

Model Driven Development using Software
Matrix

BY

TILAK PATEL

Thesis submitted in partial fulfillment of the requirements for the

Degree of Master of Science in Computer Science

ADVISOR:

DR. JAMES FAWCETT

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

SYRACUSE UNIVERSITY

December 2007

Syracuse, New York

‐ 2 ‐

Abstract

Effective recycling of software assets has been long standing goal of software industry.

However only few organizations in software industry could successfully implement

practice of effective software reuse to improve productivity, to improve robustness and

quality and to reduce development and maintenance cost. Computer Aided Software

Engineering tools looked promising for rapid application development but failed to create

a revolution as they are not designed for software salvage process. By salvage we mean

lifting of significant blocks of existing systems and trying and inserting them into newly

developed systems.

Many general and sophisticated Computer Aided Software Engineering tools have been

developed previously. In this research, our goal is to develop a prototype Computer

Aided Software Engineering tool for Model-Driven Software Development. The

prototype tool developed in this tool is unique as compared to previous approaches as we

intent to show that effective salvage of software assets could be effectively integrated

into Computer Aided Software Engineering tools. Using our tool, we intend to show how

the Software Matrix Framework [9] can be used for rapid application development and in

some cases, for instant software development by salvaging software assets. The Software

Matrix is a framework that supports and promotes the reuse of components. In particular

it is a runtime infrastructure into which individual pieces of application can plug. We

intend to explore more of the Software Matrix concept using our tool.

