
ASP.NET Security

Scott Guthrie

ASP.NET Team

Microsoft Corporation

Agenda

 Overview

 ASP.NET Security Concepts

 Process Identity

 Authentication

 Authorization

 Role-Based Security

 Encryption

 Defending against Common Web Hacks

 Client Side Script Injection Attacks

 SQL Injection Attacks

ASP.NET Security Concepts

 Process Identity

 NT Account server code runs under

 Authentication

 Identifying username identity of a client

 Authorization

 Controlling access of an identified user

 Role Based Security

 Organizing identities into custom groups and
controlling access by those groups

 Encryption

 Protecting traffic between server and client

Process Identity

Process Identity

 Process Identity refers to the Windows Account
that your server code is running under

 “ASPNET” account default on Win2000 and XP

 “Network Service” account default under Win2003

 Recommendation:

 Give process account as few permissions as
possible (ex: ASP.NET can’t by default write to files)

 Strongly recommend keeping the out of the box
process default process identity unless you have a
very good reason to change it

Setting Process Identity

 ASP.NET on Win 2003 enables per-application
process identities (configured via app pools)

 Each application can run under unique account

 Easily configured via IIS MMC Admin Tool

 ASP.NET on Win 2000 and Win XP enables per-
machine process identity (shared for all apps)

 Can enable per application impersonated identity –
but worked process identity shared for all apps

 Process account configured in machine.config file

 ASPNET_SetReg.exe allows the machine.config
process username/password to be encrypted
(new feature with ASP.NET V1.1)

Authentication

Authentication

 Authentication is the process of identifying
and verifying “who is” a visiting browser

 Example: REDMOND\scottgu

 Example: scottgu@microsoft.com

 Example: puid:8934839938439839843

 Three built-in authentication options:

 Windows Authentication

 Forms Based (Cookie) Authentication

 Microsoft Passport Authentication

 You can create your own modules for custom
authentication approaches

mailto:scottgu@microsoft.com

Authentication Code

 Application security code the same
regardless of authentication mode used

 “User” component provides same OM

 “Request.IsAuthenticated” property

‘ Output custom welcome message to user

If (Request.IsAuthenticated = true) Then

WelcomeMsg.Text = “Hi “ & User.Identity.Name

End If

…….

<asp:label id=“WelcomeMsg” runat=server/>

Windows Authentication

 Authenticates usernames/passwords
against NT SAM or Active Directory

 Ideal for Intranet security scenarios

 Credential resolution handled directly
by browser/server

 NTLM (under the covers)

 Basic/Digest dialog pop-up

 User.Identity.Name returns NT account:

 DOMAIN\username: REDMOND\scottgu

Windows Authentication

 Enable windows authentication by
placing web.config file in app root:

<!– Application’s Root Web.Config File -->

<configuration>

<system.web>

<authentication mode=“Windows”/>

</system.web>

</configuration>

Windows Authentication
Demo

Forms Authentication

 Utilizes html based sign-in login form to
prompt users for username/password

 Login page UI completely customizable

 Username/password store flexibility

 Can be stored anywhere, including database

 Ideal for Internet scenarios

 Works with any browser and any OS

 Doesn’t require any NT accounts on server

How Forms Authentication Works

Web Browser

1

1. HTTP GET securepage.aspx

2

2. HTTP 302 Redirect

Location: login.aspx

3

3. HTTPS POST login.aspx

<form data containing credentials>

5

5. HTTP 200 Status OK

Set-Cookie: .ASPXAUTH Auth Ticket

6

6. HTTP GET securepage.aspx

Cookie: .ASPXAUTH Auth Ticket

4

4. App

authentication

IIS/

ASP.NET

Database

Implementing Forms Auth

 Developer Steps:

 1) Configure Web.Config for Forms auth

 2) Write your Login page

 3) Implement password check in login page

Forms Auth Web.Config
<configuration>

<system.web>

<authentication mode=“Forms”>

<forms name=“.MyAppCookieName”

loginUrl=“login.aspx”

protection=“all”

timeout=“30”

requireSSL=“false”

slidingExpiration=“true”

path=“/” />

</authentication>

</system.web>

</configuration>

Forms Auth Web.Config
 Consistent machine keys must be set

for web farm scenarios

<configuration>

<system.web>

<machineKey validationKey=“autogenerate”

decryptionKey=“autogenerate”

validation=“SHA1” />

<!– Validation = [SHA1|MD5|3DES] -->

</system.web>

</configuration>

Writing A Login Page

 1) Provide your Custom HTML UI

 Typically have textboxes + checkboxes

 2) Login button event handler

 Validate username/password however you
want (database call, AD call, etc)

