
.Net Security

Jim Fawcett

CSE686 – Internet Programming

Summer 2005

References

 Developmentor Slides from MSDNAA, Keith Brown

 Introduction to Evidence-based Security in .Net
Framework, Brad Merrill,
http://www.dcl.hpi.uni-
potsdam.de/LV/Components04/VL7/05a_Security-
detailed.pdf

 Securing, Deploying and Maintaining .Net Applications,
Patrick Tisseghem, www.u2u.net

http://www.dcl.hpi.uni-potsdam.de/LV/Components04/VL7/05a_Security-detailed.pdf
http://www.u2u.net/

Agenda

 Threats

 Windows Role-Based Security

 Code Access Security

Basic Security Issues

 Confidentiality
 Disclose information only to authorized users

 Integrity
 Ensure that data is not modified without authorization

 Availability
 Decide who has access to information and how to make

access effective

 Authentication
 Identify a user securely

 Authorization
 Define a set of allowed actions for authorized users

 Non repudiation
 Log users, their actions, and the objects used.

Security Models

 Windows and .Net
 Role-based

 Authenticate and authorize users, groups, and
accounts (System, Local service, Network
service)

 Actions are authorized through permissions

 Evidence-based or Code Access Security
(CAS)
 Code is elevated to the security status of a user.

 Authorization is based on evidence
• url, zone, publisher, strong name, custom

assembly attributes

 Actions are authorized through policies

Win Security Definitions

 Definitions for people and groups of people

 SID – Security IDentifier

 Data structure used to identify user or group.

 Access Token

 A data structure that holds a SID for a security principal,
the SIDs for each group the principal belongs to, and a list
of the principal’s priviledges on the local computer.

 Principal

 An account holder that is assigned a SID for access to
resources, e.g., user, group, service, or computer.

Win Security Definitions

 Definitions for objects

 Files, directories, kernel objects

 ACL – Access Control List

 Set of permissions for a specific object or a set of the
object’s properties.

 Discretionary (DACL) and System (SACL) are sub-
groups.

 Security Descriptor

 A data structure holding information about a protected
object, e.g., who can access, in what way, whether
audited.

Win Security Definitions

 Combinations of people and objects

 Security Context

 Set of rules for a user’s actions on a protected object

 Combination of user’s access token and object’s security
descriptor

 Security Policy

 Rules that define the allowable contexts and mandatory
groups.

Role-Based Security
 Use role-based security in programs to control access to

methods or properties at run-time.

 Host authenticates user and provides identity and role
information to CLR.
 Uses NTFS access control lists, IIS security settings.

 CLR makes that information available to code via APIs and
permission demands.

 Can isolate security from code using attributes defined in
System.Security or EnterpriseServices
 System.Security is limited to Windows user groups

 EnterpriseServices uses COM+ roles
 Classes have to inherit from EnterpriseServices

 Which to choose?
 If application has both managed and unmanaged use COM+.

 If application is entirely managed then System.Security is
appropriate.

Code Access Security

 Goals
 End-user experience

 Managed apps just run

 Safe defaults, no run-time decisions needed

 Administrator
 All settings in one place and easy to customize

 Simple policy model

 Security administration tools
• .Net configuration, CASPOL

 Developer
 Focus on application, security comes free

 Easy to understand and extend when needed

Mobil Code

 Old Model
 Obtained from a network, often via a web page.

 Without CAS have either full trust or no trust.

 User decides whether to run.

 If run, code has all the user’s priviledges.

 Inproc COM component, when loaded, becomes part
of the process.

 Can’t distinguish between library code and original
application code.

 CAS model
 Operation based on evidence.

 Allowed actions can be defined at very detailed level.

 Each assembly can have its own security context.

Evidence-Based Security

 Definitions

 Permissions

 Objects that represent specific authorized actions

 Permission grant is an authorization for an action given
to an assembly

 Permission demand is a security check for specific
grants

 Policy

 Set of permissions granted to an assembly

 Evidence

 Inputs to policy about code

 All three can be extended using security APIs.

Standard Permissions

 Permissions for framework resources

 Data, environment, file IO, Message
Queue, reflection, sockets

 Directory services, event log, web,
performance counters, registry, UI

 DNS, file dialog, isolated storage, printing,
security system

Standard Permissions

 Identity permissions

 Publisher, site, string name, url, zone

 User identity permission

 Only non-code access permission in
Framework.

