

Semi-Automated Software Restructuring

By

Santosh K Singh Kesar

Thesis submitted in partial fulfillment of the requirements for the

Degree of Master of Science in Computer Engineering

Advisor:

Dr. James Fawcett

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER

SCIENCE

SYRACUSE UNIVERSITY

October 2008

Syracuse, New York

 2

Table of Contents

Table of Figures and Tables .. 5

Chapter 1 Introduction .. 7

1.1 Motivation ... 7

1.2 Goals ... 11

1.3 Research Statement ... 12

1.3.1 Code Restructuring versus Refactoring ... 15

1.4 Related Work .. 16

1.4.2 Code Rearrangements during Compiler Optimization .. 17

1.4.3 Code Restructuring in Hardware Platforms ... 19

1.4.4 Table-driven Lexical Analysis ... 20

Chapter 2 - Restructuring Techniques .. 24

2.1 Syntax of Scopes and Data Declarations .. 25

2.1.1 Feasible Regions based on Control Scopes ... 26

2.1.2 Inclusion of Local Data Constraints .. 28

2.2 Extraction of Functions ... 30

2.2.1 Extracting functions with no parameters ... 30

2.2.2 Extracting functions with parameter passing ... 31

2.3 Extraction of Methods... 33

2.3.1 Transforming local data into member data .. 36

2.4 Capturing Feasible Regions .. 38

2.5 Passing Parameters.. 39

2.6 Deciding which code to Extract .. 39

 3

2.7 Our Lexical Analysis Tools .. 40

2.8 Grammar Construction and Parsing .. 44

2.7 Summary ... 47

Chapter 3 Code Analysis .. 48

3.1 Analysis... 48

3.1.1 Parsing Scopes and Saving Scope information .. 51

3.1.2 Grammar Detectors .. 54

3.1.3 Parse Tree Construction ... 55

3.1.4 Parsing Data Declarations and Saving Data Spans .. 59

3.1.5 Selecting Feasible Regions .. 62

3.2 Implementation ... 66

3.2.1 Implementing Grammar Detectors .. 66

3.2.2 Implementing Parse Tree ... 68

3.2.3 Implementing Code Restructuring ... 74

Chapter 4 Semi-Automated Restructuring Results ... 78

4.1 Restructuring Functions .. 78

4.1.1 Extracting functions with no parameters ... 79

4.1.2 Extracting functions with one parameter ... 81

4.1.3 Extracting functions with many parameters .. 86

4.2 Restructuring Methods .. 89

4.2.1 Changes to Method Declared File .. 92

4.2.2 Changes to Method Defined File ... 93

4.2.3 Transforming local data into member data .. 94

 4

4.3 Restructuring functions in multiple passes ... 95

Chapter 5 Contributions, Conclusions, and Future Work ... 99

5.1 Reviewing Research Statement... 99

5.2 Contributions... 100

5.2.1 Accomplished Work .. 101

5.3 Future Work .. 103

Appendix ... 105

A.1. Large Method .. 105

A.1.1. Restructured Method in First Pass ... 108

A.1.2 Restructured Method in Second Pass .. 111

Bibliography ... 114

 5

Table of Figures and Tables

Figure 1.1- Large Sized Functions in imaging research
[2]

 source code .. 8

Figure 1.2 - Internal and External Dependencies in GKGFX Library, Mozilla 1.4.1 10

Figure 2.1 – Syntax of Scopes .. 25

Figure 2.2 – User Entered Constraints .. 40

Figure 2.3 – Sample output from Tokenizer Module ... 42

Figure 2.4 – Sample output from Semi-Expressions Module ... 43

Figure 2.5 – Top Level Structure of Parse Tree .. 45

Figure 3.1 - Different Levels in Parse Tree .. 49

Figure 3.2 – Hypothetical view of Hierarchy Stack ... 53

Figure 3.3 – Different types of Nodes in Parse Tree .. 56

Figure 3.4 – Building of First Three Levels ... 57

Figure 3.5 – Top Level Containment diagram of Parse Tree ... 61

Figure 3.6 – Line number criteria for Feasible Regions ... 62

Figure 3.7 – Top down approach for determining parameters.. 64

Figure 3.8 – Bottom up approach for determining parameters ... 65

Figure 3.9 – Two-Way approach for determining parameters .. 65

Figure 3.10 – Class Diagram of Parsers using Utility Class ... 67

Figure 3.11 – Class Diagram of ICRNode Interface .. 68

Figure 3.12 - Class Diagram of RootObj .. 69

Figure 3.13– Class Relationship diagram of Parse tree Objects ... 70

Figure 3.14 – Class Diagram of Different Node Types .. 71

Figure 3.15 – Class Diagram of DataObject ... 73

 6

Figure 3.16 – Class Diagram of TempContainer .. 74

Figure 3.17 – Class Relationship diagram of feasibleRegions and newFunctions 75

Figure 3.18 – Class Relationship diagram of FunctionParser and fileManager 76

Figure 4.1 – Restructuring source code in multiple passes ... 98

 7

Chapter 1 Introduction

1.1 Motivation

Software code structure is concerned with partitioning and organizing software source code

in a logical fashion. This may be carried out by creating a top level partitioning of software

into modules, and, in each module, separating processing into classes and, if the language

supports it, global functions. Careful partitioning of software components makes

development, testing and verification processes more effective.

Software Components are tested for correctness of functionality in unit tests, for

compatibility with other project software in integration tests, and demonstrate that they meet

their specified obligations in qualification tests. Software Development and testing becomes

easier when working with well structured components and source code functions. It‟s hard to

understand and correctly make changes to large source code files, especially if there are

many files with large functions and no self documentation. It takes a lot of time and effort to

trace through large functions to understand their functionality. This is especially so if there

are many variables of interest whose changes need to be traced while the code is running. . It

is quicker and easier to understand, debug, trace, and test the functionality of small

components.

Maintenance and support is an ongoing process in software development once a

product is released and in use. Reviews and requests from clients and their users may require

changes to the source code, or verification that an observed behavior is correct. If source

code is lengthy and hard to understand, it is more likely that new errors may be inadvertently

added to the software during these maintenance activities. Considering all these issues,

 8

software structures, and size of source code components, such as functions, play an important

role in development and maintenance activities. .

An obvious question is: “Is software developed by researchers and professional developers

likely to have structural problems”. Is software badly structured often enough to warrant

research on ways to improve that?

Below is the summary of large function sizes of test
[2]

 source code used at a facility
[3]

for medical imaging research.

File Function Name Number of lines

Weights_calculation.cpp WeightTwoQuadrantsFactor 280

Weights_calculation.cpp FactorsTwoRays 206

Weights_calculation.cpp AreaWeightFactor 223

Weights_calculation.cpp W_Calculate 377

Weights_calculation.cpp Main 191

Weights_calculation.cpp WeightBottomFactor 164

Mlr800fs.c Emsid2_new 724

Mlr800fs.c Main 851

Mlr800fs.c Ect 3608

Mlr800fs.c emsid3_new 749

Mlr800fs.c emsid4 516

Figure 1.1- Large Sized Functions in imaging research
[2]

 source code

An interesting analysis was performed on Medical Image Processing software code
[2]

 that is

in use at a facility
[3]

. This application is comprised of large source code files. For example,

Referring to the figure 1.1, the file „mlr800fs.c‟ has a main function with 851 lines, function

 9

„ect‟ with 3608 lines, function „emsid2_new‟ with 724 lines, function „emsid3_new‟ with

749 lines, and function „emsid4‟ with 516 lines. Given this application to test, debug or make

enhancement. It‟s a daunting task to make any changes - very time consuming and prone to

errors.

Another interesting analysis that was performed on an open source browser, Mozilla

version 1.4.1 in the study Structural Models for large Software Systems
[1]

. The software

system was composed of 6,193 files. To understand the complexity of these large files, a type

based file-to-file dependency analysis was performed on one of the Mozilla libraries,

GKGFX, responsible for browser rendering, with 598 files. The analysis determined that the

GKFGX library, and many other libraries in that system, as well, contained large mutually

dependent file sets. Also, Fan-in – The number of files dependent on a given file, and fan-

out – The number of files a given file depends on were evaluated and found to be, in some

cases, exceedingly large.

 10

Figure 1.2 - Internal and External Dependencies in GKGFX Library, Mozilla 1.4.1

 The above figure represents dependency relationships among files in the Mozilla

GKGFX library. In this figure, the smallest disk represents individual source files; all larger

disks represent strong components – set of mutually dependent files. The number at the

center of each circle indicates the size of a strong component – the number of files. A line

between circles shows dependency among files.

The above figure also shows internal and external dependency of the largest strong

component within the GKGFX library. This figure reveals that the strong component uses

services of many individual files and members of other strong components. In addition, the

figure adds dependencies on files, outside the same strong component, on files inside,

indicating services it provides to these files.

The above analysis reveals important issues with respect to development and

maintenance of large software systems in general. If dependencies between sections of

Smallest disk is a file

Dependency Lines

Number indicates
the size of a strong
component, in this
case, 60 mutually
dependent files

 11

source code are dense, that results in undesirable tight coupling between files. Changes made

to one file of a strong component section in the source code would affect all the other files in

that section. In making changes, one needs to know how the changes would affect every one

of them. Large functions and files would add more difficulty understanding the dependencies

and functionality of such source code.

 In this section, we have discussed the analysis two software applications, one with a

large number of mutually dependent files, and one with very large functions. . We conclude

that working with large files and making changes, fixing bugs and understanding behavior in

either of these applications is difficult and time consuming. It took us three weeks just to

collect all the parts of Mozilla 1.4.1 and learn how to build it. Several student researchers -

not the authors of the code - spent a lot of time with the imaging research
[2]

 code and still do

not completely understand how it functions.

1.2 Goals

Our goal in the current research is to develop means to make semantic preserving

transformations on source code that improve its structure, and to provide a framework – a

software library - for this and future research on code restructuring. In this research, we

perform syntactic analysis of existing source code and create a prototype implementation that

performs semi-automated software restructuring of source code to create smaller, more

manageable components from existing source code, without changing its behavior. This

makes it easier for software developers and testers to look closely at the functionality of

source code. It improves the ability to test functionality, document sections of source code

precisely, and perform maintenance effectively.

 12

 Semi-automated software restructuring means a user guided restructuring of software

source code in the form of extraction of functions and methods. In this Thesis, we use the

term „function‟ for a global function, and the term „method‟ for a member function of a user-

defined type, such as a Class or a Structure. Our implementation provides a framework for

extracting smaller functions from large functions, and smaller methods from large methods,

from an existing source code, by an automatic process that may be guided by user input. This

restructuring process requires analysis of existing source code, determining feasible regions

where a new function or a method can be extracted, and finally making suitable changes to

the original source that preserves its original behavior. The changes include creating a new

function or a method from the extracted region, which was determined to be a feasible

region, and replacing the removed code with a function or method call.

 We plan future work, based in part on the framework provided here, that extracts

objects from procedural code and reduces file-to-file dependencies by repackaging code

(essentially bringing dependencies into one file where that is practical), eliminating global

data references, and isolating dependent file sets for later redesign. Our contribution in this

thesis provides a framework for source code analysis and restructuring, which can be used in

this future work to study large, complex software systems.

1.3 Research Statement

Our research goal is to attack one aspect of software structure, the size of its functions, in an

attempt to improve it by extracting reasonably small functions, say a few scores of lines,

from much larger functions, like those of the imaging research
[2]

 code. We will create a

prototype for semi-automated restructuring of software code that makes semantic preserving

transformations on code to reduce the size of selected functions by these extractions. Thus,

 13

by restructuring, we mean breaking down existing source code into smaller entities, without

changing its external behavior. This process involves scanning source code functions,

identifying the viable regions where functions can be extracted and finally extracting

functions. Once functions are extracted, suitable changes have to be made to the source code

so that its behavior is maintained. In this work, our targets are standard C and C++ language

source code. We are making this process semi-automatic, which means the processing of

source code is done automatically, however the user has some control over the processing.

Restructuring source code involves scanning and parsing the source and performing a

syntactic analysis of the code. Syntactic analysis identifies program structure - sections of

source code that can be changed in order to improve its structure.

 Software restructuring starts by identifying feasible regions where functions can be

extracted. These feasible regions are determined by control scopes within functions, in the

source code. Also, feasibility may be affected by the extent of local data declarations.

Identified feasible regions are further examined to determine the number of parameters that

need to be passed if a function is extracted from the feasible region. It is desirable to pass

only a very small number of parameters, in order to keep the extracted function easy to

understand and test.

 The last step in the Code Restructuring process is to extract functions from the source

code and make necessary changes in the original source so that the original functionality of

the code remains unchanged. Once the analysis is complete, a new file is written in a

separate location with code extracted from original locations. This involves making calls into

newly created functions from the original location where the function was extracted, and

passing variables that are to needed to preserve original semantics passed to the new

 14

functions. The variables are passed by reference so that any changes to those variables inside

the new functions will be reflected in the calling function. This maintains the same external

behavior of the code as it was before code restructuring.

 Thus, the restructured code has extracted feasible regions, based on the code

restructuring criteria of number of lines from the feasible region and number of parameters to

be passed. If the number of parameters to be passed exceeds a defined limit, and the

function being decomposed is a member of a class or structure, the parameters are redefined

as fields of the class or structure. This eliminates the complexity of passing a large number

of parameters. In this approach to simplify factoring of legacy and large software code, we

provide a semi-automated source code parser to identify sections of source code which can

be restructured by extracting functions, then making suitable modifications to the original

source to extract them without making semantic changes to the code.

 Another interesting area where software code restructuring can be extended by future

work is the use of semantic cues to more intelligently select lines of code from feasible

regions. These topics are discussed in chapter 5 as a future enhancement.

Another future goal of our research is to provide the user with a lot of information about

the consequences of extraction and enable human decision making to select from a

continuum of feasible extractions, e.g., inserting human decision making into a highly

automated process by providing sophisticated visualization processes.

Code refactoring is widely discussed in the literature and several code development

environments support it. We address differences between our restructuring and code

refactoring in the next section.

 15

1.3.1 Code Restructuring versus Refactoring

Both code restructuring and refactoring are concerned with improving code structure

in some sense, and both focus, largely, on logical structure. Both intend to modify code

without changing its semantics. That is, by modifying syntax with semantic preserving

transformations.

 The restructuring process developed in this research, programmatically examines

code within a large method, determines all of the regions which are feasible
1
 for method

extraction, and then attempts to minimize the number of variables that must be passed into

the new method. Both of these activities require a considerable amount of machinery, which

is the topic of this and subsequent chapters in this Thesis. Traditional refactoring requires

manual selection of code to extract, while restructuring automates that entirely. So a

difference between our restructuring and refactoring is in the level of automation applied to

the task. Refactoring addresses other factors as well, so its scope of interest is broader than

ours here [2]:

1. Changing names of interfaces, classes, functions, fields, variables, and moving

classes and packages.

2. Turning anonymous classes into nested classes, moving nested classes to top-level

classes, creating interfaces for concrete classes, moving methods and fields between

sub and super classes.

1
 Feasible regions are determined by the syntax of scoping. Control constructs, for example, each have a

scope of definition, and the way these scopes are distributed across a function’s code determines where

extraction is feasible. In large, poorly structured code there may be scores of control scopes with both

sequential and nested placement in a large function, and it can be difficult to determine appropriate regions

for extraction without a lot of automated support.

 16

3. Changing the code within a global function or class: turning local variables into class

fields, turning selected code in a method into a separate method, and turning fields

into properties.

There are many platform specific tools, like Visual Studio and Eclipse that support

software refactoring. Refactoring, supported by these tools, is based on user selection of code

to be refactored, rather than automated analysis, as reported here.

In both the literature and in widely used code development environments, like Visual

Studio
[12]

 and Eclipse
[13]

, extraction of methods by refactoring requires users to decide which

parts to extract, with no help from the environment, to select that part in a text editor, and

then turn the selection over to the refactoring process to automate packaging of the extracted

code into a method and call the method in place of the extracted code.

Restructuring, as defined in this research, has much narrower scope, but is much more

ambitious. Our focus is exclusively on factoring out parts of large class methods and global

functions into a composition of smaller functions. The difference between our goals and

those of refactoring for this activity is in the level of automation applied to the

transformation.

1.4 Related Work

There are many areas in which similar concepts and ideas are used to perform analysis and

transformation activities to effectively use resources, and improve performance. In this

section, we detail the areas in which ideas similar to the ones in this research are used.

 17

1.4.2 Code Rearrangements during Compiler Optimization

There are many areas where code rearrangements are performed, based on the source code

compiler optimizations. Below is a discussion of various tools and packages such as compiler

driven products and emulator software that perform software code restructuring.

1.4.2.1 Compiler-Directed Code Restructuring for Improved Performance

Code Restructuring is performed extensively in compilers and hardware platforms for

optimization and parallelism. One such implementation is Compiler-Directed Code

Restructuring for Improved Performance of MPSoCs
[4]

. This study deals with code

optimization for Multi-Processor-System-on-a-Chip (MPSoC) architectures in order to

minimize the number of off-chip memory accesses. It deals with a strategy that reduces the

number of off-chip references due to shared data. It achieves this goal by restructuring

parallelized application code in such a fashion that a given data block is accessed by parallel

processors within the same time frame, so that its reuse is maximized while it is in the on-

chip memory space.

