
 1

STL Containers – Supplementary Notes

Jim Fawcett

CSE 687 - Spring 2002

1. Every container allocates and manages its own storage.

2. Type definitions common to all containers:

 C::value_type type of values held in container

 C::reference value_type&

 C::const_reference

 C::iterator

 C::const_iterator

 C::reverse_iterator

 C::const_reverse_iterator

 C::difference_type difference between iterators

 C::size_type size of container

 2

3. Member functions common to all containers:

 C() default constructor

 C(c), C c2(c1) copy constructor

 ~C() destructor

 c.begin() returns an iterator to first element

 c.end() returns an iterator after last element

 c.rbegin() returns a reverse iterator to last elem.

 c.rend() returns a reverse iterator before first elem.

 c1 == c2 equality comparison for same type cont.

 c1 != c2 “

 c.size() returns number of elements. in cont.

 c.max_size() returns size() of largest number of elements.

 c.empty() returns true if cont. is empty

 c1 < c2 lexicographic comparison

 c1 > c2 “

 c1 <= c2 “

 c1 >= c2 “

 c1 = c2 assignment operation

 c1.swap(c2) swaps two containers

 3

4. Sequence containers

 vector simulates an expandable array, occupying contiguous memory

 list based on doubly linked list

 deque a double ended queue, which uses a directory managing blocks of

 contiguousmemory

5. Member functions common to all sequence containers:

 C(n,t) constructs a sequence of n copies of t

 C(iter1,iter2) constructs a sequence equal to the range [iter1,iter2)

 c.insert(iter,t) inserts a copy of t before iter. Returns an iter to t.

 c.insert(iter,n,t) inserts n copies of t before iter.

 c.insert(iter1,iter2,iter3) inserts the sequence [iter2,iter3) before iter1

 c.erase(iter) erases the element pointed to by iter

 c.erase(iter1,iter2) erases elements in range [iter1,iter2)

6. Invalidation of iterators

 Invalidation of iterators into vectors:

 insertion in a vector invalidates iterators from the point of insertion to the end of the vector.

 if insertion causes reallocation to provide more memory then all iterators become invalid.

 erase invalidates all iterators at and past the point of erasure.

 a safe strategy is to assume that any iterator into a vector becomes invalid after either insertion or erasure.

 Invalidation of iterators into deques:

 insertion and erasure in the interior invalidates all iterators.

 Invalidation of iterators into lists:

 list insertions never invalidate iterators and erase invalidates only iterators pointing to the erased items.

 Use of invalid iterators:
 The only safe things you can do with an invalid iterator is to reinitialize it by assigning a new iterator value

to it or destroy it.

 4

7. Sorted associative containers (all are based on balanced red-black tree):

 set set of elements sorted by value with no duplicates

 multi-set set of elements sorted by value with duplicates

 map set of <key,value> pairs sorted on key with no duplicates

 multi-map set of <key,value> pairs sorted on key with duplicates

8. Types common to all sorted associative containers:

 C::key_type type of keys used to instantiate C

 C::key_compare type of the comparison type used to instantiate C

 C::value_compare type for comparing objects of C::value_type

9. Invalidation of iterators with associative containers:

 insertion does not invalidate any iterators referring to container elements.

 erasure invalidates only iterators pointing to erased elements.

 5

10. Member functions common to all sorted associative containers:

 C() void constructor

 C(comp) constructs empty container using comp for comparisons

 C(iter1,iter21) constructs empty container and inserts elements from [iter1,iter2) into it.

 C(iter1,iter2,comp) same as above except that comp is used for comparisons.

 c.key_comp() returns c’s key comparison object

 c.value_comp() returns c’s value comparison object

 c.insert(t) for sets and maps inserts t if and only if there is no equivalent key

 stored, returns pair<iterator,bool>. The bool indicates if insertion

 succeeded and iterator points to the element equivalent to t.

 for multi-sets and multi-maps inserts t and returns an iterator pointing

 to the inserted t

 c.insert(iter,t) same as above except that iter is a hint about where to start search

 c.insert(iter1,iter2) inserts elements from the sequence [iter1,iter2)

 c.erase(k1) erases all elements in the container with key equal to k1. Returns the

 number of elements erased.

 c.erase(iter) erases the element pointed to.

 c.erase(iter1,iter2) erases all elements in the range [iter1,iter2).

 c.find(k1) returns an iterator pointing to an element with key equal to k1 or to

 c.end() if no such element is found.

 c.count(k1) returns the number of elements with key equivalent to k1

 c.lower_bound(k1) returns an iterator pointing to first element with key not less than k1.

 c.upper_bound(k1) returns an iterator pointing to first element with key greater than k1.

 c.equal_range(k1) returns a pair of iterators with first lower_bound and second

 upper_bound

 6

STL Iterators

11. Iterators extend the functionality of native pointers.

 Any container, c, defines valid iterators pointing to the first element, returned by c.begin() and

one past the last element, returned by c.end().

 an iterator range is a pair of iterators that serve as the beginning and end markers of some

operation on container values. Range [iter1, iter2) includes the values pointed to by iter1

through the value pointed to by the predecessor of iter2.

 iterators can be dereferenced, e.g., if iter is an iterator for some container c, *iter returns

value_type whenever it is in the range [c.begin(), c.end())

 if iter is in the range [c.begin(), c.end()) then either iter++ stays in the range or is equivalent to

c.end().

 iterators can be mutable or constant depending on whether the result of operator* acts like a

reference or a reference to a const.

