CSE382 – Algorithms and Data Structures
Fall 2008

Lab #4 –
Parameterized Directed Graph<T> class

Prologue:

This lab is concerned with building template and generic directed graph classes, Graph<T>, using an extension to the Node classes you created in Lab #3.

Starting Condition:
Please use only the ECS computers provided in this computer lab (CST 3-201) to implement code for this lab
. Please write all of this yourself during class for the first part and for the second part outside of class. Do not use any code from the college server, except as directed in parts 1-2, below, nor any code from the web.
Tasks to be completed in class:

1. Using a C# console application, create a MNodes.cs, similar to DNodes.cs, discussed you created for Lab #3, but that implements a generic MNode<T> class that holds a list of references to MNode<T> instances. For this, please use the DList<T> class you developed in Lab #3
. Include a boolean visited flag for use in depth first searches in the graph described below.
2. Build a test stub and test to ensure that instances of the class function as you expected.
3. Build a new console application project that holds a Graph.cs file and the MNodes.cs file.

4. To the Graph.cs source add prologue, and maintenance information. In the Manual Page part add comments that describe briefly, but completely, the interface you expect to use for the Graph<T> class.

5. In the Graph.cs file define a generic Graph<T> class that holds an adjacency list of MNodes<T> that represent graph vertices. Each reference added to an MNode<T> instance represents an edge of the graph.
6. Implement a test stub to test instances of your graph class.

Tasks to be completed outside of class:

7. Add a recursive depth first search facility to your Graph<T> class that will search the entire graph for any initial starting vertex.

8. Repeat steps 1-7 to implement a C++ template Graph<T> class and test it.
Note:

You must hand in whatever you have completed in class at the end of that class.

You must upload the results of Tasks #7 before you come to class on the next Wednesday.

� This explicitly forbids you from using your personal laptop.

� A singly-linked list would work for this application, but we can avoid creating that by using DList<T>.