1.4.2.2 Compiler-directed code restructuring for reducing TLB energy

Another application area where Code Restructuring is used in Compiler technology is

Compiler-directed code restructuring for reducing TLB energy
[5]

. This is a software-based

technique for data TLBs, has considered the possibility of storing frequently used virtual-to-

physical address translations in a set of translation registers (TRs), and using them when

necessary instead of going to the data TLB. The idea is to restructure the application code in

such a fashion that once a TR is loaded, its contents are reused as much as possible.

 18

1.4.2.3 Compiler-Directed Code Restructuring for Improving I/O

Performance

A similar approach to Code Restructuring is used for Improving I/O Performance of

applications through Compiler-Directed Code Restructuring
[6]

. It is a restructuring scheme

for improving the I/O performance of data-intensive scientific applications. This

implementation improves I/O performance by reducing the number of disk accesses through

a new concept called disk reuse maximization. In this context, disk reuse refers to reusing the

data in a given set of disks as much as possible before moving to other disks.

1.4.2.4 FORTRAN Vasto90 Tool

There are many language specific tools available with some well known programming

languages that perform software code restructuring. Among the prominent ones is the

FORTRAN tool Vasto90
[7]

 which is FORTRAN language tool to transform and simplify

“spaghetti” code to Fortran 77 style code. Some tools are now becoming available to further

transform Fortran 66 and 77 to take advantage of the new Fortran 90 syntax. There are

various versions and optimizations such as Vast77to90.

1.4.2.5 Code Restructuring in Emulator Software

Software code restructuring is also used in emulator software used in system analysis

Software emulating hardware for analyzing memory references of a computer program
[11]

 is a

method for analyzing a computer program stored in a memory, the computer program

including a plurality of computer executable instructions for execution on a target hardware

platform.

 19

1.4.3 Code Restructuring in Hardware Platforms

Still other Code Restructuring is performed on many hardware platforms to improve

efficiency of software code for parallel execution.

1.4.3.1 Improving Efficiency in Embedded DSPs

Code Restructuring for improving execution efficiency, code size and power consumption for

embedded DSPs
[8]

 is a study to improve the performance of embedded DSP processors. In

this approach, a reduction in generated code size and improved parallelism is achieved by

exploiting the parallelism present in Instruction Set Architecture of DSP processors.

Restructured code runs in parallel thereby improving the performance, power consumption

and increased throughput for devices for DSP Processors like Personal Digital Assistants,

Cellular phones and pagers.

1.4.3.2 Code Restructuring in Virtual Hardware Systems

Code Restructuring is used in virtual hardware systems in the study Computer Storage

exception handling apparatus and methods for virtual hardware systems
[9]

. In a design system

using virtual hardware models, a filtering manager for filtering execution results and

determining which software instructions are candidates for restructuring. This approach is

targeted to improve device exceptions and reduce overheads or crashes. In some examples,

illegal address range instructions are identified based on exception records and restructured

software instructions may redirect memory access to an appropriate memory location thereby

enabling the use of hardware device drivers in conjunction with hardware emulations,

simulations or virtual models without requiring driver source code modifications.

 20

1.4.3.3 Code Restructuring by Source code Transformation

Code Restructuring is also used in Generating Hardware Designs by Source code

transformation
[10]

. This study is targeted towards field-programmable gate arrays. The

implementation is a user-customizable transformation system for a high level hardware

description language.

1.4.4 Table-driven Lexical Analysis

Lexical Analysis is our first step in software code restructuring. There are many approaches

to do this, depending on the platform and language used. Among the prominent ones are Lex,

Yacc, Flex, Bison, and Antlr. In the following sections, we discuss these alternate

technologies and cite reasons why we chose to pursue our work using an “ad-hoc” grammar

analyzer. We start with an introduction to each of the alternate technologies:

1.4.4.1 Lex and Yacc

Lex is a part of BSD Unix, used to break up an input file stream or user entered characters

into meaningful elements that are recognized by a language. Lex is widely used in compiler

design to identify specific characters that make up constructs of a language. This process of

breaking up streams into identifiable characters is termed as lexical analysis and Lex is

widely used in doing so. Lex helps write programs whose control flow is directed by

instances of regular expressions in the input stream. It is well suited for editor-script type

transformations and for segmenting input in preparation for a parsing routine. Lex source is a

table of regular expressions and corresponding program fragments. The table is translated to

a program which reads an input stream, copying it to an output stream and partitioning the

input into strings which match the given expressions. As each such string is recognized the

 21

corresponding program fragment is executed. The recognition of the expressions is

performed by a deterministic finite automaton generated by Lex. The program fragments

written by the user are executed in the order in which the corresponding regular expressions

occur in the input stream. Lex is not a complete language, but rather a generator representing

a new language feature which can be added to different programming languages, called

``host languages.'' Just as general purpose languages can produce code to run on different

computer hardware, Lex can write code in different host languages. At present, the only

supported host language is C.

 Yacc is also a part of BSD Unix and is used to analyze the structure of an input

stream. It stands for “Yet another Compiler Compiler”. This analysis of input structure is

carried out for syntactical correctness of the input stream. Yacc works on words and not on

individual characters. This process of parsing is carried out in compilers to check for

correctness. In C Compilers, Yacc is to check for declarations, definitions of variables, to

match closing braces and for checking the terminating statements. Yacc provides a general

tool for describing the input to a computer program. The Yacc user specifies the structures of

his input, together with code to be invoked as each such structure is recognized. Yacc turns

such a specification into a subroutine that handles the input process; frequently, it is

convenient and appropriate to have most of the flow of control in the user's application

handled by this subroutine. Yacc provides a general tool for imposing structure on the input

to a computer program. The Yacc user prepares a specification of the input process; this

includes rules describing the input structure, code to be invoked when these rules are

recognized, and a low-level routine to do the basic input. Yacc then generates a function to

control the input process. This function, called a parser, calls the user-supplied low-level

 22

input routine (the lexical analyzer) to pick up the basic items (called tokens) from the input

stream. These tokens are organized according to the input structure rules, called grammar

rules; when one of these rules has been recognized, then user code supplied for this rule, an

action, is invoked; actions have the ability to return values and make use of the values of

other actions.

1.4.4.2 Flex and Bison

Flex and Bison are variants of Lex and Yacc, available in GNU. Flex and Bison are more

flexible and are available for other platforms like BSD Unix and Windows. They are used in

lexical analysis and parsing of input streams and have advanced features like user defined

type checks and optimization algorithms. Flex and bison are code-generating tools designed

to aid in compiler development. In particular, Flex will take a sequence of characters and

break them apart into tokens (words). It could be used to write code breaking this article into

a sequence of words and punctuation. Bison will group words into sentences, the sentences

into paragraphs and the paragraphs into sections.

1.4.4.3 Antlr

Antlr stands for “Another Tool for Language Recognition” and is a parser generator that is

used to create language recognition tools like compiler front ends. In addition to native

language recognition, there can be user defined rules for maintaining the syntax of a

language. Antlr is mostly used in creating pattern and language support tools and currently it

supports code generation for C, C++, Java, C# and Python. ANTLR, provides a framework

for constructing recognizers, compilers, and translators from grammatical descriptions

containing actions in a variety of target languages. ANTLR automates the construction of

 23

language recognizers. From a formal grammar, ANTLR generates a program that determines

whether sentences conform to that language. There can be user-defined grammar checks and

language recognition.

In the above section, we have introduced alternate technologies that we could have

used to pursue our restructuring. The technologies discussed above have some limitations

with respect to platform and compilers. Our framework would be platform dependent had we

used these technologies. Furthermore, the grammar we need is a very small subset of the C

and C++ languages, and the initial setup of these alternate tools isn‟t warranted for our

simpler tasks.

 Finally, the lexical analysis process that we have discussed in the above section is

only a part of our restructuring process. Lexical Analysis is followed by a determination of

the feasible regions where functions can be extracted, followed by extraction. By considering

all these issues, we decided that using the alternate tools would not be effective for our work.

We have seen several areas where code restructuring can be used in order to enhance

the performance of systems or make transformations in source code to use resources

effectively. When dealing with large software systems, experience shows that a lot of time is

spent on understanding the current functionality, determining changes needed in source code

and testing for errors. As pointed out earlier, there is also a risk of introducing incorrect code.

Looking from this point of view, one way to improve software production, quality, and

development time would be to improve the understanding of software source code and

decrease the time spent to reach an understanding.

 24

Chapter 2 - Restructuring Techniques

Code structure entails both logical and physical disposition of statements of the programming

language used for implementation. Logical structure is determined by the way code is

divided into global functions, classes, class hierarchies, relationships between classes, and

the way data is factored into collections. Physical structure is determined by how the logical

parts: functions, classes, and data structures, are placed into physical files and the way those

files are compiled, e.g., into libraries or execution images.

 In this chapter, we discuss the elements of source code such as control scopes and

methods of identifying data and its usage. We present methods of identifying feasible

regions, from which new functions can be extracted, and various constraints associated with

determining feasible regions. We also present examples of extracting functions and methods,

in different scenarios where parameters may be required for newly extracted function or

methods. We conclude this chapter, by discussing two modules
2
 - Tokenizer and Semi-

Expression, which are used for extracting the contents of source code and performing lexical

analysis. We also discuss construction of a simplified language grammar
3
, discussed in detail

in Chapter 3.

2
 A module is a logical separation in a software program, which may contain a header (.h) and a definition file

(.cpp)

3
 Grammar is identifiable program elements like basic and derived types, declaration and definition of

variables and data.

 25

2.1 Syntax of Scopes and Data Declarations

A scope is a section of source code where the existence and usage of a variable or object

declared in that particular scope is valid, and is invalid outside of it. Because of this, scopes

are usually associated with „lifetime‟ and „accessibility‟ of variables or objects. Programming

logic can also be included in scopes, such as conditional statements and repetitive source

code steps to perform an activity. Control Scopes are defined by a region enclosed by the

characters „{„ and „}‟. Scopes can exist at the function level, within functions, or nested

within other scopes. Scopes in the source code can be sequential, or can be nested within

other scopes. Below is a figure depicting sequential and nested scopes.

void function()

{

 int value=1;

 if(value > 0)

 {

 int x;

 for(x=0;x<5;x++)

 {

 //perform some action

 }

 }

 else

 {

 value = value + 1;

 }

}

Figure 2.1 – Syntax of Scopes

From the above figure, we can state the difference in accessibility of data variables

that exist in scopes. Referring to figure 2.1, the integer variable „value‟ can be accessed

anywhere in the function. The scopes „if‟ and „else‟ are two sequential scopes that exist in the

function, and „for‟ loop is a nested scope that is contained in „if‟. The variable „x‟ can be

accessed only in „if‟ scope. Every variable in the source code belongs to a control span which

„if‟ and „else‟ are two

separate scopes in the

function scope and can

access the local variable

„value‟.

For loop nested in

„if‟ scope.

 26

may be at global, function or control construct
4
 level. Also, we notice that control spans don‟t

overlap, each have their own region. For restructuring, source code is analyzed based on the

control spans and variables in a given span. Information about control types, the variables

declared in them, and their usage is stored in data structures that allow us to store and retrieve

information about feasible regions easily. This turns out to be a parse tree, in a unique

format. More information about our data structures is given in Chapter 3.

2.1.1 Feasible Regions based on Control Scopes

Every region enclosed in a control span is identified by the parsing process, and defines a

candidate region, which, if it matches user supplied criteria for selecting feasible regions,

number of lines of code subtended and number of variables that must be passed if extracted

as a function, are determined to be a feasible region. Every feasible region must be contained

or be contained by local control scopes, which may belong to a function or other control

types. Feasible regions cannot be identified across scopes. Below is an example showing a

region that may be, if it matches the user criteria, is a feasible region.

4
 By control constructs we mean loops, branches, exception handling clauses, and switch statements.

 27

void funTest(int arg1, int arg2)

{

 std::string inFile = "";

 try

 {

 Directory dir;

 Scanner scanr;

 scanr.doRecursiveScan(inFile);

 dir.RestoreFirstDirectory();

 arg1++;

 arg2++;

 int value = 1;

 int value2 = 2;

 }

 catch(std::exception& ex)

 {

 std::cout<< ex.what() << std::endl;

 }

}

From the code fragment above, we notice that the region for analysis belongs to a „try‟ block

exclusively and is entirely contained within one scope. All data defined in a scope can be

accessed in that particular scope itself. For enclosing scopes, variables declared in the outer

scopes can be accessed in inner scopes. Each control statement in source code, like loops or

conditional statements, define a scope and have a purpose of treating all code within the

scope as a single block of processing. New functions cannot be extracted across two or more

scopes as it breaks the code structure and the code can‟t be recompiled after such code

restructuring.

Source code region can be

analyzed to determine whether

or not it‟s a feasible region

 28

2.1.2 Inclusion of Local Data Constraints

To maintain the same external behavior of restructured code as that of the source code, the

data values that the source code operates on, should be the same for restructured and original

code. When deciding on feasible regions, an important criterion is data accessibility. Code

restructuring works by extracting new functions, from existing functions. If a local data

declaration is included in extracted function, the function must include the entire data span.

Thus, if an extracted function contains a data declaration which is used subsequently in the

calling function, the code won‟t compile. Below is an example to illustrate this:

void funTest(int arg1, int arg2)

{

 std::string inFile = "";

 try

 {

 std::string str=””;

 Directory dir;

 Scanner scanr;

 scanr.doRecursiveScan(inFile);

 dir.RestoreFirstDirectory();

 arg1++;

 arg2++;

 int value = 1;

 int value2 = 2;

 str.append(“string value”);

 }

 catch(std::exception& ex)

 {

 std::cout<< ex.what() << std::endl;

 }

}

From the selected lines, a new function cannot be extracted as the string „str‟ is used in the

last line of „try‟ scope. By extracting new function, the declaration and usage will be in

different functions, and the source code won‟t compile.

New function cannot be

extracted from the selected

lines.

 29

Likewise, if a new function is extracted following the declaration of data variable, the

variable has to be passed as a parameter to the newly extracted function. Considering the

same source code shown above, if a new function is extracted from line 7, the variables

„inFile‟, „arg1‟, „arg2‟ and „str‟ have to be passed to the new function, as it would be used in

the new function.

void funTest(int arg1, int arg2)

{

 std::string inFile = "";

 try

 {

 std::string str=””;

 Directory dir;

 Scanner scanr;

 scanr.doRecursiveScan(inFile);

 dir.RestoreFirstDirectory();

 arg1++;

 arg2++;

 int value = 1;

 int value2 = 2;

 str.append(“string value”);

 }

 catch(std::exception& ex)

 {

 std::cout<< ex.what() << std::endl;

 }

}

Also, the newly extracted function might have data that is being changed in the body of the

new function. The same data might have been accessed in the parent function, after the end

of feasible region, which was extracted as a new function. The point where data is accessed

after returning from the new function should have the latest value set by the newly extracted

function. For example, if the value of a variable is changed in the newly extracted function, it

should be reflected in the parent function when control returns from the new function.

Considering this, all parameters that are passed to the new function should be passed by

reference, so that any changes in the extracted function would reflect a corresponding change

in the calling function.

New function can be extracted

from the selected lines and

variables inFile, arg1, arg2 and

str have to be passed as

parameters.

 30

2.2 Extraction of Functions

Public functions are accessible from all other functions and classes, provided they

have seen the function definition. If it is defined in a different file, it has to be included into

the file from which a call has to be made. By restructuring functions, the newly extracted

functions should also be accessible in a similar fashion. Maintaining this, the newly extracted

functions will also have the same inclusion and accessibility properties of their parent

functions, from which they are extracted.

Considering a global function, let‟s see some results of how restructuring is

performed and what has to be considered during restructuring. First, we present the cases

where, no arguments are passed to the newly extracted function and following that,

arguments are passed to the new function.

2.2.1 Extracting functions with no parameters

Below is the source code of a global function – „FunTest‟

void FunTest(int arg1, int arg2)

{

 try

 {

 std::string inFile = "";

 Directory dir;

 Scanner scanr;

 scanr.doRecursiveScan(inFile);

 dir.RestoreFirstDirectory();

 arg1++;

 arg2++;

 int value = 1;

 int value2 = 2;

 }

 catch(std::exception ex)

 {

 exit(1);

 }

}

 31

Performing code restructuring on the above function, we extract a new function,

FunTest_1(). Below is the source code of the extracted function and changes that appear in

the parent function, FunTest.

void FunTest_1()

{

 std::string inFile = "";

 Directory dir;

 Scanner scanr;

 scanr.doRecursiveScan(inFile);

 dir.RestoreFirstDirectory();

}

void FunTest(int arg1, int arg2)

{

 try

 {

 FunTest_1();

 arg1++;

 arg2++;

 int value = 1;

 int value2 = 2;

 }

 catch(std::exception ex)

 {

 exit(1);

 }

}

From the above source code, we see that a new function „FunTest_1‟ is extracted

from the parent function „FunTest‟. In place where the body of extracted function was

present in „FunTest‟, before restructuring, a function call has been made to the new function.

