover, a new change can be easily accommodated

without requiring heavy testing or without causing a chain of changes.

Ideal structure has cohesive components with no mutual coupling. This is the topological

sort of the files [8-7-6-5-4-3-2-1]. Numbered files depend only on files with lower numbers, but do

not necessarily depend on every file with lower number.

Figure 2.7 shows the fan-in and fan-out histogram of basic example above in Figure 2.6.

There are no large fan in

Figure 2.7 — Sample desirable fun-in and fan-out sizes

36

There are no large fan outs

Chapter 2 - Analysis of System Structure

The histogram in Figure 2.7 indicates that there are no scores of fan-in or fan-out, which is

desirable from the perspective of good dependency structure.

2.2. Dependency Analysis Tool, DepAnal

In Chapter 3, we embark on a study of the structure of large systems, focusing on Mozilla,
Version 1.4.1. Before doing that, however, we will illustrate the structural ideas we have been
discussing in this chapter, by examining our own DepAnal tool — a system considerably simpler
than Mozilla - to help us interpret some of the ideas presented earlier in this chapter. To do that, we
discuss several aspects of its code structure and its design.

We analyzed our static type dependency analyzer, DepAnal, in which we know every line
of the code in detail. We would like to find out whether our analysis techniques are disclosing the
same level information. Moreover, can we get insight without reading source code? Shaded area

in Figure 2.8 shows the role of DepAnal in our analysis technique.

(2D-Drawing) Views

DepView 7Dependency» %“ —_— ;6
% -

Strong Components

StrongComponent
(Component Analysis)

,,,,,,,,,,,,,,,,,, erAna|,,,,,,,,,,,,,,,,,—FileDependency

—File Setp
(Type Analysis)

Internal Metrics .
i_» RiskCalculator | Risk
(Risk Analysis) —

Reusability I I I I I I

Figure 2.8 — Analyzing DepAnal itself.

We get insight both of mutual dependencies obtained from the dependency graph as strong
components, and on individual files. DepAnal has 30 source files, 14 files out of 30 are reused
files. We know our project well, which files are complex and hard to modify. However, we were
not sure about the order of high risk files, the size of the strong components and their interaction

with other files: The results we obtained, shown below in Figure 2.9, are encouraging. It

37

Chapter 2 - Analysis of System Structure

illustrates the applicability and helpfulness of the approach even for relatively small size software

projects.
Topological sort of the files e
I Show Dependency |25 ﬂl ™ Allowpopup W Fanln ¥ FanOut ¥ ExtDep [Molntemal Dep _Eﬁﬂ
<-Mos;;2<siteﬁendent IncludeMngr.h
. Grammar.cpp
regexpr2.h Grammar.h
regexpr2.cpp Scopelnfo.cpp
restack.h Scopelnfo.h
syntax2.h Collector.cpp
FILEINFO.CPP Collector.h
FILEINFO.H DepRecorder.cpp
NAV.CPP DepRecorder.h
NAV.H i
TOK.H DepFinder.cpp Least Dependent =
. DepFinder.h ==)
SEMLCPP Main.cpp
SEMIH reimpl2.h
Utilities.cpp syntax2.cpp
Utilities.h TOK.CPP
IncludeMngr.cpp Most Dependent ->

Figure 2.9 — DepAnal Ver 1.7.a’s internal dependency structure. Consists of 30 files

At Figure 2.9, we see DepAnal’s file level dependency structure, before seeing this picture,
generated by DepView, we were not aware that DepAnal has a strong component with size of 4
files, which are files developed specifically for DepAnal. For this small size project, the largest
strong component carries more than 25% of the developed source files in the project. This view
demonstrates a potential problem without using our developer knowledge of this project. Even
knowing our code well, we were not aware of the existence of this component and this dense
interaction between files.

Figure 2.10, below shows each dependency between two files, which are obtained after

expansion of topologically sorted strong components. The closer the dots to the diagonal is the

38

Chapter 2 - Analysis of System Structure

better the structure, indicating local communication, no deep call forward and no deep call

backward.

Depended on Library Files

L I SR SUI N &) Rao BN Ko el (o N an]

Dephnal Version 1.7 a

*

*

+ + +
+*

-

* *
+* *

*
* * +

*
LR R 4
* *

*

*
*
LR B B
*
+ + 4
+*
*
+

+

* * ¥ »

L B N R R B
LA R R K K K B 3
* *

* * »
*

Least Dependent ->

T T T T T T T T T

910111213 14151617 181920212223 24 2526 27 28 2930 31
Depending Library Files

T T T L T T L L

Figure 2.10 — Expansion of Strong Components - DepAnal Ver. 1.7.a

Topologically
Sorted Files

Most Dependent

1 TOK.CPP
2 syntax2.cpp
3 reimpl2.h
4 Main.cpp
5 DepFinder.h
6 DepFinder.cpp
7 DepRecorder.h
8 DepRecorder.cpp
9 Collector.h
10 Collector.cpp
11 Scopelnfo.h
12 Scopelnfo.cpp
13 Grammar.h
14 Grammar.cpp
15 IncludeMngr.h
16 IncludeMngr.cpp
17 Utilities.h
18 Utilities.cpp
19 SEMI.H
20 SEMI.CPP
21 TOK.H
22 NAV.H
23 NAV.CPP
24 FILEINFO.H
25 FILEINFO.CPP
26 syntax2.h
27 restack.h
28 regexpr2.cpp
29 regexpr2.h
30 ITest.h

Least Dependent

At Figure 2.10 above, we see strong components expanded into their individual files, each

dot represents a dependency relationship between two files. For any dot, the file vertically below it

(x) depends upon the file horizontally to its left, on the ordinate (y).

