3D Graphics using GDI+

Sphere Implementation – Fall 2004

Independent Study

[image: image4.wmf]Independent Study

3

D Graphics using GDI

+ (.

NET

)

Sphere Implementation

Version

1

.

0

Instructor

Jim Fawcett

,

PHD

Carmen Vaca Ruiz

Fall

2004

Wednesday

,

September

10

,

2003

Table of Contents
41.1.
Description and responsibilities

41.2.
Applications and user cases

41.3.
Objective

51.3.1.
3D Objects as a collection of points

51.3.2.
Perspective

51.3.3.
Transformations

51.3.4.
Sphere construction

51.3.5.
Lighting

61.4.
Views

81.5.
Context Diagram

92.
Structure

92.1.
Modules Diagram

102.2.
Modules Description

102.2.1.
Interface Module

102.2.2.
3DRepresentation Module

102.2.3.
Transformation Module

102.2.4.
Sorting Module

102.2.5.
Angle Module

102.2.6.
VectorFunctions Module

112.3.
Classes Diagram

122.4.
Classes Description

122.4.1.
UserInterface

122.4.2.
Coordinates3D

122.4.3.
Shape

122.4.4.
TriangleShape

122.4.5.
Object3D

122.4.6.
Sphere

132.4.7.
QuickSort

132.4.8.
TriangleQuickSort

132.4.9.
VectorFunctions

132.4.10.
Transformation

132.4.11.
Projection

132.4.12.
Translation

142.4.13.
RotationX

142.4.14.
RotationY

142.4.15.
RotationZ

142.4.16.
Scale

142.4.17.
Angle

142.4.18.
ColorFunctions

153.
Considerations

153.1.
Complexity

153.2.
Y coordinates in GDI+

153.3.
Origin position

153.4.
Resizing

153.5.
Moving Spheres

163.6.
Color manipulation for lighting

174.
Geometry

174.1.
Cabinet Projection

184.2.
Rotation matrices

194.3.
Lighting

204.4.
Sphere approximation

215.
Conclusions

226.
References

1. Introduction

1.1. Description and responsibilities

This document presents the architecture of a 3D Graphics Framework
. This software will be used to implement 3D objects representations.
Computer graphics is an area gaining popularity each day. There are many applications for computer graphics: movies, games, animations, CAD software. Any of those need 3D representations to deliver realistic scenes to the demanding audience. However, the device used to work with all the applications is a 2D device: the computer screen. We need to transform our 3D scene into 2D representations.
There are well-known libraries for 3D as OpenGl. It has tones of functions written to develop complex 3D applications. However, there is little code written using C# programming language. We will implement a set of classes that serves as a framework for 3D implementations
The developed framework allows us to represent point in 3D coordinates in the screen. Using these coordinates we are able to draw and manipulate objects.
These set of classes can be easily extended to a C# 3D library adding texture capabilities and facilities for rendering complex scenes.

1.2. Applications and user cases

APPLICATION:
Simple 3D game.

USER:

Programmer.

USE CASE:
Programmer uses the provided framework to develop a couple of objects that will be moved around the screen to implement a simple 3D game.

IMPACT:
The provided framework doesn’t provide texture capabilities but it is very easy to represent 3D objects and move them around the screen.

APPLICATION:
Animation.

USER:

Graphic designer.

USE CASE:
With a set of 3D coordinates a 3D Object is built and it can be rotated using a loop.

IMPACT:
The provided framework can be extended to be able to read coordinates from a file and represent them into the screen as a 3D Object.

1.3. Objective
This project will help us to understand the math behind the representation of 3D objects using a computer. We will implement a framework to be able to render some 3D objects and apply the main transformations to it.

There are 4 main topics to cover:

· 3D Objects as a collection of points

· Perspective

· Transformations

· Lighting

· Sphere construction using a triangle mesh

1.3.1. 3D Objects as a collection of points

We need a truly Object-oriented approach to design our classes. The transformations applied in 3D environments propagate from an entire scene to a point. It means that to rotate a collection of objects, what we really do is to rotate the vertices of all of them.

1.3.2. Perspective
Provide the implementation for the projection of points from 3D to 2D. This is the basic transformation that we need to draw 3D objects in a 2D device: the screen

The perspective gives the idea of volume which is essential in a 3D environment.
1.3.3. Transformations
Provide the implementation of the main transformations in 3D:

· Translation

· Objects are translated from its original position. The distance for this movement is provided as a distance in X, distance in Y and distance in z triple.