‐ 3 ‐

Table of Contents

Chapter 1 Introduction .. 1

1.1. Research Problem .. 1

1.2. Prior Approaches ... 2

1.2.1 Software Reuse ... 3

1.2.2 Model Driven Architecture ... 5

1.3. Our Approach ... 7

Chapter 2 Tools and Architecture used .. 9

2.1 Software Matrix ... 9

2.1.1 Matrix Cell ... 12

2.1.2 Cell ID: ... 13

2.1.3 Capability List: ... 13

2.1.4 Message Queues: .. 13

2.1.5 Functionality ... 13

2.2 Design ... 14

2.2.1 Loader ... 14

2.2.2 Matrix .. 15

2.2.3 ICell ... 15

Sample Request Message: ... 17

Sample Response Message: ... 17

2.2.4 Serialization/Deserialization: .. 18

2.3 Code Generation Framework ... 19

2.3.1 Building an Application using Athena Designer .. 23

‐ 4 ‐

2.4 Extensions to the Software Matrix: ... 26

2.4.1 Changes made to core framework by Anirudha Krishna .. 26

2.4.2 Changes suggested to core framework by Vijay Appadurai ... 26

2.4.3 Changes suggested by this research ... 27

Chapter 3 Sniffer Application ... 28

3.1 Sniffer Application .. 28

3.1.1 Sniffer Application Components ... 29

Class diagram for sniffer Cell ... 34

Class diagram for communication Cell ... 36

Class diagram for user interface Cell ... 39

3.1.2 Constructing Sniffer Application ... 40

Chapter 4 Athena Designer .. 46

4.1 Background .. 46

4.2 Building Blocks of Athena Designer ... 49

Class Diagram for Athena Designer ... 49

4.2.1 myCanvas Class ... 50

4.2.2 diagramInfo Class .. 56

4.2.3 codeGen Class ... 57

4.2.4 designer Class .. 58

4.2.5 MyButton Class ... 59

4.2.6 ProjectInfo Class .. 59

4.2.7 connectionInfo Class ... 60

4.2.8 cellInfo Class .. 60

4.3 Screen shots of Athena Designer ... 61

Chapter 5 Conclusions ... 63

‐ 5 ‐

5.1 Literature Review ... 63

5.2 Addressing Model Driven Development .. 65

5.3 Contributions of this Thesis ... 67

5.4 Future Work ... 68

5.4.1 Integrated Designer, Repository and Test Harness .. 68

5.4.2 Auto upgrading Systems ... 69

5.4.3 Cross Platform Wrapper Cells ... 69

5.4.4 Load Balancing .. 70

5.4.5 Communication wrappers for frequent message exchange with remote Cell 70

Appendix .. 71

A. Visual Studio 2005 project and solution file format details [23] ... 71

Solution File ... 71

Project File ... 75

Bibliography ... 81

‐ 6 ‐

Table of Figures

Figure 1 : The Software Matrix ... 10
Figure 2 : The Software Matrix Structure .. 11
Figure 3 : The Matrix Cell Structure .. 12
Figure 4 : readFile message to read c:\temp\test.xml ... 17
Figure 5 : reply message with file contents .. 17
Figure 6 : Cell Diagram for Directory Synchronizer .. 21
Figure 7 : creating empty placeholder Cell .. 22
Figure 8 : source and header files in filedb directory .. 24
Figure 9 : screenshot of sniffer Client .. 31
Figure 10 : Sniffer Cell – Class diagram.. 34
Figure 11 : Communication Cell – Class diagram ... 36
Figure 12 : User Interface Cell – Class diagram .. 39
Figure 13 : Cell Diagram for sniffer server .. 41
Figure 14 : code Generate properties window ... 42
Figure 15 : generated solution for snfrServer .. 43
Figure 16 : Cell Diagram for sniffer client .. 44
Figure 17 : screenshot of sniffer Client .. 45
Figure 18 : each Cell is generated as separate project. All projects are part of one solution file
which represent whole application ... 49
Figure 19 : Athena Designer - Class Diagram ... 49
Figure 20 : Region with 3-fold line .. 52
Figure 21 : Region with 2-fold line .. 54
Figure 22 : Selecting Region to draw connection .. 55
Figure 23 : creating point collection to draw line between Cells ... 55
Figure 24 : Different toolbar buttons and their function .. 61
Figure 25 : Edit default Cell properties .. 62
Figure 26 : Edit default connection Type ... 62
Figure 27 : Parameters required for code generation ... 62

‐ 1 ‐

Chapter 1 Introduction

1.1. Research Problem

Effective recycling of the software assets of an organization has been a long-

standing goal of the software engineering discipline. Salvage is a form of

recycling that does not insist that there are no changes in the recycled component,

as is the case with reuse, but rather, that large pieces of software can be used

again with very few, very controlled, changes.

Consider a hypothetical Radar System Development firm. It develops customized

Radar Systems based on the client requirements. The company has developed

many radar systems in past projects, based on an original design, but responsive

to current customer requirements. Now suppose they get a new client that asks

for set of features where some are almost similar to systems developed in past and

some of the features require new code development. To build this new radar

system, large pieces of software from the existing radar systems software - with

2

pieces not necessarily designed for reuse – can be extracted. But modifying and

integrating these pieces is often a challenging task, as extracted code may have

many dependencies with code in the system in which it was originally embedded.

Adding a new feature set and code pieces adds more problems and the whole

process becomes complex. In this scenario, we can’t take help from CASE tools

to generate code to speed up development as integration with old blocks is very

complex, and there are no hooks in the existing codebase for those tools. If we

could convert our software assets into pluggable blocks and we could plug them

using some CASE tool, it would make the development process much more

productive.

In this research, our goal is to develop a prototype Computer Aided Software

Engineering tool for software development predicated on the making software

salvage effective. Using our tool, we intend to show how the Software Matrix

Framework [9] can be used for rapid application development and in some cases,

for instant software development by salvaging software assets. We intend to

explore more of the Software Matrix concept using our tool.

1.2. Prior Approaches

CASE (Computer Aided Software Engineering) [5] tools are designed to support

rapid application development [6] [8]. There are many Computer Aided Software

Engineering tools generating code based on the UML [1] diagrams, supporting

3

different versions of UML. There are also many different approaches that

encourage software salvage.