Any dot under the diagonal

indicates the existence of a strong component. Each rectangle represents the strong component as

shown in Figure 2.9.

One other important information Figure 2.10 reveals is the number of dots inside the

rectangles. The more dots (dependency relationship) the higher the risk. We show in section 4.1.8,

that as the dependency density increases, in a set of mutually dependent files, the system gets

closer to, or reaches, the point of unending changes.

39

Chapter 2 - Analysis of System Structure

We know the largest strong component in DepAnal consists of 4

files. In order that 4 files belongs to one strong component, we

1/0\2\ need at least 4 dependency lines among them. However, there

can be other dependencies between the members of a strong

component, as in the case of DepAnal’s strong component, which

\4 3 has 8 dependency lines as shown by the block in Figure 2.10.
\O/ There are twofold more (4-extra) dependencies between
Strong component with 4 files members of the files. This reduces the flexibility of the files for

change, as any change may induce other changes to occur.

Without the help of tools, it would be impossible to analyze large quantities of source files
in a timely manner and obtain accurate results manually. In order to overcome these limitations we
developed several tools to analyze source code and visualize the results to enhance our insights
about the project under examination.

Figure 2.11 shows fan-in histogram of DepAnal. Some of the files have high reuse, such
as Utilities.h/.cpp and Semi.h/.cpp. These files are providing common services needed by most of
the files in the system. As developers, we expect these files to have good implementation quality,
since change in those files requires testing of many files and has potential to cause cascading of

changes in depending files.

40

Chapter 2 - Analysis of System Structure

Fan-in Size

In Figure 2.12, we see the fan-out chart of DepAnal, some of the files use services of many
files in order to accomplish their jobs. For example, Main.cpp uses too many files to accomplish
its assigned task; it would be difficult to understand the reason those 14 files are needed. Some of
them have reasonable fan-out size. As stated earlier, large fan-out reduces comprehensibility of a
file. Depending on many files may cause frequent change in the file with large fan-out due to

changes in depending files. Additionally, in order to make sure no adverse effect transpire due to

Fan-in Chart of DepAnal

Collector.cpp
Collector.h

gacaoacaprQeccocoNIrarQecaAarQcocccocac
855550552 5555>52583x8%80a28g
CEoBOR g 220202300480 5628: &
S E8S0Z S EERPSE>2ZSHEOXFOESF5ED S E
2L2ow g E ° =S < =20 EX5S85308 s
SEogozWeld =g =Z W soE =23 PeLESR
umom_gmo O S n Q O 5 > = =
oN O g Wi o © 5 gn o) n
& %8 © 3= b7 -
8Du_ g
File Name

Figure 2.11 — Fan-in Chart of DepAnal Ver. 1.7.a

changes in depended files, frequent testing is unavoidable.

Fan-out Size

Fan Out Chart of DepAnal

JEENGEE R I i Y

O=2NWHAUIONOOO-=2NWA,O
|

Figure 2.12 — Fan-out Chart of DepAnal Ver. 1.7.a

41

H

H I .

(W HPHH]

(W HHHH]

(- M]

(N W |

| I E A A EE W]
acaocaocprTQCcQCccaaT L CcCcQCNT Q0T QO
8585855085853 85>8dd£8045848¥ 89
SO E Ve DEUL g2 To0L™ NT=0 s
88 E850ZEEPSE S22 53 ERESSHREXF O
8ocs5s0smes=g =% 39%¢gem £3°2 E£5
SOLooxy=-dgH oS o= 2Lo00m X 35
8 anN O s & T o o) QW »n

gregito 32 =3
8ou_ E
File Name

Chapter 2 - Analysis of System Structure
2.3. Analysis Applications

We have analyzed several open source projects. In order to accomplish this we provided
analysis tools capable of analyzing very large systems and characterizing their behavior so as to
make visible the web of dependencies that every large system possesses. These dependency
relationships have always been visible in the small — in local areas around one specific part of the
code base. However, dependencies are invisible in the large — far too complex for a human to
understand without tools. Our goal is the construction of a robust tool set that makes these
relationships visible in clear descriptive ways, with analysis code that is robust, able to handle very
large systems, and with a friendly enough user interface that researchers outside our group can use
them. We have used these tools to help us build and interpret risk models, file ranking, alpha
estimation, and reusability index. Furthermore, the analysis does not depend on semantic
understanding of large parts of the system. For the large systems we study, a single developer can
only understand a small part of the complete system.

Some of the major tools that we developed for analysis are shown in Table 2.1, below.

Tool Name Short Description

Dependency Analyzer, Finds dependencies between C/C++ source code
DepAnal

files based on static type analysis.

This is a user interface for all the developed tools to integrate the
DepAnalUI

management.

Extracts mutual dependency groups and their topological sorts by using
StrongComponent

the dependency information generated by DepAnal.

Analyses several internal metrics of software source file, such as each
Analyzer

function’s cyclomatic complexity, total line count.

Dependency Viewer, provides two dimensional (2D) interactive views
DepView

of dependency relationship file and strong component level.

42

Chapter 2 - Analysis of System Structure

Creates importance and test risk matrix by using dependency and
MatrixMaker

metric information.

Calculates the risk rate of files by using matrices generated by
RiskCalculator

MatrixMaker.

Logs each change record with brief info, cause, date, dependency and
Changel.ogger

metric information.

Table 2.1 — Selected developed tools for analysis

This tool set enables a software manager or developer to constantly monitor structural and
internal qualities of files. Unwanted dependencies can be spotted shortly after they occur, and the

software manager can request corrective action.