· The objects can be moved around the screen: up, down, left right, back and forth

· Scaling

· Objects are resized by providing a scale factor for x, y and z
· Rotation

· Objects are rotated around: x-axis, y-axis, z-axis
1.3.4. Sphere construction

Represent spheres as a 3D Object. Implement classes to build spheres by providing a center (point in 3D), radius and a color (the color will be optional, a default color will be picked)
1.3.5. Lighting

Given the coordinates of a source light draw objects with light effects. The surface of the object closer to the light source will appear brighter and the surface that is not affected by the light will appear darker.
1.4. Views

3D framework interacts with the user using a Windows Form. The user moves the represented spheres around the screen using a set of keys described in the User Manual included as an Annex at the end of the document.

The provided buttons allow to the user rotate the object around one the coordinate axis.
Drawing some 3D Objects by providing its coordinates
[image: image5.emf]3DFramework

GUI

Filesystem

File name

Display 3D Sphere moved

or rotated

User

request

Coordinates

Drawing and rotating spheres
[image: image6.emf]Z

-

A

x

i

s

Y

-

A

x

i

s

N

φ

Set the brightness of

the object according to

angle φ

v1

v2

Calculate 2 vectors using triangle’s

vertices

To calculate the normal: take the cross

product between v1 and v2

[image: image7.emf]Z

-

A

x

i

s

Y

-

A

x

i

s

r

r cos φ

φ

x = r cos φ cos θ

y = r sin φ

z = r cos φ sin θ

r sin φ θ

L

(x, y, z)

P

4

P

3

P

1

P

2

Triangles using points

in sphere surface

1.5. Context Diagram

The 3D Framework proposed will provide a Graphical Interface to interact with the user. The user can move the objects around the screen by pressing some keys in the keyboard.
The arrows keys can be used to rotate the objects in x, y, z direction.

In the next version we can extend the capabilities of the 3D Framework to read coordinates of a 3D Object from a file.
[image: image8.emf]Object3D

Coordinates3D

UserInterface

Sphere Shape

TriangleShape

Translation

RotationX

RotationY RotationZ Scale

QuickSort

TriangleQuickSort

Transformation

Angle

Projection

VectorFunctions ColorFunctions

[image: image9.emf]Z

-

A

x

i

s

Y

-

A

x

i

s

X-Axis

z

L sin α

L cos α

L β

α

tg (β) = z / L

L = z / tg (β)

L = z * λ

(x, y, z)

(x, y)

(xp , yp)

λ = 1/ tg (β)

xp = x + z * λ cos (α)

yp = x + z * λ sin (α)

Structure

1.6. Modules Diagram

[image: image10.emf]TRANSFORMATION

Module

3DREPRESENTATIONS

Module

INTERFACE

Module

SORTING

Module

VECTOR_FUNCTIONS

Module

ANGLE_FUNCTIONS

Module

1.7. Modules Description

1.7.1. Interface Module

The Interface Module creates 3D Objects using the classes provided by 3DRepresentation Module.

It has defined events that allow the user to move or rotate the created objects. The user will move the objects around the screen by pressing keys. The module uses the functions provided by Transformation Module to be able to rotate and translate the objects.

1.7.2. 3DRepresentation Module

This module provides the definition of classes that represent points, shapes and objects in three dimensions.

The classes will be defined in an incremental way. An object will be a collection of shapes and a shape will be a collection of points. This approach will be useful when we apply a transformation as we see in Transformation module definition below.

1.7.3. Transformation Module

The transformation module contains most of the math involved for 3D Representation. There are some transformations that can be applied in 3D:

· Projection: project a 3D point in the screen which is a 2D device
· Translation: translate an object from an origin to a destination location.
· Scale: change the size of a 3D object
· Rotation: Rotate objects around the x,y,z axis or around an arbitrary axis.

In 3D world, a transformation applied to an object is indeed a transformation applied to all of its coordinates. Whenever a transformation is applied to an object defined in 3DRepresentation Module, this will be propagated to the vertices of the object.
1.7.4. Sorting Module

The 3D objects will be rendered using Painter’s algorithm. We need a module to sort the objects and draw them according to the result of the sorting function

1.7.5. Angle Module

This module provides useful functions for angle manipulation.

1.7.6. VectorFunctions Module

The VectorFunctions module provides functions as:
· Calculate dot product between 2 vectors.

· Get a vector given 2 points in 3D.

· Calculate cross product between 2 vectors.