 3) Call ASP.NET APIs to:

 Issue authentication cookie

 Redirect to original URL

FormsAuthentication Class

 RedirectFromLoginPage Method

 After authentication, redirects back to
original request URL

 GetAuthCookie Method

 Retrieves the authentication cookie
(doesn’t add it to the outgoing response)

 SetAuthCookie Method

 Appends the authentication cookie to
the outgoing response (no redirect)

Forms
Authentication Demo

.NET Passport Authentication

 Single sign-in across member sites

 No separate usernames/passwords required

 Large installed based: 165 million users today

 Built-in support within Windows XP

 Ideal for Internet security scenarios

 Integrated into ASP.NET authentication

 Requires Passport SDK installation

 More details at http://www.passport.com

Custom Web Authentication

 Application.AuthenticateRequest event

 Implemented in Global.asax or

 Http Module (implement IHttpModule)

 Scenarios:

 Custom SOAP authentication

 Non-cookie forms auth for mobile devices

 Customize forms authentication

Authorization

Authorization Strategies

 1) Windows Security & ACLs

 ACLs checked for Windows authentication

 Independent of impersonation

 2) URL Authorization

 Imperative “allow” or “deny” tags

 Supports non-Windows accounts

 Easy XCopy Deployment Solution

 3) Custom Authorization

 Role your own (database calls, etc)

Using URL Authorization

 Example: deny user “fred”, allow users
“scott” and “mary”

<configuration>

<system.web>

<authorization>

<deny users=“fred”/>

<allow users=“scott”/>

<allow users=“mary”/>

</authorization>

</system.web>

</configuration>

Using URL Authorization

 Example: deny user “fred”, allow all other users

<configuration>

<system.web>

<authorization>

<deny users=“fred”/>

<allow users=“*”/>

</authorization>

</system.web>

</configuration>

Using URL Authorization

 Example: deny anonymous users (force
authentication to take place)

<configuration>

<system.web>

<authorization>

<deny users=“?”/>

<allow users=“*”/>

</authorization>

</system.web>

</configuration>

Using URL Authorization

 Example: force authentication only on the
Checkout.aspx page

<configuration>

<location path=“Checkout.aspx”>

<system.web>

<authorization>

<deny users=“?”/>

<allow users=“*”/>

</authorization>

</system.web>

</location>

</configuration>

URL Authorization Demos

Custom Web Authorization

 Application.AuthorizeRequest event

 Implemented in Global.asax or

 Http Module (implement IHttpModule)

 Scenarios:

 Implement per-request billing system

 Restrict access based on time of day or
other custom parameters

 Restrict access based on behaviors (e.g.
implement a per-day access limit, etc).

Role Based Security

Custom Roles
 Role based security allows application devs to

define custom identity groups
 Roles not tied to NT domain groups

 Examples: “Brokers”, “SalesPeople”, “Admins”,
“VP”, “Premium”, “Partners”

 Enables more flexible authorization of
resources and code than per user checks
 Declaratively through Web.Config

 Through code: User.IsInRole method

 Goal: Application administrators can modify
role members once app deployed
 No code or configuration changes required

Defining Roles

 Roles are specified programmatically
using Application_Authenticate event

 Implemented in Global.asax or

 Http Module (implement IHttpModule)

‘ Global.asax Authenticate Event Handler

Sub Application_Authenticate(Sender as Object, E as EventArgs)

Dim roles() as String = GetRolesFromMyDB(User.Identity.Name)

Context.User = new GenericPrincipal(User.Identity, roles)

End Sub

Authorizing against Roles

 Roles can be used to grant/deny access
within Web.Config files:

<configuration>

<system.web>

<authorization>

<allow roles=“Admins”/>

<allow roles=“Premium”/>

<deny users=“*”/>

</authorization>

</system.web>

</configuration>

Roles and Code

 User.IsInRole() method can be used to
check roles within code at runtime

‘ Restrict who can make expensive purchase

If ((amount < 10000) Or (User.IsInRole(“VP”)) Then

‘ Do purchase

Else

Throw New Exception(“You require VP expense approval!”)