2.3.1 DepAnal

Dependency Analyzer, DepAnal is an automated file level dependency analyzer. It finds
dependencies among C/C++ source code files based on type, global function and global variable
invocations and declarations. It ignores include-based dependencies, as developers are
occasionally careless about the files they include. Unnecessary dependencies affect build
efficiency but do not affect design or compilation breakage due to change. All of generated data
are presented as direct dependencies. Hence, the transitive closures of the dependency graph are
not shown. Analysis is carried out this way because, for large systems, the transitive closure
becomes very dense and hard to interpret.

There is one main application file, DepAnal.exe, which finds dependencies between the
files by scanning through source codes in files. A window based user interface we generated to
manage DepAnal and accompanying analysis application, called Dependency Manager.
Dependency Manager organizes the order of the applications’ invocation. Some of the processes it

spawns are Analyzer.exe, which is generating metric information, about each source file, and

43

Chapter 2 - Analysis of System Structure

StrongCompAnal, which uses DepAnal’s output as input to find strong components (A group of
mutually depended files targeting a particular goal).

The plots and graphics, shown above were derived from a static dependency analysis using
DepAnal. The analyzer uses a production-based grammar analysis, greatly simplified from the
grammar required to specify the entire C++ language. The results of the analysis are used to build
a dependency graph for the analysis set, which is then processed to find strong components, and
prepare a topological sort, needed for some of our visualizations. Additionally, the output also used
during Product Risk analysis Reusability Index calculation.

The analysis finds dependencies based on the following model: file A depends on file B if;

1. A creates and/or uses an instance of a type declared or defined in B

2. Ais derived from a type declared or defined in B (inheritance)

3. A is using the value of a global variable declared and/or defined in B

4. A defines a non-constant global variable modified by B

5. A uses a global function declared or defined in B

6. A declares a type or global function defined in B

7. A defines a type or global function declared in B

8. A uses a template parameter declared in B

These rules intentionally do not acknowledge dependency of a base type on its derived types
even though it is possible that a derived type modifies protected data members of the base. Doing
so, we believe, would identify potentially many false-alarm dependencies in well designed systems.
It would be interesting to compare analyses of a major system with this assumption and with a

model in which the base is declared to depend on all derived types if it provides protected data.

2.3.1.1 Architectural View of Dependency Analyzer (DepAnal)

DepAnal’s goal is to find dependencies between source code files based on static type

analysis. Dependency relationships between the files are determined by the model described

44

Chapter 2 - Analysis of System Structure

above, as in [8][25][26][27] DepAnal makes three passes over each file in the project, as shown in
Figure 2.13.

There are three passes over the source code set. We can summarize the job of each passes as
following.

— First pass prepares source files for analysis,

— Second pass collects user-defined types, global functions and global variables,

— Third pass finds dependencies between source files by finding invocations of items

collected in second pass.

Source Files
Preprocessed combined source file

(appending content of all files

after removing system headers)
Output

h J
Collected items
(Types,
Global Functions,
p Global Objects)
reprocessed

files after removing 4—‘

system and user
headers

(types, global function, global object)
Find the invocations: file to items dependencies.
Resolve invoked item’ s implementation files
to obtain file to file dependencies

File to file dependencies

Figure 2.13 — DepAnal data flow diagram

End outputs shown in Figure 2.13 are dependency information between the source files

together with each files internal metrics.

45

Chapter 2 - Analysis of System Structure

C/C++
Source Code

i

Semi-Expresssion

Analyzer Collecting;
J definition and declartion of
types - functions - global objects

Tokenizer

) J

Figure 2.14 — Collecting data from source code

Figure 2.14 illustrates the process of collection of user-defined types, global functions and
global objects. We use the same process for collecting invocations

The internal architecture: The core task is to assemble useful information from collected
data in a representation that gives easily comprehended views of the current state of an analyzed
project. DepAnal’s outputs are all text based. Charts showing the system’s state of health are
prepared using Microsoft Excel.

The goal is to build a tool that can be used to constantly monitor evolution of the state of
large software systems and provide guidance about where detailed quality analysis and re-factoring
are needed.

DepAnal tool does not identify unused code. Its parser is not a full implementation of a
C++ recognizer, but rather an ad-hoc implementation of the rules described in section 2.3. We
have checked manually its results on modest size projects and run it many times on our own code,
as it evolved, and believe that the results are accurate, within the limitations described in this
paragraph.

We also developed two adjunct tools that extract additional information from the project.

2.3.2 Strong Component Analyzer:

StrongComp'® builds a dependency graph from the data provided by DepAnal and

analyzes its strong components, that is, sets of files that are mutually dependent as defined by

' The first implementation of this tool was implemented by Srinivas Neerudu, now with Microsoft in Redmond, Washington.

46

Chapter 2 - Analysis of System Structure

Lakos [58]. It then performs a topological sort of the strong components to show an ordered flow
based on dependency. Finally, it expands the strong components, within the sorted component
order, to arrive at a representation of all the files as well ordered as is possible when there are
mutual dependencies. This provides a candidate for testing order of the files that attempts to

minimize re-testing when latent defects are found and repaired.

2.3.3 Size and Complexity Analyzer:

Analyzer counts the number of lines of source code in each function and analyzes each
function’s cyclomatic complexity, measured by the number of regions enclosed by the control flow
graph of the function. Anal also evaluates the total line count and sum of the complexities of all of

the functions in each file.

2.3.4 DepView

All the results, obtained from running DepAnal on software projects are represented as
text, and interpreting these text files is almost as hard as reading source code. We felt the need of
another way of representation, which would disclose qualitative information about the system in an
easily understandable fashion. We developed the 2D dependency viewer, DepView, to obtain
comprehensible views of large software systems.