 7

12. Input iterator requirements:

 I(i) copy constructor

 i == j returns true if iterator i is equivalent to iterator j

 i != j returns true if and only if i == j returns false

 *i returns value_type if dereferenceable. If i == j then it must be true that

 *i == *j. Note: don’t attempt to write to *i as it may not be an l-value.

 i->m equivalent to (*i).m

 ++i returns an iterator pointing to the successor element to *i or to c.end();

 i++ ` returns i then points to the successor of *i or to c.end()

 Algorithms that use input iterators should be single-pass.

13. Output iterator requirements:

 I(i) copy constructor

 *i = t t is assigned through the iterator.

 ++i returns an iterator pointing to the successor element to *i or to c.end()

 i++ returns i then points to the successor of *i or to c.end()

 The only valid use of *i is on the left of an assignement. Algorithms that use output iterators

should be single-pass.

 8

14. Forward iterator requirements:

 I() void constructor, result may be a singular value

 I(i) result must satisfy i == I(i);

 i == j true if i is equivalent to j

 i != j true if i==j is false

 i = j result must satisfy i == j

 *i returns value_type if dereferenceable. If i == j then *i == *j must be true.

 If i is mutable then *i = t is valid.

 i -> m equivalent to (*i).m

 ++i returns an iterator pointing to the successor element to *i or to c.end()

 i == j and i dereferenceable implies that ++i == ++ j.

 i++ returns i then points to the successor of *i or to c.end()

15. Bidirectional iterator requirements:

 meets all requirements of Forward iterators.

 - - i Assume that there is a j such that ++j = i. Then - - i refers to the same element

 as j. It must be true that --(++i) = i and if - -i == --j then i == j.

 i- - returns i then points to the predecessor of i

 9

16. Random access iterator requirements:

 meets the requirements for a bidirectional iterator.

 i += n the result must be equivalent to incrementing i n times.

 i + n returns an iterator equivalent to i += n.

 i -= n the result must be equivalent to decrementing i n times.

 i – n returns an iterator equivalent to i -= n.

 i – j returns a value of type distance. If i + n = j then j – 1 == n

 i[n] equivalent to *(i + n)

 i < j must be a total order relationship returning bool

 i > j must be a total order relationship returning true whenever i < j || i == j is

 false

 i <= j must be a total order relationship equivalent to !(i > j)

 i >= j must be a total order relationship equivalent to !(i < j)

 10

17. Algorithms – Non modifying (Prata, C++ Primer Plus, Third Edition, Waite Group)

for_each Applies a non-modifying function object to each element in a range

find Finds the first occurrence of a value in a range

find_if finds the first value satisfying a predicate test criterion in a range

find_end finds the last occurrence of a subsequence whose values match the values of

a second sequence. Matching may be by equality or by applying a binary

predicate.

find_first_of Finds the first occurrence of any element of a second sequence that matches

a value in the first sequence. Matching may be by equality or be evaluated

with a binary predicate.

adjacent_find Finds the first element that matches the element immediately following it.

Matching may be by equality or evaluated with a binary predicate.

count Returns the number of times a given value occurs in a range.

count_if Returns the number of times a given value matches values in a range, with a

match determined by using a binary predicate.

mismatch Finds the first element in one range that does not match the corresponding

element in a second range and returns iterators to both. Matching may be by

equality or be evaluated with a binary predicate.

Equal Returns true if each element in one range matches the corresponding

element in a second range. Matching may be by equality or evaluated with a

binary predicate.

search Finds the first occurrence of a subsequence whose values match the values of

a second sequence. Matching may be by equality or by applying a binary

predicate.

search_n Finds the first subsequence of n elements that each match a given value.

Matching may be by equality or applying a binary predicate.

 11

Example:

template <class T>

class Sum

{

 Sum() : sum_(0) {}

 void operator()(T& t) { sum_ += t; }

 result() { return sum_; }

 private: T sum_;

}

std::list<int> li;

// push on some elements

// foreach is the only algorithm that returns its operation, e.g., Sum()

int sum = foreach(li.begin(),li.end(),Sum()).result();

 12

18. Algorithms – Modifying (Prata, C++ Primer Plus, Third Edition, Waite Group)

copy Copies elements from a range to a location identified by an iterator.

copy_backward Copies elements from a range to a location identified by an iterator.