We also notice that no arguments need to be passed to the new function.

2.2.2 Extracting functions with parameter passing

When new functions are extracted, data defined before the extraction and used within the

extracted code, determine whether or not parameters from the calling function have to be

passed to the new function. Recalling that our goal of restructuring is that the restructured

code should be able to build and behave, as before restructuring. In order to maintain that

 32

behavior, it‟s important to consider the scenarios which we‟ll discuss below while passing

arguments to new functions.

2.2.2.1 Scenario 1 – Argument declared before Function Call

In this section, we present an example where the extracted function requires one parameter to

be passed as an argument. Considering the source code in the section 2.2.1, with a global

function – FunTest, and performing restructuring, with the selected feasible region set to

span 6 lines, we notice that the argument „arg1‟ has to be passed to the newly extracted

function.

void FunTest_1(int& arg1)

{

 std::string inFile = "";

 Directory dir;

 Scanner scanr;

 scanr.doRecursiveScan(inFile);

 dir.RestoreFirstDirectory();

 arg1++;

}

void FunTest(int arg1, int arg2)

{

 try

 {

 FunTest_1(arg1);

 arg2++;

 int value = 1;

 int value2 = 2;

 }

 catch(std::exception ex)

 {

 exit(1);

 }

}

In this scenario, we notice that an argument „arg1‟ is passed to the newly extracted

function. This variable is passed to the parent function „FunTest‟ as an argument. We also

notice that the variable is passed by reference, so that the changes made in the new function

would reflect in the calling function.

 33

2.2.2.2 Scenario 2 – Determining the number of arguments

We have seen in the previous section that a single argument is passed to the newly extracted

function. Considering the same source code in Section 2.2.1, if we increase the number of

lines in a feasible region to 7, we notice that two arguments have to be passed to the newly

extracted function. Below is the restructured code:

void FunTest_1(int& arg1, int& arg2)

{

 std::string inFile = "";

 Directory dir;

 Scanner scanr;

 scanr.doRecursiveScan(inFile);

 dir.RestoreFirstDirectory();

 arg1++;

 arg2++;

}

void FunTest(int arg1, int arg2)

{

 try

 {

 FunTest_1(arg1, arg2);

 int value = 1;

 int value2 = 2;

 }

 catch(std::exception ex)

 {

 exit(1);

 }

}

We notice that as we increase the number of lines to be considered while analyzing a feasible

region, the number of arguments also are affected. By this, we conclude that the number of

lines in a feasible region and number of parameters to be passed are mutually dependent.

2.3 Extraction of Methods

We have seen the process of restructuring functions in Section 2.2.2. In this section, we

discuss restructuring methods. As mentioned earlier, we use the convention of calling a

member function of a user-defined type such as Class, Structure, Union or Enumeration, a

 34

method. Parsing methods and identifying feasible regions are essentially the same as that of a

function. However, restructuring of methods require changes in the method declared and

class declarations. Methods may or may not be declared and defined in the same file. Hence,

restructuring methods require two sets of changes – changes to the method declaring file and

changes to the method defining file. The newly extracted function is defined in the same file

as that of the method.

Below is the source code of a class definition, which includes two data members and

one method declaration.

class test

{

 private:

 int x;

 int y;

 public:

 void funTest(int arg1, int arg2);

};

Below is the source code of method defined file –

void test::funTest(int arg1, int arg2)

{

 try

 {

 std::string inFile = "";

 Directory dir;

 Scanner scanr;

 scanr.doRecursiveScan(inFile);

 dir.RestoreFirstDirectory();

 arg1++;

 arg2++;

 x = 300;

 int value = 1;

 int value2 = 2;

 }

 catch(std::exception& ex)

 {

 std::cout<< ex.what() << std::endl;

 }

}

Performing Restructuring on the above source code, with number of feasible region lines set

to be 8, requires changes to the class definition and method definition.

 35

Changes made to the restructured class definition:

class test

{

 private:

 int x;

 int y;

 public:

 void funTest(int arg1, int arg2);

 void funTest_1(int& arg1, int& arg2);

};

Changes made to the method defined file:

void test::funTest_1(int& arg1, int& arg2)

{

 std::string inFile = "";

 Directory dir;

 Scanner scanr;

 scanr.doRecursiveScan(inFile);

 dir.RestoreFirstDirectory();

 arg1++;

 arg2++;

 x = 300;

}

void test::funTest(int arg1, int arg2)

{

 try

 {

 funTest_1(arg1, arg2);

 int value = 1;

 int value2 = 2;

 }

 catch(std::exception& ex)

 {

 std::cout<< ex.what() << std::endl;

 }

}

We notice that the parameters „arg1‟ and „arg2‟ are passed to the newly extracted function by

reference. We also notice the function prototype of the new function is added to the class

definition. The other interesting result is that the variable „x‟ that is used in the new function

is not passed. This is because, both the functions belong to the same class and have access to

it‟s member data, to which x belongs.

 36

2.3.1 Transforming local data into member data

Let‟s consider the source code below:

void test::funTest(int arg1, int arg2)

{

 try

 {

 std::string inFile = "";

 std::string str=””;

 Directory dir;

 Scanner scanr;

 scanr.doRecursiveScan(inFile);

 dir.RestoreFirstDirectory();

 arg1++;

 arg2++;

 int value = 1;

 int value2 = 2;

 str.append(“string value”);

 }

 catch(std::exception& ex)

 {

 std::cout<< ex.what() << std::endl;

 }

}

We have spoken about this scenario in Section 2.1.2, where a new function cannot be

extracted from the considered feasible region declaring a local data variable, as the data

variable is used following the feasible region. This will leave the declaration and definition

of data in separate functions and the source code will not be compile. In such a case, the

variable can be added as a data member of the class. The variable to consider for the example

shown above is „str‟. The class definition for the above example is presented in Section 2.3.

By executing the idea of transforming local variable into a data member of the class, the class

definition will include a declaration of the considered variable in its class definition.

Below is the change that would occur in the class definition.

New function cannot be

extracted from the selected

lines.

 37

class test

{

 private:

 int x;

 int y;

 std::string str;

 public:

 void funTest(int arg1, int arg2);

 void funTest_1(int& arg1, int& arg2);

};

The changes to the method defined files are:

void test::funTest_1(int& arg1, int& arg2)

{

 std::string inFile = "";

 Directory dir;

 Scanner scanr;

 scanr.doRecursiveScan(inFile);

 dir.RestoreFirstDirectory();

 arg1++;

 arg2++;

}

void test::funTest(int arg1, int arg2)

{

 try

 {

 funTest_1(arg1, arg2);

 int value = 1;

 int value2 = 2;

 str.append(“string value”);

 }

 catch(std::exception& ex)

 {

 std::cout<< ex.what() << std::endl;

 }

}

We notice that the variable „str‟, of type string is added as a data member of class „test‟ and

the declaration that was there in the extracted function is removed. We also notice that the

function „funTest‟ can access the variable, as the variable and the method belong to the same

class. This idea is presented in Chapter 5 for future work.

 38

2.4 Capturing Feasible Regions

 The first stage in Code Restructuring is defining a language grammar and identifying

source code elements that comply with the defined grammar. By grammar, we mean

identifiable program elements like basic and derived types, declaration and definition of

variables and data. For extracting code fragments from functions, we need only a quite

simple grammar – much less than that required to define the entire language
5
.

For our implementation of Code Restructuring, we are only concerned with

identifying the scope of control constructs, as they cannot be split across function boundaries,

and with local data definitions and parameters passed into the parent function. Every

identified data type is associated with a control scope – the region in the source code where a

variable is defined and can be accessed. Every variable in the source code belongs to a

control span which may be at global, function or control construct
6
 level. A control span is

defined by curly braces „{„ and „}‟. All variables declared within two enclosed curly braces,

belong to that span. Source code is analyzed based on the control spans and variables in a

given span. Information about control types, the variables declared in them, and their usage is

stored in data structures that allow us to retrieve information about feasible regions easily.

This turns out to be a parse tree, in a unique format. More information about our data

structures is given in Chapter 3.

 Each control span that is identified in the parsing process defines a candidate feasible

region for extracting functions. Our criteria for selecting one of these regions for extraction

include number of lines subsumed by the region and the data that needs to be passed if a

5
 We focus on the C and C++ programming languages for this research.

6
 By control constructs we mean loops, branches, exception handling clauses, and switch statements.

 39

function is extracted. The number of lines a control structure spans represents the length of

the control span. That data is used to identify candidate feasible regions. Other optimization

techniques are included to identify regions that most qualify for extraction, based on the

number of parameters that must be passed, discussed below.

2.5 Passing Parameters

The determination of passing parameters to the newly extracted function depends

entirely on whether or not a variable declared in the analyzing function would be used in the

new function. This is affected by the number of lines that exist in a feasible region, and

eventually a new function. Constraints on the number of lines extracted and number of

allowed parameters are set by the user. If no candidate region satisfies the constraints,

extraction fails.

If parameters are to be passed to a new function, all parameters are passed by reference, so

that any changes made to the variable in the new function, would be reflected in the calling

function. This is done to maintain the behavior of source code, as the variable that was

changed in the new function, might be used in the calling function after its use in the new

function. In such a case, the variable value should be the latest that was changed in the

calling function. Passing variables by reference, also avoids creation of new copies of the

variables, which is a property of variables being passed by value. This avoids the overhead of

copying large data values like large objects and structures.

2.6 Deciding which code to Extract

For deciding what code to extract, we choose from candidates that satisfy user entered

constraints. These are values entered by the user, before the restructuring process.

 40

 User entered constraints include the file to be restructured, the maximum number of

parameters to be passed to an extracted function and maximum number of lines in an

identified feasible region. These are entered by the user as command line arguments. Code

Restructuring is carried out subject to these by an optimization process that attempts to

minimize the number of passed parameters by adjusting the lines extracted within a feasible

region. The process of filtering out feasible regions meeting these constraints is carried out

by analyzing the built parse tree for feasible regions. All regions that don‟t meet these

constraints are not identified as candidates for extracting functions.

Below is a screen shot of these user entered constraints –

Figure 2.2 – User Entered Constraints

2.7 Our Lexical Analysis Tools

 Our approach is built around a light weight parsing mechanism, in which we need

only limited system resources. We make use of a memory resident parse tree instead of

 41

building a dictionary of program elements or Program Execution Graphs (PEGs). In Chapter

3, we present a detailed discussion of the complete parsing mechanism, our parse tree data

structure, building and using the parse tree and identifying feasible regions - regions in the

source code that form candidates for extracting new functions.

 Tokenizing is a process of getting identifiable character sequences from an input

stream. The identifiable characters are the characters defined in the host language‟s character

set. This is carried out by a module called the Tokenizer. By module, we mean a cohesive set

of functionality, packaged as a unit and containing self-describing comments. Tokenizing is

similar to lexical analysis that is discussed in the previous section. The Tokenizer extracts

one word
7
 at a time from an input stream which may be a file, user entered values or a string

of characters. For our work we use a text stream for analysis. The Tokenizer is fundamental

to the program and is our starting point in performing analysis on the source file or stream.

The characters that are extracted from Tokenizer are called „Tokens‟ and are passed to the

next module that is Semi-Expressions. Below is a sample output from Tokenizer extracting

„tokens‟ from a source file:

7
 A word is a contiguous sequence of alphanumeric characters or contiguous punctuator characters. Certain

punctuators are identified as single character tokens, like ‘{‘, ‘}’, and ‘;’.

 42

Figure 2.3 – Sample output from Tokenizer Module

Comments and quoted strings are each returned as single tokens, or in the case of comments,

optionally discarded.

Semi-Expression is a module that gathers extracted tokens from a stream and makes

meaningful expressions required for analysis. There are single character tokens that

determine the end of a syntactically meaningful set of tokens, which are called „terminators‟,

e.g., „;‟, „{„, „}‟, and „\n‟ if its line starts with „#‟. Each set of characters up to and including

a „terminator‟ is called a Semi-Expression. Whenever a terminator is encountered, all the

tokens gathered till then becomes a Semi-Expression. All tokens that are extracted following

this would become the next Semi-Expression. Each of the Semi-Expressions, are passed to

the next module to perform grammar checking and analysis. The next set of tokens is not

extracted till the parsing of a current Semi-Expression is complete. Below is a sample output

from Semi Expressions that is generated from tokens extracted from a source file –

 43

Figure 2.4 – Sample output from Semi-Expressions Module

Tokens and Semi-Expressions can be extracted from a source file or a set of files in a

directory, or in a directory tree. This gives us the flexibility of extending our Code

Restructuring process across many files. We can also define different terminators for

defining end of a Semi-Expression. This gives us flexibility in parsing different native

languages and analysis of grammar can be performed based on the type of Semi-Expression

that was extracted from the input stream. Semi-Expressions are used by the parser for

building the parse tree by analyzing tokens that are contained in the Semi-Expression.

The next Step in Code Restructuring is parsing of Semi Expressions. This starts with

identifying expressions defined in our grammar. These expressions include identifying

classes, functions and data that are defined in the source code. Each identifiable expression

becomes a node that forms a part of the parse tree. Properties associated with nodes are

added, which include declared and defined file name, name of the expression, class or

function name, and line number. Scope hierarchy is maintained when building the parse tree.

 44

Functions and data which belong to a class become child nodes of that class in the parse tree.

All scopes defined in functions, become child nodes of that function. The types of nodes in

our parse tree are root node, class node, global function and data node, member function and

data nodes, and scope nodes. All nodes are descendents of the root node.

2.8 Grammar Construction and Parsing

Our Framework for Software Code Restructuring is based on building an n-ary parse tree of

program constructs and analyzing the parse tree. The parse tree consists of nodes, with each

node representing a program element, which can be a class, global function or data, member

function, private members, functions or scopes within functions. Nodes also contain

information about where program element is declared and defined in a file. The declaration

and definition of program elements may be in different files and different line numbers. The

line numbers of respective program elements are chosen to be our point of reference during

software restructuring. Nodes also contain information of where data is declared, defined and

where it is used. This enables us to keep track of data that may need to be passed into an

extracted function.

Software Restructuring is based on identifying feasible regions where functions can

be extracted. The criteria for identifying such regions include number of lines of candidate

region and the number of parameters that are to be passed, in order to preserve the semantics

of the code after Code Restructuring. These feasible regions may be scopes within functions

or sections of scopes, in the source code.

 The last step in Code Restructuring process is to extract the feasible regions from the

source code and make necessary changes in the source code so that the external functionality

of the source code remains unchanged by creating a new function and calling it at the point

 45

that its code was extracted. Once the feasible regions are identified, pointers based on the line

numbers are maintained determining the span of the feasible region. Based on these pointers,

a new restructured file is written in a separate location with feasible regions extracted from

their original location and written separately. This involves making calls into the newly

created function from the original location where the function was extracted along with

passing all the required variables that are to be passed to the new function. The variables are

passed by reference so that any changes to those variables will be reflected in the called

function. Thus, maintaining the same external behavior of the source code as it was before

code restructuring.

Below is a model of a hypothetical parse tree that is generated during the parsing of source

code.

Figure 2.5 – Top Level Structure of Parse Tree

 As we can see from the above figure, the root node is central to all nodes, and all

other nodes are derived from the root node. Each of the nodes, have specific properties

depending on the node type. The top level nodes are global functions, global data and User-

 46

Defined types like classes, structures, unions or enumerations. The global function nodes

have Scope nodes. The scope nodes determine the scope type and its span. Each of the Scope

Nodes may have other scope nodes within them. Every Scope node is associated with a

collection of data Objects, which we‟ll discuss in detail in the coming chapters. All properties

associated with a scope, like the number of lines it spans and all the data that is declared and

used, is stored in a Scope Node. The Global Data Node represents global variables in the

source code and has properties that keep track of its declared and defined line numbers, file

names and usage. The User-Defined type nodes are class, structure, union or enumeration

nodes. These nodes have two components – Member Function Nodes and Member Data

nodes. The member function nodes are Function Nodes that are members of the type and,

member data nodes are data members of respective types. All properties of Function nodes

apply to member function nodes and belong to a particular User-Defined type. The

description of each of the node type and its significance is discussed in detail in the following

chapters.

 The parse tree is generated dynamically as we parse the files and information is added

to nodes as the program elements are encountered. The determination of sections of files,

where software code restructuring can be performed, is done during the generation of the

parse tree. Once this determination is done, a new set of files is created with restructured

source files. This way the source files are maintained as they are and new set of files are

written to a separate location. This will also give a chance for the user to compare the two

files.

 47

2.7 Summary

In this chapter we have discussed steps in analyzing source code and determining

feasible regions, and extracting functions. In the next chapter, we discuss the various

techniques and implementation details needed to enable extraction of functions. Details of

the data structures we use, the process of building our data structure, and its components are

presented in Chapter 3.