Dependency Viewer, DepView helps us to see dependencies between files and strong
components, it gives another insight about how densely parts of the component interconnect, using
its 2D graphical interface. DepView provides mainly two kinds of view; one is component wise
dependencies, which gives the big picture of project; another is file level dependencies, which is
much denser. However, with file wise we can focus on a file and visually see dependencies
between it and other files.

Each circle represents a strong component, and at the center of circle, there is a number,

which indicates how many files are parts of this strong component, Size of the bubble is

47

Chapter 2 - Analysis of System Structure

proportional to the number of files in strong component. We assume that a file itself is a single

component with size of one.

Figure 2.15 illustrates how well the project is packaged into modules.

™ DepView 1.4 - 2D Dependency Viewer
View

T Show Dependency |18 Draw | [Allowpopup [Fanin [FanOut [~ ExtDep [Holriemal Dep E

TOK.CPP SymtaxZopp rempiZh Win cpp Companentd

Componert? Component1
* Grammarh

Companents Companents

Companentd TOKH

. el ludehingr h :

Companent3
oh

Companent 10

Companentd

Component2

o ® syntax2 h
vmm’
v

ITesth

-\LE\NFD H
expr2 opp

oflecto

Ready

A

Figure 2.15 — DepView of DepAnal, components

and files

On the left, it shows DepAnal’s files and
strong components, it does not show
dependency information in this view. Even
though it does not show dependency lines,
it gives insights about strong components,
as size of bubble proportional to number of
files in strong component. The larger the

strong component, the harder to adapt to a

change, the harder to test.

Figure 2.16 illustrates dependency relationship of component #6. It can be easily seen how

many files are using the services of the component, and how many files are being used by the

component to accomplish its tasks.

= DepView 1.4 - 2D Dependency Viewer

Wiew

[~ Show Dependency 113 Diaw | I &llowpopup W Fanln W FanOut W EtDep [Molntemal Dep

Clear

On the right it shows dependencies
of Component 6, which consists of
two files, Collector.cpp/.h. This

is useful information to get more

detail about interaction among

Componentd

ap

source files.

Ready...

L

Figure 2.16 —DepView, dependencies of component 6

48

Chapter 2 - Analysis of System Structure

In addition, generating frequent DepView images enable us to monitor the evolution of

dependencies among source files and monitor growth of strong components. This information can

be used to help avoid excessive dependencies.
As summary:
- Visualize the static structure in one picture

- Visualize the web of dependencies

- Realize mutually depended files and size of the mutually depended files

- Reusability of the files in the system (if a file is a member of a large strong component or

depend, on transitively many files, it is not a good candidate for reuse)

- Whom a file provides services

- From whom a file gets services

2.3.5 Dependency Analyzer User Interface

Dependency Analyzer is console application, which needs “settings.txt” to acquire
information about the project to be analyzed. To make use of DepAnal more user-friendly
graphical user interface developed which helps managing settings.txt and execution order of

developed analysis tools. There are three groups of information, titled Project Settings,

Environmental Settings and Applications as shown in Figure 2.17.

M Dependency Analyzer Manager Ver 1.6

File Tools Help

Envirohmental Settings I Applications 1

Settings File Mame

[settings.tat

Root Folder

Dulput Folder

WV LUse Input File

Input File Name for Full Path Praject's Source Files

|E:\M uratsFiles\PhD StudiessPapers\ChangelmpactF actorE stimation\U sedGraphic

Shared Path of Source Files

|ctolEstimalion\UsedGlaphics\FileDepAnaIys\s\FileDepFi\esD nlyEvalvedFiles. bt

|C:\M uratsFiles\PhDStudies Codes\FileDep

Consider During Dependency Calculation
Use preprocessed files

¥ Global Objects I with no includes during
averall analysis
¥ Types
|gnore in-scope |nchuded
¥ Global Functions M TypelObifFunc
Job Manager
Save Save s Generate Metrics

ﬂ v Run Preprocessor
Exhia Processing Oplion
J I Replace Missing Headers
3y Includes Already

[~ Remover (Defaull
Unchecked)

e

Cansider Duplicate
I Global Objects

[~ Types

[Global Functions

2D Dependencies ‘ m

Settings saved

49

Chapter 2 - Analysis of System Structure

Figure 2.17 — Settings for project to be analyzed and dependency options

Project settings contain the information regarding analysis project at hand, such as source
directory, output directory, which dependency types are to be considered. Environmental settings
contain additional preprocessor options specific to analysis project at hand, include and library path

information. Applications are the developed tools for the analysis.

2.3.6 Change Logger

Change logger is used to collect detailed change, dependency and metric information in a
database. All the information is dated to monitor evolution of change impact factor (details are in
Chapter 4 and Chapter 5). Figure 2.18 shows the screenshot of Change Logger application, which

records occurred change information together with reason of the change, if it is a consequential.

[Change Logger Ver 1.8 EEX

Settings Show Final Alphas Alpha Evolution

Change Logger

—Change Info

—No Fils Nams ——————————————— ~ChangsTyps —————————————————
DepRecorderh - Global Glbal
’V ’1 Tee © Fincion © Data | Ot

~Comments

‘addFuncTquedFuncTabls func dec added due to recard nvekedFunctions 1.5.¢ DepFin.cpp

- [Change Number in Maintenance History Change Date
¥ Do ’7|1 22 —‘ ’71/7/2005

FILE: DepFinder cpp - VER: 1.6.c - DATE: 1/6/2006 is caused by: 386, Change took place in' DepRecorderh
VER:1.2.3 DATE1/7/2006

Change History

) 4| [Fiename DepFinder.cpp
~ |Twpeoichange :Tpe Coused by: 365
390 o |Comments ecordinvokedFunctions func def added

v

Figure 2.18 — Change Logger, records change information for change-impact-factor (CIF)
estimations

Each change carries the following details: File name where change occurred, what is the
change about, what other change drive this change, change date, change number, type of change.
Additionally, while recording each change entire project is analyzed by DepAnal, current
dependency and metric information also recorded into database. It also calculates the alpha values

within given any two dates.