1.2.1 Software Reuse

1.2.1.1 Object Oriented Reuse

One of the prime motivations behind object orientation is reuse. Object oriented

techniques like encapsulation, inheritance and polymorphism are, indeed, an

effective mechanism for reuse. Object oriented languages like C++ and Ada

introduced the concept of class libraries, where libraries consist of thousands of

classes and functions. They promoted reuse by providing access to large sets of

functionality residing inside them through inheritance and composition.

These ideas created a spark, but however, failed to burn down the woods. They

provided good solutions for some specific domains like data structure libraries,

C++ standard library, for example, or user interface frameworks like the

Microsoft Foundation Classes. However most business organizations failed to

effectively reuse their own pre-existing software assets through creation and

consumption of object oriented libraries. One reason is that the objects are

necessary, but not sufficient, for the salvage model. Objects are collections of data

and methods to operate on the data. Salvage units are something different from

objects; they are entities deployed, versioned and mostly having the scale of

subsystems, much larger than objects, e.g., Objects are too granular to be used as

salvage units.

4

1.2.1.2 Component Oriented Reuse

As objects are too granular, the next approach was component oriented systems

[7]. A software component is a system element offering a predefined service and

able to communicate with other components [12]. A software component should

satisfy most of the following properties: Multiple-use, Non-context-specific,

Composable with other components, Encapsulated and a unit of independent

deployment and versioning [2] [3]. Components are different from objects.

Following the object oriented technique, one’s mental model of the imagined or

actual object is the main focus while developing software, that is, an object is an

abstraction of some small set of functionality, crafted specifically for that

representation. In contrast, software based on components, much like electronic

or mechanical components, should be developed by composition of prefabricated

components. Physically, objects and components also differ in granularity,

components are larger, coarser. Some of the popular component specifications

are Microsoft’s COM [13] (“a platform-independent, distributed, object-oriented

system for creating binary software components that can interact [14]”),

Enterprise Java Beans [15] (“a component architecture for the development and

deployment of object-oriented, distributed, enterprise-level applications”) [16],

OMG’s CORBA (Common Object Request Broker Architecture) (“a language-

independent object model and specification for a distributed applications

development environment”).

5

The common objective of all these technologies is to develop independently

deployable components to promote reuse. Another feature of component oriented

technology is to promote an architecture where a system, composed of

components, can be upgraded by changing components without rebuilding the

whole system. This is a very important feature if the system is composed of

millions of lines of code. The component-based software construction technology

is beneficial as compared to object oriented approaches in terms of reuse,

however component oriented approach has not solved, itself, solved the problem

of supporting software salvage.

1.2.2 Model Driven Architecture

The heart of Computer Aided Software Engineering tools lies in MDA (Model

Driven Architecture™, approach launched by the Object Management Group

[20]). The MDA approach defines system functionality using a platform-

independent model (PIM) which is translated to one or more platform-specific

models, using an appropriate domain-specific language or a General Purpose

Language like C++, Java, or C#. The MDA model is related to multiple standards,

including the Unified Modeling Language (UML), the Meta-Object Facility

(MOF), XML Metadata Interchange (XMI), Enterprise Distributed Object

Computing (EDOC), the Software Process Engineering Metamodel (SPEM), and

the Common Warehouse Metamodel (CWM).

6

1.2.2.1 Rational Rose [17]

As per it’s product website, the IBM Rational Rose family is IBM’s classic UML

modeling and model-driven development [27] “solution”. It is one currently

popular UML tool in the CASE market. It offers a modeling environment that

supports code generation from models in Ada, ANSI C++, C++, CORBA,

Java™/J2EE™, Visual C++® and Visual Basic®.

1.2.2.2 Sparx Systems’ Enterprise Architect [18]

According to the product website, Enterprise Architect combines the power of the

UML 2.1 specification with a high performance, intuitive interface, to bring

advanced modeling to the desktop, and to the complete development and

implementation team. It can be easily integrated with some of the popular IDEs

(Integrated Development Environments) like Microsoft Visual Studio® [22] and

Eclipse (open source universal IDE) [19].