· Get normal to the plane defined by 3 points in 3D.
[image: image11.emf]Z

-

A

x

i

s

Y

-

A

x

i

s

r

r cos φ

φ

x = r cos φ cos θ

y = r sin φ

z = r cos φ sin θ

r sin φ θ

L

(x, y, z)

P

4

P

3

P

1

P

2

Triangles using points

in sphere surface

1.8. [image: image12.png]Spheres and something else

Rotate X

Rotate Y

RolateZ

‘AnctherColor

Classes Diagram

1.9. Classes Description

1.9.1. UserInterface
The user Interface draws the x-y-z coordinate system to show a reference to the user. Then, instances of sphere objects will be instantiated with different location and radius.
The user is able to translate (up, down, left, right) and rotate the spheres around the screen using keys. The event handlers for these keys are defined in this class.
1.9.2. Coordinates3D
The Coordinates class provides the representation for a point in 3D dimensions. It defines x,y,z coordinates. It is a very simple class but it will be very useful to build shapes and objects.
1.9.3. Shape
The Shape class basically defines a collection of Coordinates3D. This class will define a Draw method that can be used to show the shape in the screen
The drawing of the shape is done by drawing lines between the coordinates given to define the shape object. Before drawing the lines, the points represented by elements of the class Coordinates3D should be projected by using a Projection transformation object.
1.9.4. TriangleShape

TriangleShape derives from Shape. The triangle class will be useful in building a sphere which is build up with triangles.
This class override can override the method Draw of the base class by defining a particular way of rendering the triangle. If we use the Draw method provided by Shape we will get a wireframe figure. We can, instead draw the triangle by using the FillPolygon function provided by GDI+.

Light effects can be obtained by getting the angle between the triangle normal and the Light coordinates. The color is determined according to the angle.

1.9.5. Object3D
Object3D is a collection of shapes. Whenever we need to draw and/or transform an object, we get the shapes contained in it and we work with these shapes.
All the transformations are propagated to the shapes contained in the object.

1.9.6. Sphere
Sphere derives from Object3D. It contains the center and the radius defined for the sphere object.
The sphere object is built using triangles. Parametric equations will be used to obtain the coordinates of points in the sphere surface. Using these points triangles are drawn approximating a sphere.

The sphere is drawn having the center in the origin, i.e. x=y=z=0. When it is drawn it will be translated to the center location provided in the constructor.

If a Translation transformation is applied to the Sphere, the center has to be set to the new location given by previous_center_location + translation_distance.

We will use the Painter algorithm to draw the sphere. It is important to order the triangles before rendering the sphere. In the Draw method of this class, we will first call the Quicksort algorithm to order the triangles contained in the sphere. After we order the triangles, we can call the Draw method of the TriangleShape class
1.9.7. QuickSort
QuickSort class contains the implementation of Hoare’s QuickSort algorithm. It defines a generic function lessthan to compare two objects.
1.9.8. TriangleQuickSort
TriangleQuickSort derives from QuickSort. It will override the lessthan function to be applied to TriangleShape objects. To determine if a triangle is “less” than another we can work with the average of z coordinates for the triangle: if the object is closer (z is smaller) the triangle is “less” than the other.
1.9.9. VectorFunctions
The VectorFunction is a static class that defines some useful functions to be used by TriangleShape class when calculating the angle between triangles’s normal and the light coordinates. To be able to do this calculation we need:
· Calculate the center of a triangle: avg of x, y, z coordinates

· Calculate the cross product between 2 vectors, it will return another vector

· Calculate the dot product between 2 vectors, it will return a scalar

· Given 2 points (Coordinates3D), calculate the defined vector

· Normal of a triangle: Get the vectors P4 = P2P1 and P5 =P3P1 , get the unit vectors for P4 and P5 and return the cross product of those two
1.9.10. Transformation

It defines a contract to be followed for all the classes implementing any kind of transformation: projection, translation, scaling, and rotation.
It defines just one method: transform(). If the method is applied to an ArrayList, it will call the transform method for all the elements of the Array.
1.9.11. Projection

The class Projection implements the transformation necessary to project a point in 3D to the x-y plane (for us the screen device). In order to project a Shape it is enough to project all the points given as vertices of the Shape. To project an Object, the shapes contained in it will be projected.