50

Chapter 2 - Analysis of System Structure

2.3.7 Matrix Maker

Matrix Maker is a C# application using DepAnal’s output to create matrixes for risk
analysis in Chapter 4. It generates importance, testability matrixes and their corresponding results
arrays, accepts dependency and internal metric information to create matrixes. The outputs of

Matrix Maker are used by MatLab Risk Calculator application to find out Risk values of each

source files.

Figure 2.19 shows the screenshot of Matrix Maker application, which generates text based

matrix files to be used during product risk calculation

To simulate the effect of interface insertions, it provides an option to use special alpha

value for the files, which are used by certain number of files. This feature is used mainly for

[matrix Maker v4.0 E]E]
Fan in file name, generated by Depdnal
|Fan\nFanachFiIE ini _
Fan out file name, generated by Depdinal
|FanDutFmE achFile ini
Metiic file, used for Beta value calculation, generated by DA
|ManyMetrics-EE-LD C-Etc.ini
Alpha
01

[Simulate Interface

Simulate Interface

Alpha for Interface Files 0ol
Far-in size for interface files 11

Ready...

Figure 2.19 — Matrix Maker — creates matrix for risk analysis

simulating constructive change covered in Chapter 6.

Moreover, Table 2.2 shows other small size handy applications for analysis.

Finds average change occurred to files based on metric
Averager

sizes.
CleanFiles Removes non C/C++ files from list of files to be analyzed.
DirWalker Walks recursively directories and grabs all source files

51

Chapter 2 - Analysis of System Structure

Going back from Mozilla 1.4.1 libraries to previous version

FindExistingFiles
of Mozilla to collect if the same file used in those versions.

It merges DepAnal generated metrics with change history

MergeMetricsWithHistory
by release.

If same files exist in different folder it identifies and prevent

RemoveDupFiles
same file to be processed by DepAnal several times

Table 2.2 — Helper tools for analysis

52

Chapter 2 - Analysis of System Structure

2.4. Summary

Without a detailed knowledge of the entire code base useful information about significant
problems can be identified. Screening static structure provides both quantitative and qualitative
information regarding structural problems, showing how pieces are interconnected with each other.

In order to get insight about a software project, assistance of analysis tools is a great help.
Especially, in the case of large software. Analysis tools provide quick, accurate information
directly from source code, which carries always up-to-date information. Therefore, we have
developed and applied these applications. Moreover, we analyzed the entire Windows build of the
Mozilla project, version 1.4.1, released in October 2003. There are 6193 files in that build, which
means that this build is indeed a large project, and we show in our analyses, in Chapter 3, is subject

to many serious structural problems.

53

Chapter 3 — Empirical Study

Chapter 3

Empirical Study

In this chapter, we focus on analysis based on static type dependency between source code
files. All of our data are presented as direct dependencies. That is, we do not show the transitive
closures of the dependency graph. Analysis is carried out this way because, for large systems, the
transitive closure becomes very dense and hard to interpret. Note that we do account for these
transitive dependency relationships in our Product Risk Model, discussed in Chapter 4. Our
primary interest is evaluating the quality of a system’s structure and implications of the structure
for project management, maintenance, and testing. We present and interpret results of an empirical
study of C/C++ projects and how to asses the quality of software systems from analysis of their

source code.

3.1. Empirical Study of the Open-Source Mozilla Project

All of our findings are based on a static dependency model outlined in the Chapter 1 and
Chapter 2. We present several different views of the dependency data and draw some conclusions
about what such data can disclose concerning a project’s implementation.

54

Chapter 3 — Empirical Study

Mozilla is a very large project developing browser tools for many different platforms. It
consists of many thousands of files, and so is a typical example of the large systems we wish to
explore [12]. The Windows-based version of this software was chosen for analysis, as we are
familiar with that as a programming environment and have all the tools to execute the various
builds required for this study. We have examined the entire Windows build as well as several
constituent libraries and adjunct tools, 6193 files in total, generating builds for each before
proceeding with our analysis.

The analysis results are presented for several data sets, in five views:
1. Fan-in: the number of files that depend on a file, for each file in the analysis set, and
related fan-in density histogram.
2. Fan-out: the number of files that a file depends on, for each file in the analysis set and
related fan-out density histogram.
3. Strong components: groups of files that are all mutually dependent and related strong
component density histogram.
4. Topological sort of the strong components.
5. Expansion of all strong components within the sorted data.
We examine each of these views and interpret their data with respect to measures of project
implementation strengths and weaknesses they reveal. Type dependency fan-in and fan-out have
been discussed before [13][14][15] with results presented similar to those shown here. We focus

explicitly on the structural aspect of program implementation at the file level.

3.1.1 Mozilla Data Collection

We downloaded version 1.4.1 of the Mozilla Win32 configuration [16] [12]. This included
the entire build, which makes many executables and libraries. We were able to build all the

libraries and executables in about a week’s effort, using the information provided on

55

Chapter 3 — Empirical Study

www.mozilla.org. This involved making a few recommended changes to makefiles', setting
environment variables, and settings in for the Visual Studio C++ compiler, used for all the builds
for this empirical study.

Note that our analysis pertains only to the Mozilla source code, but we wanted to ensure
that we analyzed exactly those files used to create individual executables and libraries. It took
some time to understand the required directory structure, make modifications to that to suit our
analysis, and then make trial builds, but the process went surprisingly smoothly.