 48

Chapter 3 Code Analysis

In this chapter, we detail all the steps and techniques we have used for identifying

feasible regions, from which we perform Software Code Restructuring. We also detail the

data structures we are using, the purpose and importance of them, and how the data structures

are grouped and co-ordinate. We also present various parsing techniques and detectors we

have used to validate source code elements with our grammar. The different types of data

structures – persistent and temporary, which are used to hold scope and data information of

source code, are detailed in this chapter.

 This chapter also details each of the implementation techniques and details of

components.

3.1 Analysis

In the earlier chapters, we have discussed using tokens and Semi-Expressions, which

are fundamental to parsing source code and, building our parse tree. The parse tree that is

created by scanning source code is our central data structure and is an m-ary tree, which

represents all the program elements of the source code. By program elements, we mean

global functions and data, classes, member functions and member data, local data in

functions, scopes in functions, and data in scopes. The parse tree also includes details of use

of data, like the line number and location of occurrences of data. The parse tree is created

dynamically by parsing through the Semi-Expressions and identifying elements that make the

parse tree. The parse tree is built with connecting nodes. Each node is an identifiable

component of the source code which may be a class node, function node or a scope node.

Each of these nodes, have data objects, which are objects with associated properties which

 49

exist in a particular node type. The details of data objects are described in the following

sections.

 The Semi-Expressions are parsed to identifiable program elements like classes,

functions, scopes and data. Whenever an identifiable type is encountered, a new node of that

particular type is created and added at respective position. The parse tree has a structure that

is different from the order in which program elements are encountered from the source code.

All nodes are derived from a „root‟ node, which is at the 0
th

 level. Level is term we use to

represent the depth of the parse tree, at a depth i, where i can extend from 0 to n. All nodes

are derived from the root node. Global functions, Global data, User-types like classes,

structures, unions and enumerations form the 1
st
 level nodes. Below is an example of a parse

tree with different levels of representations.

Figure 3.1 - Different Levels in Parse Tree

 50

Above is an example figure of parse tree, which is generated dynamically as and

when identifiable program elements are encountered, at the same time maintaining the level

order. Every node in the parse tree represents a User-Defined type, function or a scope. The

root node is defined at the global level, which is termed as Level 0 the parse tree. Global

Function and data, and User-Defined types like Classes, Unions, Structures and

Enumerations are derived from the root node, and are termed as Level 1. All member

functions and member data form Level 2 in the parse tree. All other scopes with in functions,

like a for, while, do-while, if, else, else-if are descendents of Level 2, and start with level 3,

going down the parse tree. The height of the tree is not balanced as there can different kinds

of depths in scopes and functions.

The root node is always at level 0 and all other nodes are derived from the root node.

All program elements are encountered dynamically, by parsing the Semi-Expressions are

added at appropriate level and it‟s not required that the Semi-Expressions have to be fetched

in the order in which the tree is built. Every time a Semi-Expression with an identifiable

program element is extracted from the source code, respective node is created and added to

the parse tree at appropriate level and position.

 As we can see from the figure above, the root node is the parent node of all other

nodes and occupies level 0. Global Functions and global data occupy level 1, together with

User-Defined types like classes, structures, unions and enumerations. All member functions

and member data of User-Defined types occupy level 2. All other scopes with in functions,

and scopes with in scopes, are added to the parse tree, as it appears in the source code.

 Every node in the parse tree has respective properties that are associated with the

node type. There are properties specific to classes, functions and scopes. And since each of

 51

the classes, functions and scopes, represent a different node type, each of the node type have

properties that are associated with that particular node type. There are some properties that

are common to all node types like declared line number, used line number, declared and

defined files. In the following section, we will detail the information of the data structures

that are used in our approach of Code Restructuring and the components of the parse tree.

The method of parsing and building of parse tree, identifying feasible regions for extracting

functions by parsing the parse tree are detailed in the following sections. The criteria used in

identifying feasible regions, with the process of extracting functions and redefining the

Restructured source code in a different file are detailed in the following sections. We begin

the next section with an introduction to scopes and saving scope information.

3.1.1 Parsing Scopes and Saving Scope information

We have discussed scopes in Section 2.1. A Scope is defined as a region in the source

code, where in data declared in that scope can be accessed and used in that particular scope

and can‟t be accessed outside of it. Scope can be a function scope, scope by itself, or

enclosed in another scope. It is represented as a region by characters between „{„ and „}‟ in

the source code. We have also mentioned in Section 2.1, that scopes belong to a control type,

which represents the program logic of that section and can be data structures, functions,

conditional or repetitive statements.

 Parsing of scopes requires associating scope with its control type. For this, it is

important to know the types of elements that form a scope. While parsing for scopes, we treat

user-defined data structures as one category and functions, conditional and repetitive

statements as another category. Every identifiable element in the source code is stored in our

parse tree, the details of which will be presented in the later sections of this chapter. Scope

 52

determination and identification is a two step process, which is closely connected to building

of parse tree. The process of building of parse tree is detailed in Section 3.1.3. In order to

determine scope, it is important to understand how the parse tree is constructed. We have

introduced parse tree in the previous section and looking at figure 3.1, we have different

levels in the parse tree. Parse tree is constructed partially in the first step, which are levels 0,

level 1 and level 2, according to the figure 3.1 This forms the base line scopes of the source

code, which includes the user-defined types, global data and global functions. User-defined

types include data structures such as classes, structures, unions or enumerations, their data

members and their member functions. All other scopes are derivatives of these scopes. The

scanner performs type analysis to determine the elements of first three levels in the parse

tree, which include type checks for user-defined types, global data – basic and derived types,

and global functions. The association of data members and member functions is done during

the processing of user-defined types. All other data and functions are referred as global

functions and data.

 Once this framework is laid out, the rest of the analysis is based on the „current‟

scope. For this, we make use a temporary data structure called the „hierarchy stack‟.

In the process of scanning functions, our technique maintains a hierarchy stack for keep track

of scopes and the current location in the source code. The hierarchy stack maintains the

information that‟s represented in the parse tree. Below is a figure depicting an example

hierarchy stack as it is built while parsing a user-defined function –

 53

Figure 3.2 – Hypothetical view of Hierarchy Stack

The figure above depicts an example of a Hierarchy Stack. When the function parsing starts,

the root, the enclosing class, if any, and the current function are pushed on to the stack.

Entries into the Hierarchy stack include pointers and type of entry, which is contained in a

data structure, whose details are presented in the following sections. The parser considers an

open brace „{„ as the start of scope. If the character „{„ is defined in quotes as a string or

character literal like „{„ in source code, it is omitted. Only valid „{„ character with out any

quotes is treated as a valid scope. There can also be anonymous scopes. Else every scope has

an enclosing control type like if, for, else, else-if .etc. Once a valid scope is encountered, a

ScopeObj, detailed in Section 3.2.2, is created on the heap and added to the parse tree. A

pointer to the ScopeObj is pushed on to the stack. This maintains the information about the

current scope that is being parsed. Whenever a valid closing brace, „}‟, is encountered, it is

treated as the end of scope. When end of scope is reached, all the properties of the ScopeObj

are updated, like the end line number. The pointer to the ScopeObj that was stored on top of

the hierarchy stack is popped.

Root

class

Function

try

catch

for

if
Top of Stack

Representing the current

Scope

Stack Top Pointer

 54

3.1.2 Grammar Detectors

Determining source code structure involves identifying the semantics of the source

code, through syntactical type analysis. This involves performing grammar checks to

determine the source code elements and adding the user-defined types to grammar detectors.

As we know, the entire source code structure is represented in our parse tree, and the parse

tree is built in two parses. Like wise, there are two types of grammar checks – Type parsing

and Function Parsing, which are performed in order to determine the entire structure of the

source code. Each of these techniques have pre-defined language type checks for basic types

such as integers, floats, double, vectors, sets etc.

Grammar detection also includes creating a repository of user-defined types such as classes

or structures. Every time a new user-defined type is encountered, it is added to the repository.

This process of determining the user-defined types is termed as type parsing. Type parsing

also checks for data members and member functions. All basic type checks are included

when determining the user defined types. Type parsing is done to build the first 3 levels of

the parse tree.

 Function parsing is associated with completing the building of parse tree, downwards

from level 3, which is done after the type parsing process is complete. Function parsing is

carried out by parsing the functions, which include determining the local data and associating

it with their respective scopes. This also gives us information about the life time and

accessibility of data variables.

 In both these processes, data is validated with the basic and derived types to

determine their exact types.

 55

3.1.3 Parse Tree Construction

The parse tree data structure is built dynamically and is done level by level. In this

section, we discuss the building of the parse tree and its purpose. The parse tree is built to

maintain the structure that exists in the source code. It is a connected data structure that is

represented as an n-ary tree, with nodes forming the components of the tree and is connected

by maintaining the relationships that are encountered by parsing the source code. The

structure in the source code is represented in a hierarchical fashion that can be used to

analyze the source code and identify feasible regions. Feasible regions are sections of source

code which are best candidates for extracting functions from the source code. The parse tree

maintains all the information that is required in understanding the structure of the source

code and determining the feasible regions.

The parse tree is made up of connected components called „Nodes‟. There are

different types of nodes, depending on the program elements that are identified. The different

types of nodes include a Root node, Class Node, Function Node and Scope Node. Each of

these nodes, have common and specific properties, depending on the type of the node. Every

Node type is associated with an object called the „Data Object‟, which represents the data

that is contained in or declared in that particular scope. The details of „Data Objects‟ are

described later in this chapter. All node types are derived from a common Root Node and

there is only one Root Node in a parse tree. Also, there is only one parse tree for a Code

Restructuring parse. Below is a sample figure of Parse tree –

 56

Figure 3.3 – Different types of Nodes in Parse Tree

The representations in the above figure mention about RootObj, ClassObj, FunObj,

ScopeObj and DataObject. These are different kinds of nodes that are represented as Objects

in our approach in building the parse tree. More details about them are provided in the later

sections, where we detail each of the Node Types.

 Parsing the Semi-Expressions involve checking for language keywords and

identifying the relevant source code expressions. The keywords that form the parse tree are

User-Defined Variables, Functions and Types – Classes, Unions, Structures and

Enumerations. The variable names and types are extracted from the Semi-Expressions and

added to the parse tree as a node of that type. Initially, when the parsing begins, a root node

of type RootObj, discussed in Section 3.2.2, is created. All other nodes are added to the parse

tree deriving from the root node and maintaining the hierarchy. In the following section, we

RootObj

FunObj

FunObj

ClassObj

FunObj

ScopeObj

ScopeObj

DataObject

 57

discuss the building of parse tree from root node onwards, building the tree downwards from

the root node.

 The parse tree is built dynamically and is built in two stages. In the first stage, the

first three levels of the tree are built. These include RootObj, Global Functions and Global

Data nodes, ClassObj nodes, discussed in Section 3.2.2, which include User-Defined types

like Classes, Structures, Unions and Enumerations, and member functions and member data.

The parse tree up to this, form the first three levels in the data structure. The following figure

depicts the first three levels of the parse tree and is built in the first parse.

Figure 3.4 – Building of First Three Levels

 In the first parse of scanning the source file, the first three levels of the parse tree is

built. The parser scans the Semi-Expressions extracted from the source code for built-in

language keywords like „class‟, „int‟, „for‟ and for User-Defined Functions. During this

phase, the parse tree is built with User-Defined Global Functions and Global Variables, and

User-Defined Types like Classes, Structures, Unions and Enumerations, and Member

Functions and Member data. Levels are maintained as the structure in the source code where

first the top level nodes like Global Functions and Global Data nodes are built, with User-

Root

Union 1 Global Function 1 Class 1 Global data 1 Global Function 2

Level 0

Level 1

Member Function 1

Member data 1 Level 2

 58

Defined Types. Also, member functions and data are added to the parse tree as child nodes to

respective type nodes. All User-Defined types form the „ClassObj‟ node, all functions from

the „FunObj‟ node, discussed in Section 3.2.2, and all Global Variables form the

„DataObject‟ node, discussed in Section 3.2.2. Every Node type has a collection of child

nodes. For Example, the Root Node has a collection of „ClassObj‟ nodes, and ClassObj node

has a collection of member function „FunObj‟ nodes and member data „DataObjects‟. The

parse tree built up to this point finishes the first parse of the source code. The rest of the

nodes are built in the next parse, where we focus on parsing source code functions from

where we get the scope and data variables‟ information. The parse tree up to this point is

built by TypeParser class, defined in the Section 3.2.1.

 The next step in building the parse tree is to scan the defined functions in the source

code. From this point onwards, the parse tree is built by FunctionParser Class, also

discussed in Section 3.2.1. Scanning of functions gives us the scope information and

information about variable life time and access regions. This part of building the parse tree is

an extension to the first step. The parse tree is extended in this step to include rest of the

information of the source code which includes information in functions. Other important

information that is required in determining the location and usage of variables. From this step

onwards, the focus is on building functions by parsing the source code. All data related

information is stored in „DataObjects‟. Each function has a collection of scopes, represented

as „ScopeObj‟ and Function data represented as „DataObjects‟. In the process of scanning

functions, our technique maintains a hierarchy stack for keep track of scopes and the current

location in the source code. The hierarchy stack, discussed in Section 3.1.1, maintains the

information that‟s represented in the parse tree. Initially, the top of stack pointer will be

 59

pointing to the current function, represented as „FunObj‟. When the parsing of the function

begins, a function object represented as „FunObj‟ is created on the heap and added to the

parse tree. A pointer to this is pushed on to the stack. For all data variables declared in the

function, „DataObjects‟ are created and are added to the function. In the earlier sections we

had mentioned each of the function to maintain a collection of DataObjects, representing the

data variables declared in that function. These variables can be used in anywhere in the

function. All the properties associated with data are maintained in the „DataObject‟. Once a

valid scope is encountered, a ScopeObj is created on the heap and added to the parse tree. A

pointer to the ScopeObj is pushed on to the hierarchy stack. This maintains the information

about the current scope that is being parsed. Whenever a valid closing brace, „}‟, is

encountered, it is treated as the end of scope. The pointer to the ScopeObj that was stored on

top of the hierarchy stack is popped.

 All the scopes in the function that is parsed are stored temporarily in the hierarchy

stack and are processed. At the same time, the parse tree is built by synchronizing the push

operations on to hierarchy stack and building the parse tree. The parse tree is completed by

processing all the functions in the source code. Once we have completed parsing all the

functions, we have all relevant information in understanding the structure of the source code.

The parse tree is built on the heap and is persistent through out the execution of the program.

3.1.4 Parsing Data Declarations and Saving Data Spans

Referring back to Section 3.1.2, we have discussed about types of parsers used in

detecting scopes and data. The process of detecting scopes and data is done simultaneously.

The determination of usage and spans of data is done during function parsing process, with

the help of hierarchy stack, discussed in section 3.1.1. Every User-Defined type, function or

 60

scope has a collection of DataObjects, that are declared in their scope. The reference point of

data spans and usage is its line number. Every DataObject has in its property a collection of

line numbers where it is used. In this section, we discuss how this information is got and

stored in the respective DataObject.

 The hierarchy stack represents the current scope being parsed. For example, if we are

parsing a method of a class, the contents of the stack include the root, the class and the

current method. All the entries in the stack are objects and maintain their collection of

DataObjects. When ever, a data declaration of any type is encountered – basic or user-

defined type, a new dataObject is created on the heap and added to the current scope‟s

collection of dataObjects. However, the source code line contains usage of a data variable;

the variable is searched in the current scope‟s collection of DataObjects. If the variable is

found, its usage is updated in the dataObject‟s properties. If the variable is not found, then a

copy of the hierarchy stack is created and the first element; which represents the current

scope, is popped out.

 The copy of the stack now contains the enclosing scopes of the current scope. The

variable is searched in every scope, by searching and popping the elements from the

hierarchy stack‟s copy. Once the variable is searched, the dataObject‟s properties are

updated. By this, we determine all the sections of the source code where a data variable is

used.

 As mentioned earlier in the earlier sections, every Node in the parse tree maintains a

collection of DataObjects that are declared in their scope. All properties of all data variables

declared in a scope are maintained by DataObjects. This enables us to maintain all

information of all data variables. Information about DataObjects in other scopes can be

 61

obtained by message passing mechanism, in object oriented terms. All DataObjects in a

Node of the parse tree are data variables local to that scope. That is the data for which there is

access in that node scope. For example, all DataObjects in a Function Node are local data in

that function and can be accessed anywhere in the function. Below is a figure depicting the

relation between any node type and

DataObjects –

Figure 3.5 – Top Level Containment diagram of Parse Tree

As we can see from the above figure, every node type maintains a repository of DataObjects

that are declared in their scope. All the properties associated with data variables are stored in

DataObjects. This information is used when identifying feasible regions for extracting

functions, which gives us the idea about how many data variables have to be passed when we

are pulling functions. Optimization techniques can be applied based on the line count of

Root

Global Function 1
Class 1

Global Function 2

Try Catch

Member Function 1

Collection
Of Local

DataObjects

Collection
Of Local

DataObjects

Collection
Of member
DataObjects

Collection of Local
DataObjects

Collection
Of Scope

DataObjects

Collection
Of Scope

DataObjects

 62

feasible regions and the number of DataObjects. More information about feasible region

selection and function extraction is discussed in the Section 3.2.3.