There are different approaches for projecting a point from 3D to 2D. We will use the Cabinet projection method because it gives us a very realistic drawing. This method is discussed in Section 6 as Cabinet Projection.
1.9.12. Translation

The translation class will provide a transformation to move an object in 3D. The translation is applied by adding the supplied distance to the coordinates x, y, z respectively.
As with any of the other transformations, the transform function is propagated from Objects to points
1.9.13. RotationX
RotationX implements the rotation around X-axis. For the rotation transformation it is enough to rotate all the points contained in a shape and all the shapes contained in an object.
If we rotate all the vertices of a given the shape, the shape itself is rotated, as we see in the following picture [1],

[image: image13.emf]Z

-

A

x

i

s

Y

-

A

x

i

s

N

φ

Set the brightness of

the object according to

angle φ

v1

v2

Calculate 2 vectors using triangle’s

vertices

To calculate the normal: take the cross

product between v1 and v2

1.9.14. RotationY

RotationY implements the rotation around Y-axis. It sets the coordinates x and z with the respective equations to rotate the point
1.9.15. RotationZ

RotationY implements the rotation around Y-axis. It sets the coordinates x and y with the respective equations to rotate the point
1.9.16. Scale

Scale class implements the scaling transformation. The size of the object can be changed by multiplying every point in the shape by a scale factor.
1.9.17. Angle
The Angle class provides useful functions for angle manipulation: Convert from degrees to radians and viceversa, taking the sin and cosin (using degrees and then rounding).
1.9.18. ColorFunctions

Provides facilities to set brightness for a color.

Considerations
1.10. Complexity
To develop 3D Computer applications it is very convenient the use of predefined libraries. GDI+ doesn’t provide direct support for 3D applications.

However a well-designed library provides a framework to develop simple 3D applications.
1.11. Y coordinates in GDI+
The origin of the coordinates in GDI+ is located in the left upper corner of the screen. Thus, any y-coordinate is measured from top to bottom.
In our application the coordinates are represented as a common 3-axis coordinate system. The y-coordinates are measured from bottom to top. We could change the representation of the objects we are working with so that we change the sign for all y-coordinates.

GDI+ provides transformations in 2D that we can use to avoid changing the sign of y-coordinates. This can be achieved by using the following code:

g.Transform = new Matrix(1, 0, 0, -1, 0, 0);

g.TranslateTransform(0, ClientRectangle.Height, MatrixOrder.Append);
1.12. Origin position
It is not a good idea to have the origin of our 3-axis coordinate system in the left-bottom corner of the screen. Part of the graphics whose coordinates have negative x won’t be displayed. We can translate every coordinate of our objects or instead we can use the translation method provided by GDI+ to move everything some distance up and to the left by using the following code:

float width = this.ClientRectangle.Width/4;

float heigth = this.ClientRectangle.Height/2;

g.TranslateTransform(width, heigth);

1.13. Resizing

The Resize method in Windows Forms doesn’t repaint the form. We need to tell the program to do it in our code. If we don’t take care of this issue, the image get distorted or it simply disappear whenever we resize the form

The resizing of the is handled simply by calling the Invalidate method in the Resize event of the form.

1.14. Moving Spheres

It is important to consider that whenever we apply a Translation transformation to a sphere we have to change the center of it as well.

1.15. Color manipulation for lighting

To implement lighting we can take the cosin of the angle between the normal of the object and the source light. This value will serve to specify a level of brightness for the object. However, .Net doesn’t provide a function to set brightness for some given color.
The reference [4] provides a good source to solve this issue. It presents an implementation to set brightness for a given color.

Geometry
1.16. Cabinet Projection
The following picture illustrates the projection of a point used for Oblique Projection.

	Lambda=0.5
	Beta = 63.40
	Cabinet projection
	Alpha = 300, 600

[image: image14.wmf]Independent Study

3

D Graphics using GDI

+ (.

NET

)

Sphere Implementation

Version

1

.

0

Instructor

Jim Fawcett

,

PHD

Carmen Vaca Ruiz

Fall

2004

Wednesday

,

September

10

,

2003

We first project the point using the same x,y coordinates. Then we project to xp, yp, using 2 angles. Let’s define L as the line going from (x,y) to (xp,yp) and L’’ as the line going from (x,y,z) to (xp,yp). Alpha is the inclination angle of L and beta is the angle between L and L’’.
The following table shows appropriate values for Lambda and alpha so that we will get a Cabinet projection.
1.17. Rotation matrices

The rotation around an axis can be achieved by multiplying a matrix by the coordinates to be rotated.

This appendix show the matrices used to rotated a point in 3D around the x, y or z axis [3].

[image: image1.png][=nzt] = [2yz1]]l 0 0 0
0 cost st 0
0 st cose

0001

Figure 6a - Rotation around the X axis

[image: image2.png][2nz1] = [xyz1]me0-meo0
0100
e 0 st 0

[Rt

Figure 6b - Rotation around the Y axis

[image: image3.png][xnat]

[xyz1][wseame o
Fans core 0
001
000

Figure 6c - Rotation around the Z axis
1.18. Lighting

For light effects we have a very simple approach. We calculate the normal of the object. Then we get the angle between the normal and the source light. Finally we set the brightness of the object’s color according to this angle.