We built some simple parsers to find all the files included in a specific build, based on
compiler output. This included all common code and header files. The statistics for this process

are shown in Table 3.1.

Number of executables: 94
Number of dynamic link libraries: 111
Number of static libraries: 303

Number of source files for Win32, v 1.4.1 6193

Table 3.1 — Summary of generated outputs and files from Mozilla built

The information provided on the Mozilla web site was very well prepared, easy to digest,
considering the size of this large project, and straightforward to use. We chose this project because
of the quality of its tools and the fact that it has a very large code base.

The analysis tools developed for this research were able to digest the entire code base of
6193 files and perform all the analyzes in approximately 4 hours after configuring the settings on a
PC with 1 Gigabyte of random access memory, running Windows XP Professional, with Pentium

IV Processor.

' A configuration file used by the make utility defining the location of source files, how they will be compiled and linked to create the
executable program. www.mccabe.com/iq_research_iqgloss.htm

56

Chapter 3 — Empirical Study
3.1.2 Fan-in Data Extracted from Mozilla GKGFX Library

Figure 3.1, below, shows fan-in for each of the files in the Mozilla GKGFX library. This
plot analyzes all of the dependencies on each of the 598 source code files in the library from within
the library. When we analyze the entire build, many of these fan-in numbers become larger.

Fan-in is the number of files that depend on a file. A file with large fan-in is desirable from
the perspective that it demonstrates high reuse of the types defined in that file. For instance, we
would expect to see high fan-in for some utility library routines. However, should that file have
less than desirable quality attributes one would expect to see a high probability of change, not only
for that file, but also for many of the large number of files that depend upon it [17].

Figure 3.1 and Figure 3.2 illustrate histogram of fan-in value and its corresponding density

values respectively.

N
IN]
=]
N
N}
S}
7
O

S
- SV
200 *4‘ WmFan In Size 200 74 @ Fan In Size
180 A 180
160 - 160
0140 9 140
& ® 120 o
0120 L cos
_2100 % 100 S
© w ©
“ 80 80 IN
60
°0 NOIBS
40 —OTN
0 OO ORRIRTVY S
2 | |‘ ' Ii ST ‘°°°i’||||IIII|||||||
nlfl
0 Ll L 1L ‘ 1. n Ll g l“‘“ U\ I 0+ ‘cn‘m‘r\‘ ‘m‘m‘o‘m‘«—‘m‘ﬁ-‘w‘m ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘
oOonmN

Library Source Code Files Number of Files with Specmed Fan-In

Figure 3.1 — Mozilla GKGFX Library Fan-in Figure 3.2 — Fan-in Histogram for GKGFX
Library

There are scores of files, shown in Figure 3.1, with very large fan-in. All of these should
be important targets for quality analysis, in order to effectively manage the change process during
development. High fan-in coupled with low quality creates a high probability for consequential™
change [18]. We have also looked at the wealth of change data provided by Mozilla’s associated

change data log to understand this process better.

» By consequential change we mean a change induced in a depending file due to a change in the depended upon file.

57

Chapter 3 — Empirical Study

In Figure 3.2 we show fan-in density for the same library — simply a histogram for the data
in Figure 3.1. This plot shows that some of the source code files have high fan-in, characteristic of
a widely used library. A library with this profile should be given high priority for analysis by the
test team and quality analysts.

We explored the relationship between high fan-in files and high risk®' files. We analyzed
Mozilla’s GKGFX Library, and selected 100 files with highest risk value and 100 files with highest
fan-in value. And matched these two groups, asking the questions, how many of the highest fan-in
files are common with highest risk files. We observed that 45 out of 100 highest risk files are also
in the highest fan-in files, and 5 out of top 10 highest risk files are again in the highest fan-in files.

This showed us high fan-in files are likely to have high risk values.

3.1.3 Fan-out Data Extracted from the Mozilla GKGFX Library

Fan-out for the GKGFX library is shown in Figure 3.3, below. Fan-out is the number of
files that a file depends on. A file with large fan-out may be symptomatic of a weak abstraction.
We expect that a source file may carry out its assigned tasks with the aid of a few trusted delegates
and perhaps a few references to commonly used utilities. However, depending on scores of other
files may indicate a lack of cohesion — when the file is taking responsibilities for many, perhaps
only loosely related, tasks and needs the services of many other files to manage that.

Figure 3.3 and Figure 3.4 illustrate histogram of fan-out values and its corresponding

density values respectively.

2! Risk is defined in Chapter 4

58

Chapter 3 — Empirical Study

60 4‘ EFan Out Size 8
60 +-{_mFan Out Size
50 ?
50 ¥
o 240 ©
@ 40 4
1 Q30 &
£ 30 28 p
m cees
o=%n
20 10 — hal
S
10 “ | I L “ | I\.‘H |" | . 0:‘.“;i|||||| LI
BEINETRECTLO T T oML - s
0 - Number of Files with Specified Fan-Out
Library Source Code Files
Figure 3.3 — Mozilla GKGFX Library Fan- Figure 3.4 — Fan-out Histogram for GKGFX
out Library

Figure 3.4 shows a Fan-out histogram for the data in Figure 3.3. There are a significant
number of files with large fan-out. If one follows the classic test model, testing code that only
depends on already tested code, this profile suggests difficulty scheduling testing for this library.
Automated test schedule planning tools can provide significant help for this, but, we show below
that there may still be persistent problems creating a satisfactory test sequence for libraries with
many high fan-out files

Also we explored the relationship between high fan-out files and high risk files. We
analyzed Mozilla’s GKGFX Library, and selected 100 files with highest risk value and 100 files
with highest fan-out value. We matched these two groups, observing that 71 out of 100 highest risk
files are also in the highest fan-out files, and 7 out of top 10 highest risk files are again in the
highest fan-out files. This showed us high fan-out files are likely to have high risk values as similar

to high fan-in. And only 22 files are common between highest fan-in and fan-out files out of 100.