Code Access Security

 Is evidence-based

 Most permissions are code access
 Demanding permission performs a stack walk

checking for grants of all callers

 Two ways to make checks
 Imperative – call a method

 Declarative
• Attributes in code

• Attributes in configuration file

 Get security by
 Calling class libraries in Framework

 Calling application code with checks

How it works

 Loader extracts evidence from assembly

 Evidence is input to policy

 Each level, Enterprise, Machine, User, and
AppDomain, are evaluated

 For each level the union of grants for each matching
code group is determined

 Intersection of permissions from each of these levels
are granted to the assembly

 Apply any assembly permission requests

 Result is the permissions granted to the
assembly.

Stack Walk Modifiers

 Assertions

 If code vouches for its callers then checks for
permissions stop here.

 Gatekeeper classes

 Managed wrappers for unmanaged resources

 Demand permission to call unmanaged

 Assert permission to call unmanaged

 Make the call to unmanaged

Code Access Control

 Identity permissions can apply to code as
well as users and groups

 Based on evidence – signature, location, …

 Declarative checks made by JIT at compile-
time.

 Imperative checks made by CLR at run-time.

Policy

 Process of determining what permissions to grant to
code.
 Per-assembly basis

 Policy levels
 Enterprise
 Machine
 User
 Application domain

 Each policy level is a collection of code groups
 All code, internet zone, intranet zone, site, strong name

(MS Office), publisher

 Permission grants are intersection of policy levels and
union of collection of code groups.
 Code gets only permissions common to Enterprise,

Machine, user, AppDomain
 Gets all permissions of all groups to which it belongs.

Default Policies

 Local Computer
 Unrestricted

 Intranet
 Limited read environment, UI, isolated storage,

assertion, web access to same site, file read to
same UNC directory

 Internet
 Safe UI, isolated storage, web access to same site

 Restricted
 No access, can’t execute

 Strong name (Framework classes)
 Unrestricted

Framework Support

 Classes used to represent evidence

 Zone, Url, Site, ApplicationDirectory,
StrongName, Publisher, Hash

 Classes used to represent permissions

 DBDataPermission, PrintingPermission,
SocketPermission, FileIOPermission,
RegistryPermission, …

.Net Configuration Tool

Editing Permissions

All Standard Permissions

Can configure
applications as well as
users and machines.

Creating a User Code Group

Adding New Permissions

Specific Permissions

The Result

Evidence

 Evidence is input to policy
 Strong name, publisher identity, location

 Evidence is extensible
 Any object can become evidence
 Only affects permission grants if some code group

condition uses it

 Hosts
 Machine, IIS, ASP.Net, SQL Server

 Fully trusted hosts specify implicitly trusted
evidence.

 Semi-trusted hosts cannot provide evidence.
 Hosts can limit policy for AppDomains they

create.

Requesting Permissions

 Assemblies can request permissions
 Minimal, Optional, Refused
 If policy does not grant everything in Minimal set, assembly

will not load.
 Assembly is granted:

MaxAllowed  (Minimal  Optional) – Refused

 Example:

[assembly:UIPermissionAttribute
(SecurityAction.RequestMinimum,
Window=UIPermissionWindow.SafeSubWindows)

]

[assembly:SecurityPermissionAttribute
(SecurityAction.RequestRefused,
UnmanagedCode=true)

]

Minimizing Security Flaws

 Safe code

 Managed code verified for typesafety at runtime.

 Eliminates:

 Buffer overrun attacks

 Reading private state or uninitialized memory

 Access to arbitrary memory in process

 Transfer execution to arbitrary location in process

 Developers can use Least Priviledge.

 Code access security blocks most luring attacks.

 Stack walks prevent malicious code from using
otherwise secure code obtained from naïve user.

Summary

 Managed code has both Role-based and
Evidence-based (CAS) security applied.

 Get a lot for free, simply by loggin in and running
code that calls Framework Library.

 You can add security features to your code as well.

 CAS is .Net model for mobile code.

 Evidence is discovered by loader

 Policy turns evidence into permissions

 Permissions determine what your code can
and cannot do.