There are many other CASE tools similar to two discussed above. They work very

well in some cases e.g. database centric applications and when developing an

empty framework or developing applications from scratch. Some of the CASE

tools remain “point solutions” [4]. They support multiple standards and tend to be

more general and broader in scope. But while doing that they fail to solve

problem of software asset salvage discussed earlier. They fail when we try to

7

integrate a newly designed framework with existing assets - they tend to

complicate the process and consume time fixing integration issues.

1.3. Our Approach

From the above discussion, component oriented technology looks promising if

there is a framework which promotes and actively supports it. However they are

designed to solve generic industry problems. They fail to support vertical

applications, where developing a huge framework for some specific market niche

is impractical from a return on investment point of view. CASE tools are useful,

but they failed to create a revolution as was expected early in their development.

They are good for creating empty frameworks or database centric applications,

but, however, while combining existing code and new development, they fail as

they are not designed for the software salvage process. They generally follow

models like UML which are actually language independent ways of expressing

the design of a system. We actually want the exact opposite of that, a way to

represent the system using existing software assets.

We already have a framework developed by Riddhiman Ghosh and Dr. James

Fawcett [9] which promotes software salvage. The basic idea of the Software

Matrix framework is to create software Integrated Circuits (ICs) - using a

hardware analogy - to build a system composed of standard reusable blocks.

Hardware designers have standard IC components so they already have basic

8

building blocks. If we can convert our software assets into such pluggable assets,

it would be a very valuable approach indeed.

Now if we can integrate this idea with a CASE tool, we could build an entire

system graphically given all required assets available in the form of pluggable

blocks. In this research we intent to build such a software architectural tool to lay

out the structures of systems graphically and later populate them with existing

software assets, where available, and develop the remaining blocks. This

approach promises reduced development and maintenance cost and quicker time-

to-market for product families composed of the same base code blocks. Code

blocks - offering new required functionality - become matrix cells and can be

plugged into any system. Following the matrix-based architecture allows very fast

development by registering existing cells and putting in empty, place-holder, cells

for future blocks and developing their functionality later.

Of course a system composed using the Software Matrix framework inherits all of

its advantages. Although the Software Matrix is not component oriented

technology, its structure supports dynamic construction where blocks can be

upgraded or replaced at run time. This Software Matrix framework is flexible

enough that testing can be made more dynamic and systems can be tested at run

time by replacing working blocks from the system. The Software Matrix

framework also provides a set of abstractions that we can build in almost any

language [10].

9

Chapter 2 Tools and Architecture used

This chapter focuses on the technologies used in this research. We describe the

Software Matrix technology, developed in research activities at Syracuse

University, and extensions specific to this research. We also describe the designer

used to construct diagrams and generate code according to the Software Matrix

framework.

2.1 Software Matrix

The Software Matrix framework is an architecture developed by previous research

work by Dr. James Fawcett, Riddhiman Ghosh [9], Anirudha Krishna [11] and

Vijay Appadurai [10]. The Software Matrix framework is used for building cells

that can be reused with no transformation cost. Software Matrix has significant

advantage over traditional component based architectures in that it simplifies the

way existing cells can be integrated into new projects. Applications composed

using Software Matrix technology can add cells dynamically at run time. Software

Matrix is a collection of code blocks called cells which are the building blocks out

of which applications are built. The cells communicate with each other by means

of XML messages. The interaction between cells is governed by a special cell

called mediator.

Figure 1 : The Software Matrix

The framework is composed of well defined components called Cells and a

Mediator based communication framework that allows interaction between the

cells. This combination allows loose coupling between components to such an

extent that Cells can be integrated just by placing their files into a pre defined

folder.

10

Figure 2 : The Software Matrix Structure

The Matrix has three important components – the Cell, Message Passing

infrastructure, and dynamic construction. The Matrix Framework contains a

Loader which monitors a Plug-in directory. The Plug-in directory contains all the

cells that need to be loaded into the Matrix. The Loader loads all the cells in the

Plug-in directory into the Software Matrix and registers all the cells into the

matrix. Each cell contains a capability list describing the functionality it provides.