3.1.4 Strong Components in the Mozilla GKGFX Library

A strong component of a libraries dependency graph is a set of source code files that are
mutually dependent. Any given file from a strong component depends, either directly or

indirectly* , on every other file in the component. There can be no complete dependency ordering

2 Type-based dependency is a transitive relationship. For reasons discussed earlier, we chose to show only direct dependencies.

59

Chapter 3 — Empirical Study

within a strong component, so there is no way to prepare a classic testing schedule based on testing
only code that depends on already tested code. Essentially the strong component must be treated as
a unit. The larger strong components become, the more difficult it is to adequately test.

Figure 3.5 shows a strong component histogram for the GKGFX library. There are many
strong components of modest size, and one huge component, consisting of 60 files. Circles are in
topological sorted order; the order given is the best we can achieve for testing. Each file or strong
component is drawn from upper left corner (most dependent) to bottom right corner (most
independent). Above files depend only on files to their right or files below to them, but do not
necessarily depend on every file on its right or below. To save space on the screen when we draw a
small component after a large strong component we follow the following simple rule. If there is a
space, we draw just next to large component starting first available space closer to top. If there is
no space at its right, we start at top left most available space to draw our next component or file.
Therefore, to find out whether a circle is above or below, just compare upper left corners of the
bounding box containing the circle.

The dependency coupling that forms strong components may be due to the use of non-
constant global data [19], to callbacks that provide notifications to a caller distant in the
dependency tree, or to mutual dependencies on types defined across the strong component.
Whatever the source, they indicate problems with testing and possibly with change management,

due to consequential changes to fix latent errors or performance problems [18].

60

Chapter 3 — Empirical Study

(¥ DepView 1.4 - 20 Dependency Viewer

70 I~ ShowDependsrcy |7 Draw | I Alowpopup I~ Fanin I~ FanOu [~ EwDep [~ loiersi0op Gl
mmmmmmm
0 veovwewewew gveoewwewwwwwee
eo——(= Component Size VOV IVVIVVWWwe VoYYV IVTQGVVe
VOPUPPPPPUGUUUe YIIDDLLLRLy Bue

vew w vewwe
veweww e
mmmmmmm

™
bl 3 -

ol LYY, Yo YveeVeeweegotryyw
- SVeSe vv---v-@"'&.. ™ -6"
™ et T bl Bt

Strong Component Size

- ve TeeVee Yy

vevee v v -
vyow e e yye
s

s
-...'-'v----'..'-- R
vew . weew

vevewew Yy veveeyy -
v Yeoou ve
367 51 2 3 1 1 1
Number of Files with Specified Size

Figure 3.5~ Mozilla GKG.FX Library Strong Figure 3.6 — Mozilla GKGFX Library Strong
Components Histogram

Components by DepView

e
veoe ¥ oo Y. ...

Another issue that this plot illustrates is the lack of well defined modules. The dependency
model we use for this analysis recognizes mutual dependencies between declaration and
implementation of a type, global object, or global function. So we would expect, for non template-
based source code, to see most files appearing in strong components of size two, or a few more
perhaps, reflecting the design of a module with declarations of all types provided by the module in
a header file and implementations in a corresponding implementation file, ideally of the same
name. Here, we see that most of the files in this library do not fall into the classic module
structure.

Figure 3.7 focuses in dependencies among strong component for the two of the largest
components. If file dependencies were shown, we would see many dense lines than illustrated in

Figure 3.7.

61

Chapter 3 — Empirical Study

Iy — maE Each circle represents a strong

component; number on the circle shows
how many files are in that strong
component. In the figure, the largest
strong component consist of 60 files,
lines from center of the circle show fan-

outs and lines coming to the left corner of

4 the circle show fan-ins to this component.

Figure 3.7 — Dependencies of only two of the largest strong components with other components.

If strong component size gets larger, it reduces the ability to adapt to new changes, since
change may give rise to further, consequential, unexpected changes. This reduces the gain from
change. If the component gets large enough, the software library may reach the point where
change is no longer feasible, due to testing effort and consequential change. This is how an un-
maintainable legacy system is born.

As we stated above, we only show external dependencies among components, besides this
there may be a large number of dependencies between the members of a component.

We can draw the following conclusions about this library from Figure 3.8 and Figure 3.9.
There are dense dependencies not only within the strong components, but also among the strong
components. This is an indication of high coupling between many of the GKGFX files. High
coupling naturally causes mutually dependent components, which are undesirable, because then,
there is no effective file order for testing, as discussed in Chapter 2. Presence of the very large set
of mutually dependent files, defined by this strong component, indicates difficulties in carrying out
a classic testing program for this library. The figures above show that many files use many of other
files to accomplish their tasks, this makes it difficult to understand their functionality.

Consequently, it is harder to test and maintain those files than files accomplishing their task with

62

Chapter 3 — Empirical Study

the help of few other files. Additionally, due to dense dependencies making changes and tracking

the effect of those changes is difficult, therefore extensibility (new feature addition) degrades.

Component5?

e
I~ StowDeprdency [T 1o | I lowpopup 9 Eain 9 Fon0u 7 4 Dep I~ NotiraiDep

M@ oooreoerbipene

f

Ress.

Figure 3.9 — Internal dependencies of
Figure 3.8 — Internal - External dependencies of Component #57 consist of 60 files.

Component #57 consist of 60 files.