End If

Role Based
Security Demo

Encryption

Encryption

 ASP.NET supports wire encryption of
network traffic using SSL through IIS

 https://www.foobar.com/login.aspx

 Request.IsSecureConnection

 Indicates whether request is SSL based

 System.Security.Cryptography

 .NET Namespace provides cryptographic
encoding/decoding of arbitrary data

https://www.foobar.com/login.aspx

Encryption

 Recommendations:

 Use SSL when passing username/
password credentials over the web

 Encrypt or one-way hash passwords
stored within databases (secures in
event of DB penetration)

 Never store secrets or passwords in clear
text – use framework to encrypt within a
secret store (example: DAPI)

Common Web Hacks

Client Side Script Injection

 Very common hacking technique used
on the web today

 Hacker Technique:

 Find place on website where input is taken
from users, and then redisplayed on a page

 Provide client-side script for input, unless
developer html encodes it on the server,
the script will execute when redisplayed

 Note: All web applications (PHP, ASP,
JSP and ASP.NET) susceptible to this

CSS Injection Example

<script language=“VB” runat=“server”>

Sub Page_Load()

Label1.Text = “Hello “ & Request.QueryString(“name”)

End Sub

</script>

<html>

<body>

<asp:label id=“Label1” runat=“server/>

</body>

</html>

Home.aspx?name=<script>alert(‘Gotcha!’);</script>

Client Side Script Injection

 Prevention Techniques:

 HtmlEncode all inputs from the browser

 Server.HtmlEncode(input)

 HttpUtility.HtmlEncode(input)

 ASP.NET V1.1 ValidateRequest feature

 Enabled by default in ASP.NET V1.1

 Detects and raises error when some
common CSS attacks are passed to server

 Still use HtmlEncode in addition though!

Client Side Script
Injection Demo

SQL Injection Attacks

 Very dangerous hacking technique –
leads to data loss/corruption/penetration

 Hacker Technique:

 Find place on website where input is taken
from users (not necessarily redisplayed)

 Assume input is being used in a database
operation, try to escape out of a developer’s
late-bound database query and cause
alternative query to be executed

 Note: All web applications (PHP, ASP,
JSP and ASP.NET) susceptible to this

SQL Injection Example
<script language=“VB” runat=“server”>

Sub Page_Load()

Dim connection As SqlConnection

Dim command As SqlCommand

Dim query As String

query = "SELECT * from Products Where QtyInStock > " & Request ("qtyinstock")

connection = New SqlConnection(ConfigurationSettings.AppSettings(“products"))

command = New SqlCommand(query, connection)

connection.Open()

DataGrid1.DataSource = command.ExecuteReader()

DataGrid1.DataBind()

connection.Close()

End Sub

</script>

SQL Injection Prevention

 Always, Always, Always use type-safe
SQL parameters for data access -> no
lazily constructed SQL statements

 Use stored procedures for data access
and avoid dynamic SQL statements

 Make sure you use parameters when calling
the SROCS or still be susceptible to attacks!

 Disable dynamic SQL statement in DB –
require all access through SPROCs you write

 Limit the ASP.NET account to only have
access to the SPROCs it needs

SQL Injection Demo

Summary

 Security is a critical feature of every app

 Design and incorporate it up front

 Always be vigilant about potential attacks

 ASP.NET provides a rich and flexible
security architecture

 Built-in support for common scenarios

 Flexible enough for custom adapting

Additional Resources

 Online Discussion Groups:

 www.asp.net Security Forum

 www.aspadvice.com Security Listserv

 Microsoft Prescriptive Guidance Books:

 http://msdn.microsoft.com/practices/

 Watch for:

 Improving Web Application Security –
Threats and Countermeasures patterns &
practices book (currently in beta)

http://www.asp.net/
http://www.aspadvice.com/
http://msdn.microsoft.com/practices/

