
CSE775 – Distributed Objects Spring 2014

Project #2a – Tiny HTTP Client and Server
Version 1.1

Purpose:
Distributed systems communicate between machines using a protocol implemented on top of sockets. Many different
protocols have been defined and used, but in this project we will focus on the HTTP1 protocol. That consists of messages
composed of a message header with lines of text representing a command or response and optional header lines describing
the message contents and appropriate processing via attributes. The message may also contain a body that may contain
either text or binary data. The body length in bytes is given by a length attribute.

The intent of this project is to build HttpClient and HttpServer components, for both Windows and Linux, using sockets that
enable the passing of HTTP messages between processes and machines. Note that the application could be a web server
returning pages to be view in a browser, but will often be used in some other distributed application. One goal of this
project is to build the smallest and simplest code possible so that these components can be included in other software to
manage all of its communication activities.

As part of this project you will prepare and deliver three presentations. The first describes the technologies you are using
and gives a brief description of the application you will implement. The second presents several probing projects that
illustrate how the technology works. Finally, the third presentation shows your design, implementation, and demonstrates
your project’s capabilities.

Requirements:
For your HttpProcessing project you:

1. shall use standard C++ and the standard library, compile and link from the command line, using g++ within the
NetBeans or Eclipse IDE and Visual C++ in the Visual Studio IDE.

2. shall develop an HttpServer, based on sockets, using the HTTP 1.0 protocol2. The server shall accept a function or
functor that defines its response to the standard HTTP request message types: GET, POST, PUT, DELETE, and HEAD.
That may be a message of type: 2xx success, 3xx redirection, 4xx not found, but may be something else, appropriate
for a specific application. The message may have custom header lines that provide application specific details needed
for server processing.

3. shall develop an HttpClient, also based on sockets, using the HTTP 1.0 protocol. This does not require you to build a
browser. The HttpClient is simply responsible for sending an HTTP message to a specified URL. It should provide
support for forming HTTP messages, perhaps via a lower level Message package.

4. Traditional HTTP clients always expect a response, usually consisting of a status message. Your client should normally
do that, but shall also support a Message attribute of “OneWay” that indicates the HttpServer should not send a reply
and the HttpClient will not wait for a reply.

5. shall develop a socket package that supports both ip4 and ip63. This will be used by both the HttpClient and
HttpServer.

6. shall provide one or more client and server applications and/or peer-to-peer applications that use the HttpClient and
HttpServer for communications between processes and machines. The nature of these applications is up to you, but
should be interesting and illustrate that you meet the requirements of this statement.

7. The socket packages shall be developed for both Linux and Windows, providing the same external interfaces in both
environments. The HttpClient and HttpServer code should use either of the socket packages and otherwise be identical
for both environments.

1 http://www.jmarshal.com/easy/http
2 http://en.wikipedia.org/wiki/HTTP, http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
3 http://beej.us/guide/bgnet/

http://www.jmarshal.com/easy/http
http://en.wikipedia.org/wiki/HTTP
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://beej.us/guide/bgnet/

CSE775 – Distributed Objects Spring 2014

You will find it helpful to look at the Man pages for System Calls on your Linux system. Those describe the semantics of
each call and the header files you will need to include.