3.1.5 Selecting Feasible Regions

In this section, we discuss the process of identifying feasible regions, the criteria for

determining feasible regions, the types of algorithms and using feasible regions.

Identifying feasible regions is carried out after the parse tree is created and by

scanning the properties of nodes. The properties that are considered for each node is span of

the control type, which is the number of lines of a particular scope or function node spans.

This is the first step for short listing the candidate source code regions as „feasible‟ regions.

The maximum number of lines that a feasible region can span is decided by the user and is

passed as a command line argument. Below is a figure depicting the identification of

candidate „feasible regions‟ –

Figure 3.6 – Line number criteria for Feasible Regions

 Void source_code(int param)
{
Int _value = param;
Std::string str = “test”;
 ……
// Source code removed for
brevity

Try
{
 param++;
 if(param>5)
 param--;
}
Catch(std::exception& ex)
{
 std::cout<<“Exception!”;
 exit(1);
}

If the source code in this
section spans with in the
maximum line count, it

satisfies criteria #1, and is
thus identified as a candidate

„feasible region‟

Example Criteria #1 –
Feasible Region‟s maximum number

of lines
(Command Line Argument)

 63

Once a linear section of source code is identified, which is with-in the maximum

number of lines a feasible region can span, it satisfies the first criteria of maximum line

count. The next step is to determine the number of arguments to be passed, if a new function

is extracted from the identified feasible region. In the first step of identifying feasible region,

we short listed a section of source code from which a feasible region may be extracted. In

this step, we determine whether the short listed section of source code, meets the second

criteria of number of parameters to be passed, if a new function is extracted from that section

of source code. There are three methods of identifying a feasible region from a candidate

section of source code – Top Down, Bottom up and two-way approach. In all three

approaches, the maximum number of parameters that may be passed to an extracted function

is passed as a command line argument. Below is a discussion of all three approaches.

3.1.5.1 Top down Approach

In this approach, the identified candidate feasible region is analyzed for the number of

parameters to be passed if a section of this source code is extracted as new function, in a top

down fashion. From the identified feasible region, two pointers are used to analyze source

code – top and bottom pointer. The top pointer points to the first line in the code fragment

where as the bottom pointer points to the last line in the code fragment. The bottom pointer is

kept constant pointing to the last line in the code fragment. The top pointer is moved

downwards, one line at a time and in each step, the number of parameters to be passed from

that line to the end of code fragment is determined. The first criteria is to satisfy the condition

that the number of parameters at any point is less than the maximum number of parameter

count, which is passed as a command line argument. The section of code with least number

 64

of parameters to be passed or that which satisfies the maximum parameter limit is identified

as a feasible region. Below is a figure depicting this approach –

Figure 3.7 – Top down approach for determining parameters

As we can see from the above figure, the bottom pointer is kept constant and the top pointer

is moved downwards, one line at a time and determining the number of parameters to be

passed in each step.

3.1.5.2 Bottom up Approach

In this approach, the top pointer, pointing to the first line of the code fragment is kept

constant and the bottom pointer is moved up, one line at a time. In each step, the number of

parameters to be passed, if a function is extracted, is determined. The number of parameters

to be passed should not exceed the maximum limit that is passed as a command line

argument. Below is a figure depicting this approach –

 Int _value = param;

Std::string str = “test”;

 Str = str + “ string”;

 Param = ++ _value;

 …

34

35

36

37

… Constant bottom pointer

Moving top pointer downwards

 65

Figure 3.8 – Bottom up approach for determining parameters

As we can see from the above figure, the bottom pointer is moved up, one line at a time and

the top pointer is constantly pointing to the first line in the feasible area.

3.1.5.3 Two-way Approach

In this approach, both the top and bottom pointers are moved one line at a time,

downwards and upwards respectively. The top pointer is moved downwards one line at a

time, at the same time moving the bottom pointer upwards one line at a time; and

determining the number of parameters to be passed if a function is extracted from that

location in each step. Below is a figure depicting this approach –

Figure 3.9 – Two-Way approach for determining parameters

 Int _value = param;

Std::string str = “test”;

 Str = str + “ string”;

 Param = ++ _value;
……

34

35

36

37
…

Constant top Pointer

Moving bottom pointer

upwards

 Int _value = param;

Std::string str = “test”;

 Str = str + “ string”;

 Param = ++ _value;
……

34

35

36

37
…

Moving top pointer

downwards

Moving bottom

pointer upwards

 66

As we can see from the above figure, both the top and bottom pointers are moved towards

each other, one line at a time. At each step, the number of parameters to be passed if a new

function is extracted at that location is determined.

All the three approaches discussed above can be used for analyzing a feasible region.

However, for our implementation we use top down approach. The identified feasible region

should satisfy the maximum line number and maximum parameter count which is entered by

the user, through command line arguments. Once feasible regions are identified, all

information of the feasible region is stored in a data structure which is used when

restructured code is generated. More information about the data structures used are discussed

in Section 3.2.3

3.2 Implementation

In the previous sections, we have discussed the topics involved in parsing source code

and saving source code information in a format used during code restructuring. In this

section, we present the implementation details of all stages and data structures used in our

approach.

3.2.1 Implementing Grammar Detectors

Grammar detectors are used in Code Restructuring to identify source code elements

that represent the source code structure and, which are used to build the parse tree. The

building of parse tree is discussed in detail in the following sections. In this section, we

discuss the details about parsers that are used and how they work in determining the parse

tree elements.

 67

There are two types of Parsers that are used in grammar detection and building of

parse tree – TypeParser and FunctionParser. There is also a Utility class that is used by both

the parsers in type checking and determining the keywords and types. The parse tree is built

in two phases – First, the first three levels of the tree, the root, Global functions and data, and

user-defined types with member functions and data are built. Next, the functions are parsed

to complete the rest of the tree.

TypeParser is used in the first step in parsing to build the first three levels of the

parse tree. TypeParser class makes use of Utility Class for type checking and building of

parse tree. FunctionParser also makes use of Utility Class for type checking, determining

the scope objects and building the parse tree. The dataObjects are built dynamically in every

stage and the creation of dataObjects and setting their properties is done by both the parsers

with the services from Utility Class. Below is a class Diagram depicting the relations that

exist between TypeParser, FunctionParser and Utility Class –

+getBraceCount() : int

+setTypeVerbose() : void

+registerTypeToker() : void

+getUserDefinedTypes() : void

+getClassMembers() : void

+getToker() : Toker

+getTypeNames() : void

+getTypeVector() : string(idl)

-_braceCount : int

-isTypeVerbose_ : bool

-pToker : Toker

-_utility : Utility

-typeNames : string(idl)

-_cur_file : string(idl)

TypeParser

+processOpenBrace() : void

+processCloseBrace() : void

+storeControl() : void

+processData() : bool

+checkForGlobals() : void

+addGlobalData() : bool

+addGlobalFunction() : void

+isSemiUserType() : bool

+isSemiSTLType() : bool

+isSemiNativeType() : bool

+processGlobals() : void

+storeDataOccurances() : void

+processEmbeds() : void

+processStripped() : void

+validClose() : bool

+validOpen() : bool

+StoreScopeData() : void

+processParameters() : void

+isSpecialControlKey() : bool

+removeSpecialCharacters() : string(idl)

+removeQualifiers() : SemiExp

+processCopyConstructors() : void

Utility

+startAnalysis() : void

+setFunVerbose() : void

+registerFunToker() : void

+parseFunctions() : void

+setTypeParser() : void

+getToker() : Toker

+getTypeParser() : TypeParser

+getHierarchy() : tempContainer

+getTempControl() : string(idl)

+getStackPointer() : Stack

+getUtilityPtr() : Utility

+getHierarchyCopy() : Stack

+storeRoot() : void

+getRoot() : RootObj

-_forData : string(idl)

-braceCount_ : int

-_parsing_file : string(idl)

-curRoot : RootObj

-isFunVerbose : bool

-tempControl : string(idl)

-_hierarchy : tempContainer

-_h_copy : tempContainer

-_fToker : Toker

-_utility : Utility

-_typeParser : TypeParser

FunctionParser

11

1 1

Figure 3.10 – Class Diagram of Parsers using Utility Class

 68

As we can see from the above figure, both the parsers make use of Utility Class for

type checking and identifying language keywords. Once the type checking of Semi-

Expressions is done, appropriate object types are created on the heap and added to the parse

tree. The identification of feasible regions is done partially during type analysis and the

FunctionParser class contains pointers to identified feasible regions. The complete

description and building of parse tree are briefed in the following sections.

3.2.2 Implementing Parse Tree

We have seen in Section 3.1.3, that the parse tree is a collection of connected nodes.

Every node has its own unique properties, based on the type of the node. In this section, we

discuss the implementation details of all the node types that form the parse tree.

 Every Node is represented as an object that is persistent through out the execution of

the program. There are different classes representing different Node types. Hence, we have a

Class Node, Function Node and a Scope Node. Each of the nodes, have „Data Objects‟ that

are contained in their class. All node classes are derived from the Interface „ICRNode‟.

ICRNode is an interface with method declarations that are common to all node types and the

implementation to which have to be provided by respective classes that are derived from

„ICRNode‟. Below is a class diagram of the Interface „ICRNode‟ –

+getParent() : ICRNode

+getInterface() : ICRNode

+getDataInterface() : dataObject

+_typeName() : string(idl)

«interface»ICRNode
ICRNode

Figure 3.11 – Class Diagram of ICRNode Interface

ICRNode is the interface for any type of Node. The Root Node which is the parent node for

all other nodes is derived from the interface ICRNode. All other types of nodes are derived

 69

from the Root Node. And hence, all the nodes that are derived from Root Node have to

implement the pure virtual functions declared in the interface, including the Root Node. Each

of the node types, have their own version of implementations for the pure virtual functions.

In addition to implementing the pure virtual functions, there are additional functions for each

of the node classes that are specific to that particular node type. In the following section, we

detail the class implementation of each of the node types. We start with Root Node, which is

derived from all of the other node types. In our implementation of Root Node, we term the

class representing the root node as „RootObj‟.

Below is the class diagram of „RootObj‟ –

+getParent() : ICRNode

+getInterface() : ICRNode

+getDataInterface() : dataObject

+_typeName() : string(idl)

«interface»ICRNode
ICRNode

+displayRootStats() : void

+~RootObj() : void

+getParent() : RootObj

+getInterface() : RootObj

+storeClass() : void

+_typeName() : string(idl)

+getClassVector() : ClassObj

+getDataInterface() : dataObject

+storeGlobalFunction() : void

+storeGlobalData() : void

+getGlobalFunInterface() : FunObj

+getClassInterface() : ClassObj

-_globalFunctions : FunObj

-_globalData : dataObject

-_Classes : ClassObj

RootObj

Figure 3.12 - Class Diagram of RootObj

As we can see from the above figure, the RootObj class is derived from the interface

„ICRNode‟ and implements all the pure virtual functions that are declared in the interface.

 70

The RootObj Node Class has global data and global functions in addition to the implemented

functions of ICRNode. The behavior of RootObj class is similar to a base class for other

Node types. All other Node types are derived from RootObj Node. Below we will start with a

top level Class Relationship diagram depicting the relationships that bind RootObj, ClassObj,

FunObj, ScopeObj, and the DataObject Classes. In the following sections we brief all the

classes in detail.

Top Level Class Relationship Diagram of All Objects –

RootObj

FunObj ClassObj

DataObject1*

1 *

1

*

DataObject

DataObject

1

*

1 *

FunObj DataObject

1 *

1

*

ScopeObj

DataObject

1

*

Collection of Scopes

in the Function

Collection of Global Variables

Collection of Global Functions

Collection of User-Defined Classes,

 Structures, Unions and Enumerations

All Associations of DataObjects are a collection of Variables declared in that Scope

1*

1*

ScopeObj

DataObject

Collection of Scopes

in Member Functions

1
*

1

*

1

*

Collection of Member Functions

Collection of Scopes

within Scopes

Collection of Scopes

within Scopes

Figure3.13 – Class Relationship diagram of Parse tree Objects

 71

Below is a figure representing ClassObj, FunObj and ScopeObj Classes –

+getParent() : ICRNode

+getInterface() : ICRNode

+getDataInterface() : dataObject

+_typeName() : string(idl)

«interface»ICRNode
ICRNode

+displayRootStats() : void

+~RootObj() : void

+getParent() : RootObj

+getInterface() : RootObj

+storeClass() : void

+_typeName() : string(idl)

+getClassVector() : ClassObj

+getDataInterface() : dataObject

+storeGlobalFunction() : void

+storeGlobalData() : void

+getGlobalFunInterface() : FunObj

+getClassInterface() : ClassObj

-_globalFunctions : FunObj

-_globalData : dataObject

-_Classes : ClassObj

RootObj

+displayClassStats() : void

+getParent() : RootObj

+getInterface() : ClassObj

+_typeName() : string(idl)

+storeData() : void

+getClassName() : string(idl)

+getDataInterface() : dataObject

+storeName() : void

+storeFunction() : void

+getFunObject() : FunObj

+getDataObject() : dataObject

+getClassFunctions() : FunObj

+storeType() : void

-parent : RootObj

-_ClassFunctions : FunObj

-_ClassData : dataObject

-_name : string(idl)

-_type : string(idl)

-decLineNum : int

-file_name : string(idl)

ClassObj

+displayFunStats() : void

+setDeclFile() : void

+setDefnFile() : void

+setEndLine() : void

+getDataInterface() : dataObject

+getFunType() : string(idl)

+setFunName() : void

+getParent() : RootObj

+_typeName() : string(idl)

+addScope() : void

+getFunctionName() : string(idl)

+getInterface() : FunObj

+setClassParent() : void

+storeFunData() : void

-_pRoot : RootObj

-_pClass : ClassObj

-_type : string(idl)

-_funName : string(idl)

-_funScopes : FunObj

-_funData : dataObject

-decl_file : string(idl)

-defn_file : string(idl)

-startLine : int

-EndLine : int

FunObj

+displayScopeStats() : void

+_typename() : string(idl)

+getParent() : RootObj

+getInterface() : ScopeObj

+setStartLine() : int

+setEndLine() : int

+getDataInterface() : dataObject

+setParentFunction() : void

+setLevel() : void

+setInnerScopes() : void

+setParentScope() : void

+addScopeData() : void

-name : string(idl)

-_parentFunction : FunObj

-_parentScope : ScopeObj

-_childScopes : ScopeObj

-_localData : dataObject

-startLine : int

-EndLine : int

ScopeObj

Figure 3.14 – Class Diagram of Different Node Types

 72

The above figure is a top level Class Diagram of different Node Types. The different

Node types are Root Node, Class Node, Function Node and Scope Node. Each of the Node

types are represented as RootObj, ClassObj, FunObj and ScopeObj respectively. RootObj

Class acts as a base class for all other node types. All other node types are derived from

RootObj and implement the interface ICRNode. Each of the node types have their own

implementations of the function declarations in the ICRNode interface. In addition to that,

each of the node types, have additional properties associated with their node type, with

functions to access these properties. All of these node types are represented as Objects and

are created and added to the parse tree when encountered during parsing of the source code.

The process of parsing the source code and building the parse tree is discussed later in this

chapter.

 All of the node types have a collection of DataObjects. DataObjects represent the data

is declared in respective node‟s scope. By Scope we mean a boundary in the source code

where a variable can be accessed. DataObjects are also represented as classes with all the

required properties. There are a collection of properties that are associated with a

DataObject. DataObjects are used to determine the data that is bound to a section of source

code. In the process of Code Restructuring, decisions are made to determine feasible

regions which are the candidates for extracting functions. Since each of the node types are

used as a reference to determine feasible regions, DataObjects are used to shortlist feasible

regions from candidate feasible regions, based on the data is bound to a node. The

discussion of identifying feasible regions and extracting functions are detailed in next

Section.

 73

Below is the class diagram of DataObject class –

+StoreDeclFile() : void

+displayDataStats() : void

+getDataType() : string(idl)

+getDataVariable() : void

+getDataLine() : void

+storeOccurances() : void

+getDataOccurances() : int

-_type : string(idl)

-_variable : string(idl)

-decl_line_no : int

-decl_file : string(idl)

-occurances : int

dataObject

Figure 3.15 – Class Diagram of DataObject

The above figure shows the data members and member functions of dataObject class.

Every object of dataObject class represents a data variable that is declared in the source code.

A dataObject is created by the parser when a variable declaration is encountered. The

variable can be of any type – a basic type or a user-defined type. Based on the type of the

variable, a dataObject of that particular type is created. DataObject objects have supporting

properties to determine the type of the variable, variable name, the file it is declared and all

the places it is used in the source file. The reference for usage is line numbers in source file.

 We have discussed about hierarchy stack in Section 3.1.1. Every entry into hierarchy

stack is an object, which contains a pointer to the scope object and contains information

about the type of pointer. This object type is called „tempContainer‟. The temporary

Container is a structure to hold node type and pointer information that is maintained in the

stack.