[image: image15.emf]TRANSFORMATION

Module

3DREPRESENTATIONS

Module

INTERFACE

Module

SORTING

Module

VECTOR_FUNCTIONS

Module

ANGLE_FUNCTIONS

Module

1.19. Sphere approximation

Using the parametric equations of the sphere we rotate 2 angles: phi and theta. For every rotation we calculate 4 points in the sphere surface and draw triangles between those points as shown in the figure below.
[image: image16.emf]3DFramework

GUI

Filesystem

File name

Display 3D Sphere moved

or rotated

User

request

Coordinates

Conclusions

· 3D applications are becoming more popular each day. It is interesting to provide a framework that implements 3D main transformations using GDI+, the drawing functions provided by .Net. C# is also gaining popularity. The implementation of a 3D framework using C# gives us a combination for a promising application

· There are some methods for projection from 3D to 2D. The Cabinet projection is a very simple and very effective way to project 3D coordinates. It provides a realistic representation of objects in the screen.

· The best approximation for a sphere is got building it up with triangles. We can get point on the sphere surface using its parametric equations; with points at 2 different levels on the sphere we build triangles.
· Painter’s method algorithm is a simple but good approach to draw the triangles on the sphere. We first order the triangles according to their z coordinate. After we have the sorted array of triangles we draw taking the closer ones at the end.

· Lighting can be added with little effort if we decide to approximate the sphere by using triangles. Using the angle between the normal and the source light we decide different levels of brightness to represent the triangle.
References

[1] http://www.javaworld.com/javaworld/jw-06-1997/jw-06-howto.html
[2] http://www.javaworld.com/javaworld/jw-07-1997/jw-07-howto_p.html
[3] http://www.c-sharpcorner.com/Graphics/ThreeDRotationMG.asp

[4] http://www.bobpowell.net/RGBHSB.htm
The most important reference:

[*] Dr. Jim Fawcett guidance.

� EMBED Visio.Drawing.6 ���

The next version of the 3D framework may provide facilities to read the coordinates of an object from a file

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

Definition for TriangleQuickSort taken from:

http://www.javaworld.com/javaworld/jw-07-1997/jw-07-howto_p.html

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� Set of classes for implementation of 3D representations

Instructor: Carmen Vaca Ruiz

Jim Fawcett, PHD

Page 5 of 22

[image: image17.png]

[image: image18.png]FiotateSquare
DrawBeach

Rotate Beach

Rotate Beach

RotateBeachZ

[image: image19.png]Spheres and something else

FotateSquare

DrawBeach

Rotate X

RolateZ

[image: image20.emf]Z

-

A

x

i

s

Y

-

A

x

i

s

X-Axis

z

L sin α

L cos α

L β

α

tg (β) = z / L

L = z / tg (β)

L = z * λ

(x, y, z)

(x, y)

(xp , yp)

λ = 1/ tg (β)

xp = x + z * λ cos (α)

yp = x + z * λ sin (α)

[image: image21.emf]Object3D

Coordinates3D

UserInterface

Sphere Shape

TriangleShape

Translation

RotationX

RotationY RotationZ Scale

QuickSort

TriangleQuickSort

Transformation

Angle

Projection

VectorFunctions ColorFunctions

_1163841083.vsd
￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

￼

3DFramework

GUI

Filesystem

File name

Display 3D Sphere moved or rotated

User request

Coordinates

_1164024314.vsd
Z-Axis

Y-Axis

X-Axis

�

�

�

_1164033921.vsd
Class name

Object3D

Shape

RotationX

Coordinates3D

RotationY

RotationZ

Scale

Transformation

UserInterface

TriangleShape

Translation

Angle

Projection

VectorFunctions

Sphere

QuickSort

TriangleQuickSort

ColorFunctions

_1163943012.vsd
Z-Axis

Y-Axis

X-Axis

_1163846221.vsd
Z-Axis

Y-Axis

X-Axis

_1163755470.vsd
￼

Title/Company Name

Title
￼

Independent Study

3D Graphics using GDI+ (.NET)
Sphere Implementation
Version 1.0

Instructor
Jim Fawcett, PHD

Carmen Vaca Ruiz
Fall 2004

Wednesday, September 10, 2003

_1163775621.vsd
VECTOR_FUNCTIONS
Module

TRANSFORMATION
Module

3DREPRESENTATIONS
Module

SORTING
Module

ANGLE_FUNCTIONS
Module

INTERFACE
Module