If we focus on the internal dependencies between the members of strong component 57, we
see that files are densely connected to each other as illustrated in Figure 3.8. If we add to the view
the external fan-out dependencies of strong component as well, it will reveal that if any other
depended-upon component changes; Component 57 also needs to be tested to make sure

component 57 still performs according to its requirements. This view is shown in Figure 3.10.

% DepView 1.4 - 2D Dependency Viewer
Vow
I~ Show Dependency |7 Draw | I~ Alowpopup ™ Fanin I~ FanOut M ExtDep I~ NolntemalDep Clear

Figure 3.10 — External dependencies to Component 57

63

Chapter 3 — Empirical Study

In GKGFX, looking at intermediate analysis results of DepAnal, we find there are only 15
files with template type definitions, but observe that in Figure 3.5 there are more than 300
components with only a single file. Some of these may be test drivers, but only 11 files have main
functions, so a quality analysis would conclude that module definitions need attention for this
library.

In Figure 3.11, we see Mozilla GKGFX library. As earlier stated, that dimension of the
circle is proportional to size of the strong component. Component #41 is the second largest strong
component with 45 source files. In the figure, it shows dependencies (Fan-out) of one of the files in
that component. As we see, it depends on not only the files inside the associated strong component
but also the files, which belong to other strong components. If any change occurs to depended files
or depended components, this file needs to be tested to make sure, introduced change does not have

an effect on the functionality of that file.

In this figure, smallest circles represent
individual source files; others are strong

components, which are sets of mutually

B DepView 1.4 - 2D Dependency Viewer.

view
I™ ShowDependercy |7 Draw | I Alowpop up ¥ Fanin ¥ FanOut ¥ EDep [~ NolntemalDep Clear
.‘"."".‘"..‘..‘"-""-‘""‘H-'

::::::::;‘:’;;‘;::::::::::::::: The number at the center of each circle

PP PVIY L epeee YOVIPIIOLINEG @
VIV PU U e eee?Y PYVIIVEeRe v o)
ettt L L L L LTSt P ntintintutietintind,, P indicates the size of a strong component

dependent files.

(number of files).

oy vo ooy A line between circles shows

veweovew dependency among files.

Two possible navigation levels exist in

DepView. One is focusing on strong
components; the other is focusing on

individual files.

Figure 3.11 — A strong component member file’ s fan-out to other files in GKGFX Library

64

Chapter 3 — Empirical Study

In Figure 3.9, above we see the internal dependency relations within the component #57;
our risk analysis, discussed in Chapter 4, shows this component is responsible for a major part of
test risk for GKGFX.

Note that we have studied many of the libraries contained in the Mozilla project, as well as
analyzed the entire Windows build of Mozilla, version 1.4.1. The results we obtain from all of the
library parts and the whole project are very similar to those we find for GKGFX. We cite GKGFX

often, because it is, in fact, representative of the project as a whole. (See Figure 3.14)

3.1.5 Topologically Sorted Dependencies for Mozilla’s GKGFX Library

As mentioned earlier in this section, a classic testing strategy organizes source files into a
topologically sorted dependency order, starting with files that depend on no other. We test those
and continue by testing files depending only on previously tested files. This is not possible in the
presence of strong components. However, we can condense all files in each of the strong
components, and provide a topologically sorted view of the components, as in Figure 3.12, below.

This provides us with a testing schedule that is as close as we can get to a classic test order.

450 To interpret this diagram,
SBIBNBUVE & o0 'a.“p.‘gw
uu.&o........ W e ¢ ‘mmsoommnn oo :] .’0‘ e o .0.93 Select any mark on the plOt
. 350 L . - $o* s 4 g .0

g— w.s’?'o.... g . . 2,.‘0‘ DR
G300 | Wt v “ . i KA For that mark, the strong
c -, 3 2 AP *es
2250 o .t 3=’ : .
- * . o component vertically below it,
S 200 - : .
5 . :
2150 |, bo on the abscissa (x), depends
Q.
[¢ . >
(=} Se Bo !"'

100 7= o upon the strong component

. ’.
501 ¢
o Ls horizontally to its left, on the
0 50 100 150 200 250 300 350 400 450 _
Depending Library Strong Component ordinate.

Figure 3.12 — Topologically Sorted Strong Components before Expanding

65

Chapter 3 — Empirical Study

Because all the elements of this diagram are strong components™ their dependency graph
can be topologically sorted — we have condensed away all of the cycles within that graph. This is
apparent from the diagram, as all elements, except the ones lying on the abscissa®, are all above
the diagonal. Any file depends only on the files indexed by points in the diagram vertically above
it. Therefore, all components depend only upon files to their right in this order®.

The dense horizontal lines represent components with high fan-in. Each of the many
distinct abscissa values depends on the corresponding single strong component on the ordinate.
Similarly, a dense vertical line represents a strong component with high fan-out. The single strong
component on the abscissa depends on the many unique corresponding strong components on the
ordinate. Thus, structural problems for the library, as a whole, are evident in this diagram.

In Figure 3.13, we show the data from Figure 3.12, with all of the strong components
expanded into their individual files. There, of course, will no longer be a topological order
throughout, because individual files from a strong component cannot be put into sorted order, due
to their circular dependency relationships.

Approximately half the files in this library (Figure 3.13) cannot be put into a classic testing
sequence. This indicates a high probability of repeatedly testing a given file.

The top row shows a utility file, since many files depend on it. These kinds of files increase
reuse, however files with high fan-in have low changeability, because they are being used by many
others. If any change is made, the developer needs to make sure that the new change does not
introduce any breakage to all these depending files, which increases testing effort.

High-fan out files use many other files to accomplish their defined tasks. This reduces the
comprehensibility of the file and makes the job of the developer harder because interpretation and
change now involve many files. Additionally it reduces reusability, since in order to reuse one file,

developers have to include depended files int