Below is the class of diagram of our temporary Container –

 74

-_type : string(idl)

-_typePtr : RootObj

-_level : int

tempContainer

Figure 3.16 – Class Diagram of TempContainer

The variable „_typePtr‟ in the definition of the structure is a pointer to the node object and

the variable „_type‟ determines the type of node. When objects are added and removed from

stack, all push and pop items are of type „TempContainer‟. The variable „_type‟ in

tempContainer determines the type of node at runtime and suitable dynamic cast operation is

performed to type-cast the object pointer to its respective type.

3.2.3 Implementing Code Restructuring

Feasible regions that are identified to be extracted as new functions, are stored on the

heap for look up when new restructured files are written to the disk. For the purpose of

keeping track of all the necessary information about feasible regions, the data structures –

feasibleRegions and newFunctions are used. All properties required while generating

restructured code are stored in these data structures and is retrieved when new files are

created. Below is a class diagram depicting the components and relationship between these

classes.

 75

+getFunCounter() : int

+getParamString() : std::string

+getCallString() : std::string

+readFileContents() : std::string

+getPossibleParameters() : std::vector<dataObject*>

+isFeasible() : bool

+addRegion() : void

+analyzeRegion() : void

+writeToFile() : void

+setFunVerbose() : void

+registerFunToker() : void

+getToker() : Toker*

-_file : std::string

-_newfunctions : std::vector<newFunctions*>

-_fToker : Toker*

-isFunVerbose_ : bool

-_counter : int

feasibleRegions

-start_line : int

-end_line : int

-_fun_prototype : std::string

-_fun_call : std::string

newFunctions

1

Figure 3.17 – Class Relationship diagram of feasibleRegions and newFunctions

As we can see from the above figure, feasibleRegions class contains a collection of identified

feasible regions. This collection is built on the heap and is maintained till the complete

parsing of the source file is done. Once the complete parsing of source file is done, this

collection is used to extract new functions and write new restructured files. FeasibleRegions

class also contains methods that are used in determining whether the criteria of number of

lines and parameters meet the requirement. Once a region satisfies these criteria, a new object

of type newFunctions is created on the heap and stored till the complete parsing of source

code is complete. In the next section, we discuss how this collection of newFunctions

objects is used.

3.2.3.1 Writing new restructured files

 In this section we discuss the procedure of extracting feasible regions from source

code as new functions, and writing new restructured files. Once the parsing of source file is

complete, a collection of feasible regions are identified which form newly extracted

functions. This is the last step in code restructuring process. Parsing of source code functions

 76

is carried out by FunctionParser class, about which we have discussed in the earlier

sections. For the purpose of reading source files and create new restructured files, a new class

fileManager is used, which works with feasibleRegions. Below is a class relationship

diagram of FunctionParser, feasibleRegions, newFunctions and fileManager –

+startAnalysis() : void

+setFunVerbose() : void

+registerFunToker() : void

+parseFunctions() : void

+setTypeParser() : void

+getToker() : <unspecified>

+getTypeParser() : <unspecified>

+getHierarchy() : <unspecified>

+getTempControl() : string(idl)

+getStackPointer() : <unspecified>

+getUtilityPtr() : <unspecified>

+getHierarchyCopy() : <unspecified>

+storeRoot() : void

+getRoot() : <unspecified>

-_forData : string(idl)

-braceCount_ : int

-_parsing_file : string(idl)

-curRoot

-isFunVerbose : bool

-tempControl : string(idl)

-_hierarchy

-_h_copy

-_fToker

-_utility

-_typeParser

FunctionParser

+getFunCounter() : int

+getParamString() : <unspecified>

+getCallString() : <unspecified>

+readFileContents() : <unspecified>

+getPossibleParameters() : <unspecified>

+isFeasible() : bool

+addRegion() : void

+analyzeRegion() : void

+writeToFile() : void

+setFunVerbose() : void

+registerFunToker() : void

+getToker() : <unspecified>

-_file

-_newfunctions

-_fToker

-isFunVerbose_ : bool

-_counter : int

feasibleRegions

-start_line : int

-end_line : int

-_fun_prototype

-_fun_call

newFunctions

11

+checkDirectory() : bool

+createFile() : void

-dir : Directory*

-_writing_dir : string(idl)

fileManager

1

Figure 3.18 – Class Relationship diagram of FunctionParser and fileManager

As we can see from the above figure, the FunctionParser class contains a pointer to

feasibleRegions object, which in-tern contains a collection of newly extracted functions.

Once the parsing of source code is complete, and feasible regions are identified, the last step

is to create new restructured files. The newly extracted functions are named by source file

name followed by an incrementing integer. For example, if the source file is „test.cpp‟, then

the extracted functions would be named „test_1‟, „test_2‟ etc. After parsing of source file is

complete, the FunctionParser parser makes use of feasibleRegions and fileManager object

 77

to read source file again and write new restructured files, using the information of feasible

regions‟ line numbers stored in newFunctions class.

 The feasibleRegions class is used by FunctionParser to read the contents of the

source files in a restructured fashion, by getting the properties of feasible regions from

newFunctions class. FeasibleRegions class reads the contents of the source file by writing

newly extracted functions and making appropriate function calls to new functions in place

where those feasible regions existed in the source code. Once the restructured source file

contents are created by reading through the source code and making appropriate changes,

fileManager class is used to create a directory in the current directory of the source file with

the name „_Restructured‟. Once the directory is created, the restructured file is created with

the name of source file followed by „_restructured‟. For example, if the source file name is

„test.cpp‟, then the restructured file name would be „test_restructured.cpp‟. The contents of

restructured file, which is created by feasibleRegions and newFunctions objects, are passed

to fileManager object which writes the contents to disk, completing the code restructuring

process.

 78

Chapter 4 Semi-Automated Restructuring Results

Code Restructuring proceeds by analyzing source code and finding suitable

large functions from within which to create new functions, and maintains the original

external behavior of the source code. Our implementation performs code restructuring

for global functions and member functions of user-defined types such as Classes and

Structures. As mentioned before, we follow the naming convention calling a global

function as „function‟ and a member function as „method‟. New functions and

methods are extracted by identifying feasible regions in the source code, which we

discussed in Chapter 3. In this section we present a few examples of code

restructuring performed on real source code functions and methods, by our prototype.

4.1 Restructuring Functions

Global Functions are user-defined functions declared and defined in the global

scope and can be accessed by any other function or object that has access to the

function declaration and definition. Code Restructuring of Global Functions follows

the same conventions and nearly the same procedures as member functions. The

newly extracted functions from Global functions are also in global scope and are,

themselves, global functions. They can be accessed by any other function or object

with access to the original. The newly extracted functions are written in the same file

where the parent global function is defined. In the place where the extracted code

fragment was found, a function call to the newly extracted function is made. All

parameters that have to be passed to the newly extracted function are passed by

reference to maintain the function‟s behavior. The restructured file is written to

 79

„_Restructured‟ directory and is named as the original file name followed by

„_restructured‟, and with the same file extension.

Considering a global function, let‟s see some results of how restructuring is

performed and what parameters have to be considered during restructuring. We

present both the cases where in, no arguments are passed to the newly extracted

function and arguments are passed to the new function.

4.1.1 Extracting functions with no parameters

Below is the source code of a global function – setRootValues (), taken from the

source code of our framework:

void setRootValues()

{

 try

 {

 std::string inFile = getInputFile();

 Directory dir;

 Scanner scanr;

 scanr.doRecursiveScan(inFile);

 dir.RestoreFirstDirectory();

 if(dir.dirContainIncludes())

 scanr.setFileIncludes();

 std::vector<std::string> _files = getCompleteFiles();

 if(_files.size() > 0)

 {

 RootObj* root = new RootObj();

 std::string _type = root->_typename();

 if(_type == "")

 _type = "pRoot";

 root->displayRootStats();

 }

 }

 catch(std::exception& ex)

 {

 std::cout<< ex.what() <<std::endl;

 }
}

 80

Performing code restructuring on the above function, using our prototype, we

extracted a new function, setRootValues_1(). Below is the source code of the

extracted function and changes that appear in the parent function, setRootValues.

void setRootValues_1()

{

 std::string inFile = getInputFile();

 Directory dir;

 Scanner scanr;

 scanr.doRecursiveScan(inFile);

 dir.RestoreFirstDirectory();

 if(dir.dirContainIncludes())

 scanr.setFileIncludes();

}

void setRootValues()

{

 try

 {

 setRootValues_1();

 std::vector<std::string> _files = getCompleteFiles();

 if(_files.size() > 0)

 {

 RootObj* root = new RootObj();

 std::string _type = root->_typename();

 if(_type == "")

 _type = "pRoot";

 root->displayRootStats();

 }

 }

 catch(std::exception& ex)

 {

 std::cout<< ex.what() <<std::endl;

 }

}

From the above source code, we notice that a new function „setRootValues_1‟ is

extracted from the parent function „setRootValues‟. In place where the body of

extracted function was present in „setRootValues‟, before restructuring, a function

call has been made to the new function. We also notice that no arguments have been

passed to the new function.

 81

4.1.2 Extracting functions with one parameter

When the new function, that is extracted, requires arguments to be passed,

there are 3 scenarios that exist, that have to be considered for proper restructuring. In

order for the restructured code to compile and maintain the original behavior, it‟s

important to consider these scenarios which we‟ll discuss below while passing

arguments to new functions.

4.1.2.1 Scenario 1 – Argument declared before Function Call

In this section, we present an example where the extracted function requires

one parameter to be passed as an argument. Below is the source of a function –

std::string& removeSpecialCharacters(std::string& _temp)

{

 try

 {

 if(_temp.find("*")!=-1)

 {

 std::string::iterator junk2 = remove(_temp.begin(),_temp.end(),'*');

 temp.erase(junk2,_temp.end());

 }

 if(_temp.find("&")!=-1)

 {

 std::string::iterator junk2 = remove(_temp.begin(),_temp.end(),'&');

 _temp.erase(junk2,_temp.end());

 }

 if(_temp.find("<")!=-1)

 {

 std::string::iterator junk2 = remove(_temp.begin(),_temp.end(),'<');

 _temp.erase(junk2,_temp.end());

 }

 if(_temp.find(">")!=-1)

 {

 std::string::iterator junk2 = remove(_temp.begin(),_temp.end(),'>');

 _temp.erase(junk2,_temp.end());

 }

 if(_temp.find(":")!=-1)

 {

 std::string::iterator junk2 = remove(_temp.begin(),_temp.end(),':');

 _temp.erase(junk2,_temp.end());

 }

 if(_temp.find("~")!=-1)

 82

 {

 std::string::iterator junk2 = remove(_temp.begin(),_temp.end(),'~');

 _temp.erase(junk2,_temp.end());

 }

 if(_temp.find("(")!=-1)

 {

 std::string::iterator junk2 = remove(_temp.begin(),_temp.end(),'(');

 _temp.erase(junk2,_temp.end());

 }

 if(_temp.find(")")!=-1)

 {

 std::string::iterator junk2 = remove(_temp.begin(),_temp.end(),')');

 _temp.erase(junk2,_temp.end());

 }

 if(_temp.find(";")!=-1)

 {

 std::string::iterator junk2 = remove(_temp.begin(),_temp.end(),';');

 _temp.erase(junk2,_temp.end());

 }

 }

 catch(std::exception& ex)

 {

 std::cout << ex.what() << std::endl;

 }

 return _temp;

}

Below is the restructured code for the example presented above.

void removeSpecialCharacters_1(std::string& temp)

{

 if(_temp.find("*")!=-1)

 {

 std::string::iterator junk2 = remove(_temp.begin(),_temp.end(),'*');

 temp.erase(junk2,_temp.end());

 }

 if(_temp.find("&")!=-1)

 {

 std::string::iterator junk2 = remove(_temp.begin(),_temp.end(),'&');

 temp.erase(junk2,_temp.end());

 }

 if(_temp.find("<")!=-1)

 {

 std::string::iterator junk2 = remove(_temp.begin(),_temp.end(),'<');

 _temp.erase(junk2,_temp.end());

 }

 if(_temp.find(">")!=-1)

 {

 std::string::iterator junk2 = remove(_temp.begin(),_temp.end(),'>');

 _temp.erase(junk2,_temp.end());

 }

 if(_temp.find(":")!=-1)

 {

 std::string::iterator junk2 = remove(_temp.begin(),_temp.end(),':');

 _temp.erase(junk2,_temp.end());

 83

 }

 if(_temp.find("~")!=-1)

 {

 std::string::iterator junk2 = remove(_temp.begin(),_temp.end(),'~');

 _temp.erase(junk2,_temp.end());

 }

 if(_temp.find("(")!=-1)

 {

 std::string::iterator junk2 = remove(_temp.begin(),_temp.end(),'(');

 _temp.erase(junk2,_temp.end());

 }

}

The changes that apply in the calling function are –

std::string& removeSpecialCharacters(std::string& _temp)

{

 try

 {

 removeSpecialCharacters_1(_temp);

 if(_temp.find(")")!=-1)

 {

 std::string::iterator junk2 = remove(_temp.begin(),_temp.end(),')');

 _temp.erase(junk2,_temp.end());

 }

 if(_temp.find(";")!=-1)

 {

 std::string::iterator junk2 = remove(_temp.begin(),_temp.end(),';');

 _temp.erase(junk2,_temp.end());

 }

 }

 catch(std::exception& ex)

 {

 std::cout << ex.what() << std::endl;

 }

 return _temp;

}

In this scenario, we notice that an argument „_temp‟ is passed to the newly

extracted function. This variable is passed to the parent function

„removeSpecialCharacters‟ as an argument. We also notice that the variable is

passed by reference, so that the changes made in the new function would reflect in

the calling function.

 84

4.1.2.2 Scenario 2 – Local Variable passed to new function

Considering a scenario where a local variable declared inside a function has to

be passed to the newly extracted function. This scenario is similar to the one

discussed earlier, but the variable being passed is a local variable declared in the

parent function and used in the new function. Below is the source code of a function:

std::string& processParams(typeParser* _parser,SemiExp& se, FunObj* _fun)

{

 std::string tStr = "";

 utility* util = new utility();

 se = util->removeQualifiers(se);

 std::string _return = "";

 se = util->removeQualifiers(se);

 tStr = se.showSemiExp();

 std::string _par(tStr.substr(tStr.find("(")+1));

 tStr = tStr.substr(tStr.find("(")+1,_par.find(")")-1);

 Toker* pToker = new Toker(tStr,false);

 SemiExp _semix(pToker);

 if(pToker == 0)

 {

 delete pToker;

 }

 while(_semix.getSemiExp())

 {

 if(CheckParaData(_semix))

 {

 int num_params = 1;

 int num_commas = getOccurances(",");

 num_params = (num_commas==0)?1:num_commas+1;

 char* params = NULL;

 params = new char[num_params];

 if(num_params > 0)

 _return.append(getParamsList());

 else

 _return.append(")");

 }

 }

 return _return;

}

The corresponding restructured code is:

void processParams_1(std::string& _return)

{

 int num_params = 1;

 int num_commas = getOccurances(",");

 num_params = (num_commas==0)?1:num_commas+1;

 85

 char* params = NULL;

 params = new char[num_params];

 if(num_params > 0)

 _return.append(getParamsList());

 else

 _return.append(")");

}
std::string& processParams(typeParser* _parser,SemiExp& se, FunObj* _fun)

{

 std::string tStr = "";

 utility* util = new utility();

 se = util->removeQualifiers(se);

 std::string _return = "";

 se = util->removeQualifiers(se);

 tStr = se.showSemiExp();

 std::string _par(tStr.substr(tStr.find("(")+1));

 tStr = tStr.substr(tStr.find("(")+1,_par.find(")")-1);

 Toker* pToker = new Toker(tStr,false);

 SemiExp _semix(pToker);

 if(pToker == 0)

 {

 delete pToker;

 }

 while(_semix.getSemiExp())

 {

 if(CheckParaData(_semix))

 {

 processParams_1(_return);

 }

 }

 return _return;

}

 The variable „_return‟ is a local variable declared in the function „processParams‟.

The extracted function requires using this variable, and is passed by reference to the

new function.

4.1.2.3 Scenario 3 – Use of extracted variable

In this section, we discuss the scenario where a new function cannot be extracted, as a

variable that is declared in the extracted function needs to be used in the calling function. In

such a case, the analyzing region would fail to be determined as feasible. For this, let‟s

consider the source code in the previous section and try to restructure it again. Below is a

 86

section of source code, from function „processParams‟ that the parser determines to be a

feasible region, based on the number of lines and the arguments that have to be passed, if a

new function is extracted.

std::string tStr = "";

utility* util = new utility();

se = util->removeQualifiers(se);

std::string _return = "";

se = util->removeQualifiers(se);

tStr = se.showSemiExp();

std::string _par(tStr.substr(tStr.find("(")+1));

tStr = tStr.substr(tStr.find("(")+1,_par.find(")")-1);

Toker* pToker = new Toker(tStr,false);

SemiExp _semix(pToker);

If we see the source code in the previous section, Section 4.1.2.2, we see that the variables

„pToker‟, „_semix‟ and „_return‟ are used after the considered feasible region, shown above.