Copying begins at the end of the range and proceeds backwards.

Swap Exchanges two values stored at locations specified by references.

Swap_ranges Exchanges corresponding values in two ranges.

iter_swap Exchanges two values stored at locations specified by iterators.

transform Applies a function object to each element in a range (or to each pair of

elements in a pair of ranges), copying the return value to the corresponding

location of another range.

replace Replaces each occurrence of a value in a range with another value.

replace_if Replaces each occurrence of a value in a range with another value if a

predicate function object applied to the original value returns true.

replace_copy Copies one range to another, replacing each value for which a predicate

function object is true with an indicated value.

fill Sets each value in a range to an indicated value.

fill_n Sets n consecutive elements to a value.

generate Sets each value in a range to the return value of a generator, which is a

function object that takes no arguments.

generate_n Sets the first n values in a range to the return value of a generator, which is a

function object that takes no arguments.

remove Removes all occurrences of a value from a range and returns a past-the-end

iterator for the resulting range.

remove_if Removes all occurrences of values for which a predicate object returns true

from a range and returns a past-the-end iterator for the resulting range.

 13

remove_copy Copies elements from one range to another, omitting elements that equal a

specified value.

remove_copy_if Copies elements from one range to another, omitting elements for which a

predicate function object returns true.

unique Reduces each sequence of two or more equivalent elements in a range to a

single element.

unique_copy Copies elements from one range to another, reducing each sequence of two

or more equivalent elements to one.

reverse Reverses the elements in a range.

reverse_copy Copies a range in reverse order to a second range.

Rotate Treats a range as a circular ordering and rotates the elements left.

Rotate_copy Copies one range to another in a rotated order.

Random_shuffle Randomly rearranges the elements in a range.

partition Places all the elements that satisfy a predicate function object before all

elements that don’t.

Stable_partition Places all the elements that satisfy a predicate function object before all

elements that don’t. The relative order of elements in each group is

preserved.

 14

19. Sorting & Related Operations (Prata, C++ Primer Plus, Third Edition, Waite Group)

sort Sorts a range.

stable_sort Sorts a range, preserving the relative order of equivalent elements.

partial_sort Partially sorts a range, providing the first n elements of a full sort.

partial_sort_copy Copies a partially sorted range to another range.

nth_element Given an iterator into a range, finds the element that would be there if

the range were sorted, and places that element there.

lower_bound Given a value, finds the first position in a sorted range before which the

value can be inserted while maintaining the ordering.

upper_bound Given a value, finds the last position in a sorted range before which the

value can be inserted while maintaining the ordering.

equal_range Given a value, finds the largest subrange of a sorted range such that the

vlue can be inserted before any element in the subrange without

violating the ordering.

binary_search Returns true if a sorted range contains a value equivalent to a given

value, and false otherwise.

merge Merges two sorted ranges into a third range.

in-place_merge Merges two consecutive sorted ranges in place.

includes Returns true if every element in one set also is found in another set.

set_union Constructs the union of two sets, which is a set containing all elements

present in either set.

set_intersection Constructs the intersection of two sets, which is a set containing only

those elements found in both sets.

set_difference Constructs the difference of two sets, which is a set containing only

those elements found in the first set but not the second.

 15

set_symmetric_difference Constructs a set consisting of elements found in one set or the other, but

not both.

make_heap Converts a range to heap.

push_heap Adds an element to a heap.

pop_heap Removes the largest element from a heap.

sort_heap Sorts a heap.

min Returns the lesser of two values.

max Returns the greater of two values.

min_element Finds the first occurrence of the smallest value in a range.

max_element Finds the first occurrence of the largest value in a range.

lexicographic_compare Compares two sequences lexicographically, returning true if the first

sequence is lexicographically less than the second, and false otherwise.

next_permutation Generates the next permutation in a sequence.

previous_permutation Generates the preceding permutation in a sequence.

 16

20. Predefined Function Objects (Josuttis, C++ Standard Library, Addison-Wesley)

Expression Effect

negate<T>() - param

plus<T>() param1 + param2

minus<T>() param1 – param2

multiplies<T>() param1 * param2

divides<T>() param1 / param2

modulus<T>() param1 % param2

equal_to<T>() param1 == param2

not_equal_to<T>() param1 != param2

less<T>() param1 < param2

greater<T>() param1 > param2

less_equal<T>() param1 <= param2

greater_equal<T>() param1 >= param2

logical_not<T>() ! param

logical_and<T>() param1 && param2

logical_or<T>() param1 || param2

Example:

std::list<int> li;

// push on some elements

std::list<int>::iterator itPos;

// find first positive element in list

itPos = find_if(li.begin(),li.end(),bind2nd(greater<int>(),0);