We can‟t consider this as a feasible region, as making this as a new function will make the

source fail to compile. This is because the declaration of variables will be in the newly

extracted function, which would be used in the calling function. Because of this, we consider

this as a non feasible region, although other criteria for determining a feasible region are

satisfied.

4.1.3 Extracting functions with many parameters

We have seen new functions being extracted with one argument being passed to the

new function from the calling function. When working with source code, it is sometimes

likely for newly extracted functions to have more than one argument. In this section, we

 87

discuss passing of many parameters to the newly extracted function. The rules and scenarios

are same as ones discussed in the previous section. Below is the source code of a function

from our prototype source code:

bool NativeTypeCheck(typeParser* _parser, SemiExp& se,FunObj* _fun)

{

 utility* util = new utility();

 se = util->removeQualifiers(se);

 const int NUMKEYS = 8;

static std::string KeyTable[NUMKEYS] = { "int", "float", "double", "char",

"string", "short","long",

"bool"};

 std::string _temp="";

 if(se.find("=")!=se.length())

 {

 for(int i = 0;i < se.find("="); i++)

 _temp.append(se[i] + " ");

 }

 else

 _temp = se.showSemiExp();

 Toker* pTok = new Toker(_temp,false);

 SemiExp _semi(pTok);

 if(pTok == 0)

 {

 delete pTok;

 return false;

 }

 while(_semi.getSemiExp())

 {

 for(int i=0; i<NUMKEYS; i++)

 {

 std::string _key = KeyTable[i];

 int _ind3 = _semi.find(_key);

 if(_ind3!=_semi.length() && !(util->isSTLTypeCheck(_semi)) &&

_semi[_semi.find(_key)+1]!="(" &&

_semi.find("iterator")==_semi.length())

 {

 bool isPtr = false;

 if(_semi[_semi.find(_key)+1] == "*")

 isPtr = true;

 std::string variable = util->getVariableName(_key,_semi);

 dataObject* dObj = new dataObject

 (_key,isPtr,se[se.find(_key)],variable,

 _parser->getToker()->lines()+1);

 dObj->StoreDeclFile(_parser->_cur_file);

 _fun->storeFunData(dObj);

 }

 }

 }

 delete pTok;

 return false;

}

 88

Below is the restructured code –

void NativeTypeCheck_1(FunObj& _fun, SemiExp& se, std::string& _key,

SemiExp&

 _semi,utility& util, typeParser& _parser)

{

 int _ind3 = _semi.find(_key);

 if(_ind3!=_semi.length() && !(util.isSTLTypeCheck(_semi)) &&

 _semi[_semi.find(_key)+1]!="(" &&

 _semi.find("iterator")==_semi.length())

 {

 bool isPtr = false;

 if(_semi[_semi.find(_key)+1] == "*")

 isPtr = true;

 std::string variable = util.getVariableName(_key,_semi);

 dataObject* dObj = new dataObject(_key,isPtr,se[se.find(_key)],

 variable,_parser.getToker()->lines() + 1);

 dObj->StoreDeclFile(_parser._cur_file);

 _fun.storeFunData(dObj);

 }

}

bool NativeTypeCheck(typeParser* _parser, SemiExp& se,FunObj* _fun)

{

 utility* util = new utility();

 se = util->removeQualifiers(se);

 const int NUMKEYS = 8;

 static std::string KeyTable[NUMKEYS] = {"int", "float", "double",

 "char", "string",

 "short","long", "bool"};

 std::string _temp="";

 if(se.find("=")!=se.length())

 {

 for(int i = 0;i < se.find("="); i++)

 _temp.append(se[i] + " ");

 }

 else

 _temp = se.showSemiExp();

 Toker* pTok = new Toker(_temp,false);

 SemiExp _semi(pTok);

 if(pTok == 0)

 {

 delete pTok;

 return false;

 }

 while(_semi.getSemiExp())

 {

 for(int i=0; i<NUMKEYS; i++)

 {

 std::string _key = KeyTable[i];

 NativeTypeCheck_1(*fun, se, _key,_semi, *util, *parser);

 }

 }

 delete pTok;

 return false;

}

 89

We see from the above restructured code that multiple arguments are passed to the

new function. The number of arguments for the newly extracted function depends on the

structure of source code, size of the feasible region and user defined constraints. We also

notice that all parameters are passed by reference, irrespective of the parameters being native

type or pointer type. The same rules discussed in the previous section apply when passing

multiple arguments.

4.2 Restructuring Methods

We have seen the process of restructuring functions in Section 4.1. In this section, we

discuss restructuring methods of user defined types. As mentioned earlier, we use the

convention of calling a member function of a user-defined type such as class or structure, as

a method. Parsing methods and identifying feasible regions are same as that of a function.

However, restructuring of methods require changes in the method declared and its files.

Methods may or may not be declared and defined in the same file. Hence, restructuring

methods require two changes – Making changes to the method declared file and making

changes to the method defined file, if different. The newly extracted function is defined in

the same file as that of the method.

Below is the source code of a class definition, which includes method declarations.

File: FileManager.h

class ManageFile

{

 private:

 Directory* dir;

 std::string _writing_dir;

 int line;

 int end_line;

 std::string decl;

 Toker* _fToker;

 bool isFunVerbose_;

 int _counter;

 90

 public:

 ManageFile()

 {

 dir = new Directory();

 }

 int& getFunCounter()

 {

 return _counter;

 }

 int& getEndLine()

 {

 return end_line;

 }

 std::string& getExtractedContents();

 void setFunVerbose(bool isFunVerbose);

 void registerFunToker(Toker* pToker);

 Toker* getToker()

 {

 return _fToker;

 }

 void setLine(int _line)

 {

 line = _line;

 }

 void setDecl(std::string _decl)

 {

 decl = _decl;

 }

 int getLine()

 {

 return line;

 }

 std::string& getDecl()

 {

 return decl;

 }

 bool checkDirectory(std::string _dir);

 void createFile(std::string contents, std::string _file);

 std::string& readFileContents(FunctionParser* _fParser, std::string

 file);

};

Below is the source code of method defined file –

The method we are considering for this example is „readFileContents‟.

File: FileManager.cpp

std::string& ManageFile::readFileContents(FunctionParser* _fParser,

std::string

 file)

{

 std::string _contents = "";

 Toker _toker(file);

 91

 setFunVerbose(true);

 registerFunToker(&_toker);

 if(_fToker == 0)

 throw std::exception("no registered toker");

 SemiExp se(_fToker);

 se.makeCommentSemiExp();

 try

 {

 int line_count=0;

 int line_end = 0;

 int _index = ++getFunCounter();

 std::ostringstream os;

 os << _index;

 std::string _extracted_fun = "void " + _fParser->_fNameIndex + "_" +

 os.str().c_str() + "()\n";

 std::fstream file_op(&file[0],ios::in);

 char str[2000];

 while(!file_op.eof())

 {

 file_op.getline(str,2000);

 std::string _str = str;

 line_count++;

 if(line_count == getLine())

 {

 _contents.append(str);

 _contents.append("\n");

 _contents.append(decl);

 _contents.append("\n");

 }

 else if(line_count == getEndLine())

 {

 contents.append(getExtractedContents() + "" + _counter++);

 _contents.append("\n");

 }

 else

 {

 _contents.append(str);

 _contents.append("\n");

 }

 }

 file_op.close();

 return _contents;

 }

 catch(std::exception& ex)

 {

 std::cout<<"Exception reading feasible regions";

 exit(1);

 }

}

Below we present the changes that are made to the declared and defined file after code

restructuring.

 92

4.2.1 Changes to Method Declared File

Please note the new file name will be appended with „_restructured‟.

File: FileManager_restructured.h

class ManageFile

{

 private:

 Directory* dir;

 std::string _writing_dir;

 int line;

 std::string decl;

 Toker* _fToker;

 bool isFunVerbose_;

 int _counter;

 int end_line;

 public:

 ManageFile()

 {

 dir = new Directory();

 }

 int& getFunCounter()

 {

 return _counter;

 }

 int& getEndLine()

 {

 return end_line;

 }

 std::string& getExtractedContents();

 void setFunVerbose(bool isFunVerbose);

 void registerFunToker(Toker* pToker);

 Toker* getToker(){return _fToker;}

 void setLine(int _line) { line = _line; }

 void setDecl(std::string _decl) { decl = _decl; }

 int getLine()

 {

 return line;

 }

 std::string& getDecl()

 {

 return decl;

 }

 bool checkDirectory(std::string _dir);

 void createFile(std::string contents, std::string _file);

 std::string& readFileContents(FunctionParser* _fParser, std::string

 file);

 void readFileContents_1(int& line_count, std::string& str,

 std::string& _contents);
};

 93

The changes to the method declared file include adding the newly extracted method‟s

prototype to the class definition. From the above code, we see that the prototype of new

function „readFileContents_1‟ is added to ManageFile’s definition.

4.2.2 Changes to Method Defined File

Renaming of restructured file is also done for method defined files.

File: FileManager_restructured.cpp

void ManageFile::readFileContents_1(int& line_count, std::string& str,

 std::string& _contents)

{

 line_count++;

 if(line_count == getLine())

 {

 _contents.append(str);

 _contents.append("\n");

 _contents.append(decl);

 _contents.append("\n");

 }

 else if(line_count == getEndLine())

 {

 contents.append(getExtractedContents() + "" + _counter++);

 _contents.append("\n");

 }

 else

 {

 _contents.append(str);

 _contents.append("\n");

 }

}

std::string& ManageFile::readFileContents(FunctionParser* _fParser,

 std::string file)

{

 std::string _contents = "";

 Toker _toker(file);

 setFunVerbose(true);

 registerFunToker(&_toker);

 if(_fToker == 0)

 throw std::exception("no registered toker");

 SemiExp se(_fToker);

 se.makeCommentSemiExp();

 try

 {

 int line_count=0;

 int line_end = 0;

 94

 int _index = ++getFunCounter();

 std::ostringstream os;

 os << _index;

 std::string _extracted_fun = "void " + _fParser->_fNameIndex + "_" +

 os.str().c_str() + "()\n";

 std::fstream file_op(&file[0],ios::in);

 char str[2000];

 while(!file_op.eof())

 {

 file_op.getline(str,2000);

 std::string _str = str;

 readFileContents_1(line_count, _str, _contents);

 }

 file_op.close();

 return _contents;

 }

 catch(std::exception& ex)

 {

 std::cout<<"Exception reading feasible regions";

 exit(1);

 }

}

In the above restructured method, we see that same rules apply for passing of parameters and

identifying feasible regions. One interesting thing to notice is, the variable „_counter‟ is a

data member of the class and is not passed to the newly extracted function. This is done

because both the data member and method belong to the same class.

4.2.3 Transforming local data into member data

For the above source code, we have shown the restructured code in the previous

section. Suppose we consider the following segment of code, in a method, to be a feasible

region:

Please note: The below section of code is an extraction from a method and complete function

definition is omitted for brevity.

 std::fstream file_op(&file[0],ios::in);

 char str[2000];

 while(!file_op.eof())

 {

 file_op.getline(str,2000);

 std::string _str = str;

 line_count++;

 if(line_count == getLine())

 95

 {

 _contents.append(str);

 _contents.append("\n");

 _contents.append(decl);

 _contents.append("\n");

 }

 else if(line_count == getEndLine())

 {

 contents.append(getExtractedContents() + "" + _counter++);

 _contents.append("\n");

 }

 else

 {

 _contents.append(str);

 _contents.append("\n");

 }

 }

The variable „file_op‟ is declared in the feasible region, which would be extracted as a new

function. However, it will be used in the calling function, after a call to the extracted

function. If the feasible region is extracted, the restructured code won‟t compile as the

declaration and definition would be two separate functions. In such a case, the variable can

be added as a data member of the class. This idea is presented in Chapter 5 for future work.

4.3 Restructuring functions in multiple passes

We have seen in earlier sections, restructuring of functions and methods, with

variants of number of parameters being passed to the extracted function. It would be

interesting to know the affect of restructuring source code multiple times. By this, we mean,

restructuring source code which is already restructured, in multiple passes. For this, let‟s

consider a large source code method presented in Appendix A.1

By performing restructuring of the method shown above, in the first pass, we get the

following restructured code.

void fileAnalyzer::testFun_1(std::string& _file, ExecAnalyzer& analExec,

 TypeParser& _typeParser)

{

 std::cout << "\n Processing file " << _file <<std::endl;

 try

 96

 {

 int flag = analExec.checkInput(_file);

 Toker newToker(_file);

 _typeParser.setTypeVerbose(true);

 _typeParser.registerTypeToker(&newToker);

 _typeParser.getUserDefinedTypes(root);

 _typeParser.getTypeNames();

 }

 catch(std::exception& ex)

 {

 std::cout<<std::endl<<ex.what()<<std::endl;

 exit(1);

 }

}

The changes made to the calling function, is presented in Appendix A.1.1

As we can see from the above code, a new function „testFun_1‟ is extracted from the method

„testFun‟. We also notice the parameters „_file‟, and pointer variables „_typeParser‟ and

„analExec‟ is passed by reference. The variable „root‟, that is present in the extracted function

is not passed as a parameter. This is because, „root‟ is a data member and can be accessed

from the new member function „testFun_1‟.

 Performing code restructuring on the restructured code, shown above, we get the

following results –

void fileAnalyzer::testFun_2(std::string& _file, TypeParser& _typeParser)

{

 try

 {

 std::cout<<"Pre-Processing File - "<< _file <<std::endl;

 Toker newToker(_file);

 _typeParser._cur_file = _file;

 _typeParser.setTypeVerbose(true);

 _typeParser.registerTypeToker(&newToker);

 _typeParser.getUserDefinedTypes(root);

 }

 catch(std::exception& ex)

 {

 std::cout<<std::endl<<ex.what()<<std::endl;

 exit(1);

 }

}

void fileAnalyzer::testFun_1(std::string& _file, ExecAnalyzer& analExec,

 TypeParser& _typeParser)

{

 97

 std::cout << "\n Processing file " << _file <<std::endl;

 try

 {

 int flag = analExec.checkInput(_file);

 Toker newToker(_file);

 _typeParser.setTypeVerbose(true);

 _typeParser.registerTypeToker(&newToker);

 _typeParser.getUserDefinedTypes(root);

 _typeParser.getTypeNames();

 }

 catch(std::exception& ex)

 {

 std::cout<<std::endl<<ex.what()<<std::endl;

 exit(1);

 }

}

The changes made to the calling function is presented in Appendix A.1.2

We notice from the above results, that a new method „testFun_2‟ is extracted from the

method „testFun‟. By this we conclude that, code restructuring can be performed in multiple

passes to make smaller components from a large method or function. By repeating this, we

can further restructure to extract more methods from „testFun‟ and reduce the size of

„testFun‟. In this process of restructuring, it is also possible that feasible regions may be

identified in extracted functions, and new functions may be extracted from previously

extracted functions.

 98

Below is a table of results got by restructuring source code in multiple passes –

 Maximum number

of parameters

Maximum

number of

lines

Number of lines in

host method: testFun

Pass 1 3 20 105

Pass 2 3 20 97

Pass 3 3 20 92

Pass 4 3 20 79

Figure 4.1 – Restructuring source code in multiple passes

We notice from the above results that, by repeated restructuring source code, we can

derive smaller sized functions. The size of the functions may keep decreasing in every pass,

depending on the source code and the user entered constraints. It is also possible that the

function that was extracted in the previous pass, can itself be analyzed as a feasible region

and a new function may be extracted from the new function.

 99

Chapter 5 Contributions, Conclusions, and Future Work

In this chapter, we summarize the goals of Software Code Restructuring, review our

research statement, our contributions to Software Code analysis and Restructuring, and

discuss future work.

5.1 Reviewing Research Statement

As discussed in sections 1.1, working with large software source code is time

consuming and prone to errors. We have seen the importance of code structure and how it

can impact the overall complexity and design of software products. As discussed in section

1.2, code structure also plays an important role in determining the quality of software. It‟s

time consuming and error prone to work with lengthy source code as we have seen from

sections 1.3. Maintaining and validating source code for its functionality is also affected by

the complexity and size of the source code.

 Our goal in this study was to devise a method, and prototype, for semi-automatic

restructuring that would reduce the size of large source code functions by extracting parts of

the code into called functions. This makes it easier for users to work with lengthy source

code. To achieve this, our study was concentrated on code structure and analyzing the

relationships that exist in source code elements such as scopes, data accessibility and class

structure. Our work begins by developing a source code parser which scans source code

files, converting them to tokens and semi-expressions. We identify program elements that

create scopes and data by analyzing each semi-expression.

We made use of a parse tree data structure, which was created on the heap, to hold

values and attributes of the structure of the source code. We have seen the makeup of the

 100

parse tree in Chapter 3, which includes various node types, data elements and an intermediate

stack, which are represented as objects.

By analyzing the contents of a built parse tree, we can identify sections of source

code which are candidates to be extracted as new functions, based on user entered

constraints, discussed in section 4.1 and 4.2. These identified sections of source code,

termed „Feasible regions‟ are extracted and written as new functions, in a restructured file.

The external behavior of source code is kept invariant by calling the newly extracted

functions at suitable locations. The data that needs to be passed to newly extracted functions

are determined and all data variables are passed by reference, which maintains in the calling

code the same data values as before restructuring.

 The restructured files are written to a new file, which gives the user a chance

to compare and analyze the restructured files.

5.2 Contributions

Our contributions in this thesis focus on understanding source code structure and develop

techniques for determining sections of source code which can be extracted as new functions.

Below is a discussion of our contributions to software code restructuring

 We devised a framework to work with source code elements by breaking down input

file streams into a set of identifiable tokens and semi-expressions. We developed a

type analysis parser that would identify host language‟s source elements. Our parser

was devised to work with native C/C++ languages, with object oriented constructs.

 We proposed a new approach to determine the source code structure by representing

all the elements of source code in a traceable tree structure called the parse tree. The

parse tree was composed of different types of nodes and data objects, with each data

 101

object representing a data variable of the source code. We created an intermediate

data structure called the „hierarchy stack‟ to maintain the current source code position

while parsing through the source code .Hierarchy stack was also used to analyze a

section of source code and short list feasible regions. The novelty of this is the use of

very simple grammar constructs that are nicely matched to the analysis task.

 We developed a mechanism for determining feasible regions. This was based on user

entered constraints and implementing an optimization algorithm for determining

feasible regions which extracts the largest number of lines that meet a constraint on

the number of parameters passed. The algorithm has three possible methods of top-

down or bottoms-up extraction and two look ups, of which, we have implemented

top-down approach, as discussed in Chapter 3.

 The entire process of code restructuring is semi-automated. The user has control over

the restructuring properties as discussed in section 2.6. After entering the values

required to start the restructuring process, our implementation doesn‟t require any

user guidance, thus making it semi-automatic. The user doesn‟t need to worry about

selecting feasible regions or writing the extracted new functions into a new file, with

all the required changes.

5.2.1 Accomplished Work

In this section, we survey the work that is accomplished in our study and the results

we have achieved.

 In Chapter 4 we have provided and interpreted results obtained from code

restructuring. We have demonstrated the methods of parsing and identifying source code

elements from which semantic analysis can be performed in Chapter 3. The scope of our

 102

study is targeted towards native languages such as C and C++. The parsing mechanism and

analysis is entirely based on the syntactic analysis of code structure that exists in source code

files. The analyzed information which is retrieved from the parse tree data is used, together

with other parser information, to identify feasible regions and extract new functions. New

files are written to the disk, keeping the source code as it is, to review results and as a back

up mechanism.

We have also demonstrated the semi-automated nature of our implementation where

code restructuring is performed automatically with no user intervention after the code

restructuring process is started. The user has some control over code restructuring results by

providing information of the source code file, the maximum number of parameters that can

be passed to a newly extracted function and the maximum number of lines in a feasible

region. The automation part of our implementation also includes creating result directory and

files automatically, following the naming conventions discussed in earlier sections.

 However, the process of extraction of new functions is based on programmatic

grammar analysis and constraint checking. When the source code is visually examined, we

may find areas that are, in some sense, better choices than the ones identified by our

implementation. This is a limitation of our automation, as compared to human intelligence

and reasoning. We identify various leads and interesting observations, by which our study

can be expanded in the future to improve the restructuring process. Our next section

discusses those areas that were identified as interesting leads for future development of

source code analysis and restructuring.

 103

5.3 Future Work

During our study of code restructuring, many ideas, limitations, and other directions

were discussed that may be topics for future research:

 Relationship Analysis –

Our study of Code restructuring can be extended to perform syntax-based relationship

analysis of the source code. By relationship analysis, we mean performing type

information analysis of object containment as in association, composition and using

relationships that exist between user-defined types. Software code restructuring could

be made more effective if relationship information can be used to factor common

code from derived classes into a base, move processing centered on a composed type

into the definition of that type, and repackage class definitions to bring dependent

types into the same file, where size permits.

 Extracting Derived types –

User defined types such as classes, structures, and enumerations could be extracted in

the same way as new functions are extracted. Recognizing a data structure and

methods that make transformations on its contents may be the basis for automation of

the definition of new classes from within existing code.

 Semantic Cues –

Our implementation of identifying feasible regions and extracting new functions are

constrained to user entered values and implemented algorithm. If a section of source

code satisfies these criteria, that section is extracted as a new function. Semantic cues

that indicate certain types of processing may help make this process more rational.

For example, recognizing that certain sections of code deal exclusively with input and

 104

output, or threads, or handling storage, could be used more cleverly to extract

meaningful functions and objects.

 Language Specific Constructs –

We have identified some language specific constructs that are not recognized

by our parsing mechanism and are left for future implementations to address. Some

of the C/C++ language constructs that could be included in our parsing mechanisms,

but currently are not, are template classes and template functions, multi-level

pointers, function pointers and nested classes. Addressing these was judged complex

enough to be put aside temporarily while we built a functioning prototype.

 105

Appendix

In this section, we present some of the experimental data we have used and the results that

are generated executing the prototype.

A.1. Large Method

void fileAnalyzer::testFun(char* inFile)

{

 Directory dir;

 Scanner scanr;

 scanr.doRecursiveScan(inFile);

 dir.RestoreFirstDirectory();

 fileInfo f;

 std::string _home = f.getPath();

 Analyzer* anal = new Analyzer();

 char* _argv[] = {&_home[0],"*.h","*.cpp","*.c"};

 std::vector<std::string> files = anal->getDirFiles(4,_argv);

 try

 {

 typeParser* _typeParser = new typeParser();

 ExecAnalyzer* analExec = new ExecAnalyzer();

 for(int i=0; i<files.size(); ++i)

 {

 std::string _file = files[i];

 std::cout << "\n Processing file " << _file <<std::endl;

 try

 {

 int flag = analExec->checkInput(_file);

 Toker newToker(_file);

 _typeParser->setTypeVerbose(true);

 _typeParser->registerTypeToker(&newToker);

 _typeParser->getUserDefinedTypes(root);

 _typeParser->getTypeNames();

 106

 }

 catch(std::exception& ex)

 {

 std::cout<<std::endl<<ex.what()<<std::endl;

 exit(1);

 }

 }

 customPrepro* cust = new customPrepro();

 std::vector<std::string>::iterator iter;

 for(iter=cust->myIncludes.begin();iter!=cust->myIncludes.end();iter++)

 {

 std::string _temp=*iter;

 if(_temp.find("\\")!=-1 || _temp.find("/")!=-1)

 {

 Toker newToker(_temp);

 _typeParser->setTypeVerbose(true);

 _typeParser->registerTypeToker(&newToker);

 _typeParser->getUserDefinedTypes(root);

 _typeParser->getTypeNames();

 }

 }

 std::vector<std::string> files_2 = scanr.getCompleteFiles();

 std::vector<std::string>::iterator iter2;

 for(iter2 = files_2.begin();iter2!=files_2.end();iter2++)

 {

 try

 {

 std::string _temp=*iter2;

 Toker newToker(_temp);

 _typeParser->setTypeVerbose(true);

 _typeParser->registerTypeToker(&newToker);

 _typeParser->getUserDefinedTypes(root);

 _typeParser->getTypeNames();

 }

 catch(std::exception& ex)

 {

 std::cout<<ex.what()<<std::endl;

 exit(1);

 107

 }

 }

 for(int i=0; i<files.size(); ++i)

 {

 std::string _file = files[i];

 try

 {

 std::cout<<"Pre-Processing File - "<< _file <<std::endl;

 Toker newToker(files[i]);

 _typeParser->_cur_file = files[i];

 _typeParser->setTypeVerbose(true);

 _typeParser->registerTypeToker(&newToker);

 }

 catch(std::exception& ex)

 {

 std::cout<<std::endl<<ex.what()<<std::endl;

 exit(1);

 }

 }

 for(int i=0; i<files_2.size(); ++i)

 {

 std::string _file = files_2[i];

 try

 {

 std::cout<<"Pre-Processing File - "<< _file <<std::endl;

 Toker newToker(_file);

 _typeParser->_cur_file = _file;

 _typeParser->setTypeVerbose(true);

 _typeParser->registerTypeToker(&newToker);

 _typeParser->getUserDefinedTypes(root);

 }

 catch(std::exception& ex)

 {

 std::cout<<std::endl<<ex.what()<<std::endl;

 exit(1);

 }

 }

 108

 std::string _file = inFile;

 std::cout << "\n Processing file " << _file <<std::endl;

 try

 {

 traceFunctions(_typeParser,&_file[0]);

 }

 catch(std::exception& ex)

 {

 std::cout<<std::endl<<ex.what()<<std::endl;

 exit(1);

 }

 }

 catch(std::exception& ex)

 {

 std::cout<<std::endl<<ex.what()<<std::endl;

 exit(1);

 }

}

A.1.1. Restructured Method in First Pass

void fileAnalyzer::testFun(char* inFile)

{

 Directory dir;

 Scanner scanr;

 scanr.doRecursiveScan(inFile);

 dir.RestoreFirstDirectory();

 fileInfo f;

 std::string _home = f.getPath();

 Analyzer* anal = new Analyzer();

 char* _argv[] = {&_home[0],"*.h","*.cpp","*.c"};

 std::vector<std::string> files = anal->getDirFiles(4,_argv);

 try

 {

 typeParser* _typeParser = new typeParser();

 ExecAnalyzer* analExec = new ExecAnalyzer();

 for(int i=0; i<files.size(); ++i)

 {

 109

 std::string _file = files[i];

 testFun_1(_file, *analExec, *_typeParser);

 }

 customPrepro* cust = new customPrepro();

 std::vector<std::string>::iterator iter;

 for(iter=cust->myIncludes.begin();iter!=cust->myIncludes.end();iter++)

 {

 std::string _temp=*iter;

 if(_temp.find("\\")!=-1 || _temp.find("/")!=-1)

 {

 Toker newToker(_temp);

 _typeParser->setTypeVerbose(true);

 _typeParser->registerTypeToker(&newToker);

 _typeParser->getUserDefinedTypes(root);

 _typeParser->getTypeNames();

 }

 }

 std::vector<std::string> files_2 = scanr.getCompleteFiles();

 std::vector<std::string>::iterator iter2;

 for(iter2 = files_2.begin();iter2!=files_2.end();iter2++)

 {

 try

 {

 std::string _temp=*iter2;

 Toker newToker(_temp);

 _typeParser->setTypeVerbose(true);

 _typeParser->registerTypeToker(&newToker);

 _typeParser->getUserDefinedTypes(root);

 _typeParser->getTypeNames();

 }

 catch(std::exception& ex)

 {

 std::cout<<ex.what()<<std::endl;

 exit(1);

 }

 }

 for(int i=0; i<files.size(); ++i)

 {

 110

 std::string _file = files[i];

 try

 {

 std::cout<<"Pre-Processing File - "<< _file <<std::endl;

 Toker newToker(files[i]);

 _typeParser->_cur_file = files[i];

 _typeParser->setTypeVerbose(true);

 _typeParser->registerTypeToker(&newToker);

 }

 catch(std::exception& ex)

 {

 std::cout<<std::endl<<ex.what()<<std::endl;

 exit(1);

 }

 }

 for(int i=0; i<files_2.size(); ++i)

 {

 std::string _file = files_2[i];

 try

 {

 std::cout<<"Pre-Processing File - "<< _file <<std::endl;

 Toker newToker(files_2[i]);

 _typeParser->_cur_file = files_2[i];

 _typeParser->setTypeVerbose(true);

 _typeParser->registerTypeToker(&newToker);

 _typeParser->getUserDefinedTypes(root);

 }

 catch(std::exception& ex)

 {

 std::cout<<std::endl<<ex.what()<<std::endl;

 exit(1);

 }

 }

 std::string _file = inFile;

 std::cout << "\n Processing file " << _file <<std::endl;

 try

 {

 traceFunctions(_typeParser,&_file[0]);

 111

 }

 catch(std::exception& ex)

 {

 std::cout<<std::endl<<ex.what()<<std::endl;

 exit(1);

 }

 }

 catch(std::exception& ex)

 {

 std::cout<<std::endl<<ex.what()<<std::endl;

 exit(1);

 }

}

A.1.2 Restructured Method in Second Pass

void fileAnalyzer::testFun(char* inFile)

{

 Directory dir;

 Scanner scanr;

 scanr.doRecursiveScan(inFile);

 dir.RestoreFirstDirectory();

 fileInfo f;

 std::string _home = f.getPath();

 Analyzer* anal = new Analyzer();

 char* _argv[] = {&_home[0],"*.h","*.cpp","*.c"};

 std::vector<std::string> files = anal->getDirFiles(4,_argv);

 try

 {

 typeParser* _typeParser = new typeParser();

 ExecAnalyzer* analExec = new ExecAnalyzer();

 for(int i=0; i<files.size(); ++i)

 {

 std::string _file = files[i];

 testFun_1(_file, *analExec, *_typeParser);

 }

 customPrepro* cust = new customPrepro();

 112

 std::vector<std::string>::iterator iter;

 for(iter=cust->myIncludes.begin();iter!=cust->myIncludes.end();iter++)

 {

 std::string _temp=*iter;

 if(_temp.find("\\")!=-1 || _temp.find("/")!=-1)

 {

 Toker newToker(_temp);

 _typeParser->setTypeVerbose(true);

 _typeParser->registerTypeToker(&newToker);

 _typeParser->getUserDefinedTypes(root);

 _typeParser->getTypeNames();

 }

 }

 std::vector<std::string> files_2 = scanr.getCompleteFiles();

 std::vector<std::string>::iterator iter2;

 for(iter2 = files_2.begin();iter2!=files_2.end();iter2++)

 {

 try

 {

 std::string _temp=*iter2;

 Toker newToker(_temp);

 _typeParser->setTypeVerbose(true);

 _typeParser->registerTypeToker(&newToker);

 _typeParser->getUserDefinedTypes(root);

 _typeParser->getTypeNames();

 }

 catch(std::exception& ex)

 {

 std::cout<<ex.what()<<std::endl;

 exit(1);

 }

 }

 for(int i=0; i<files.size(); ++i)

 {

 std::string _file = files[i];

 try

 {

 std::cout<<"Pre-Processing File - "<< _file <<std::endl;

 113

 Toker newToker(files[i]);

 _typeParser->_cur_file = files[i];

 _typeParser->setTypeVerbose(true);

 _typeParser->registerTypeToker(&newToker);

 }

 catch(std::exception& ex)

 {

 std::cout<<std::endl<<ex.what()<<std::endl;

 exit(1);

 }

 }

 for(int i=0; i<files_2.size(); ++i)

 {

 std::string _file = files_2[i];

 testFun_2(_file, *typeParser);

 }

 std::string _file = inFile;

 std::cout << "\n Processing file " << _file <<std::endl;

 try

 {

 traceFunctions(_typeParser,&_file[0]);

 }

 catch(std::exception& ex)

 {

 std::cout<<std::endl<<ex.what()<<std::endl;

 exit(1);

 }

 }

 catch(std::exception& ex)

 {

 std::cout<<std::endl<<ex.what()<<std::endl;

 exit(1);

 }

}

 114

Bibliography

1. Structured Models for Large Software Systems by Murat Kahraman Gungor

Ph. D Dissertation, July 2006

2. Syracuse Medical Imaging Research Group

http://smirg.syr.edu

3. Upstate Medical University

http://upstate.edu

4. Compiler-Directed Code Restructuring for Improving Performance of MPSoCs

By Guilin Chen, Mahmut Kandemir

http://doi.ieeecomputersociety.org/10.1109/TPDS.2007.70760

5. Compiler-directed code restructuring for reducing data TLB energy

By M. Kandemir, I. Kadayif, G. Chen

http://doi.acm.org/10.1145/1016720.1016747

6. Compiler-directed code restructuring for Improving I/O Performance

By Mahmut Kandemir, Seung Woo Son

http://usenix.org/event/fast08/tech/full_papers/kandemir/kandemir_html/index.html

7. Restructuring in FORTRAN

http://citeseer.comp.nus.edu.sg/2512.html

8. Restructuring in Embedded DSPs

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.1402

9. Code Restructuring in Virtual Hardware Systems

http://www.patentstorm.us/patents/7356456/fulltext.html

10. Code Restructuring in Source Code Transformation

http://smirg.syr.edu/
http://upstate.edu/
http://doi.ieeecomputersociety.org/10.1109/TPDS.2007.70760
http://doi.acm.org/10.1145/1016720.1016747
http://usenix.org/event/fast08/tech/full_papers/kandemir/kandemir_html/index.html
http://citeseer.comp.nus.edu.sg/2512.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.1402
http://www.patentstorm.us/patents/7356456/fulltext.html

 115

http://www.patentstorm.us/patents/6934940.html

11. Code Restructuring in Emulator Soft wares

http://www.patentstorm.us/patents/6718485/claims.html

12. Microsoft Visual Studio IDE

http://msdn.microsoft.com/en-us/vstudio/default.aspx

13. Eclipse IDE

http://www.eclipse.org/

http://www.patentstorm.us/patents/6934940.html
http://www.patentstorm.us/patents/6718485/claims.html
http://msdn.microsoft.com/en-us/vstudio/default.aspx
http://www.eclipse.org/