The mediator contains information about the capabilities of each cell in the

Matrix. The mediator provides discovery service for particular functionality using

this information. All communication between the cells is in the form of XML

Messages.

11

2.1.1 Matrix Cell

The Cell is the basic building block of the Software Matrix. It is similar to classes

in object oriented design but is larger in scope, usually demonstrating component

level functionality. Applications are built by combining cells that possess the

desired characteristics.

Figure 3 : The Matrix Cell Structure

Since all components are Cells, they can function either as Servers or as

Executives. A server Cell provides certain services. Requests are collected,

processed and replies are sent. Executive Cells control the flow of the Application

by making requests to servers, and displaying results. Most UI components are

implemented as Executive Cells. Each Matrix Cells consists of certain common

components which are discussed below:

12

13

2.1.2 Cell ID:

The Cell ID is a Globally Unique Identifier (GUID) called cell ID. Each cell

instance is discovered by the Matrix using this unique ID and is used to aid

delivery of Request and Reply messages to the Cell.

2.1.3 Capability List:

Each cell advertises the services it provides using a Capability List. Each service

provided by a cell is given a name called a Message Type. The Capability List of

each cell is the collection of all the Message Types it can process. To make a

request of this service, a message, with the desired Message Type, is sent to the

Cell.

2.1.4 Message Queues:

All communication between the cells is through message passing. Cells can send

and receive messages from multiple locations at different times. A queue is used

to buffer incoming requests so that no message will be lost when the Cell is busy

processing a previous request.

2.1.5 Functionality

Functionality is the processing that is performed when a cell receives a request.

The parameters contained in a request message are used to process the request and

14

generate a response. For example, a FileInfo Cell might get a

matrix.fileInfoCell.getFileList message with some directory path and in response

the cell constructs a message consist of names of all files in a given directory.

All Cells follow a common protocol that specifies how to register and unregister

with the Matrix, advertise their capabilities, send and accept messages and

communicate with other Cells.

2.2 Design

We shall now discuss the implementation details of the Software Matrix. The

Software Matrix was developed for this research using C++. Matrix Applications

are composed of cells. The cells were written as dynamically loaded libraries

(dll). The Cells need to follow some conventions to effortlessly integrate into

applications. Each Cell is required to derive from ICell class. This class consists

of functions that implement basic cell characteristics like Message Queue and

Message Dispatcher Thread.

2.2.1 Loader

The Loader is responsible for identifying and loading all valid Cells into the

Software Matrix. The Loader is also responsible for registering each Cell with

other Cells according to the diagram constructed on designer canvas. Using a

15

model diagram as the basis for cell connection is one of the contributions of this

research. We actually use a hybrid approach where cell connections are

established by both the model and by mediator lookups. We are currently

pursuing a totally model-driven connection scheme.

2.2.2 Matrix

The Matrix consists of Capability Lists of service provided by all the cells

registered into the Software Matrix. It provides the discovery service for the cells

in the Software Matrix. Given a Capability, it returns the address of the cell

providing the service. The Matrix also ensures that cell execution begins only

after all the cells are loaded into the Matrix. This is accomplished by using a

Blocking Queue which queues up the messages sent before all the cells are loaded

into the Matrix.

2.2.3 ICell

Each Cell must derive from the ICell class. It defines the protocol that should be

followed by all the cells in the Software Matrix. All concrete cells that are derived

from the ICell class are provided default implementations for the functions in the

ICell class. Some important functions which perform message passing and so aid

in communication between Cells are discussed below:

16

• PostMsg(std::string& msg)- This method is used to enqueue

the request XML message from other cells into the queue for processing.

• AddResponse(std::string& guid,std::string& resp)-

This method is used to enqueue the response XML message from the

server cell into the queue.

• dispatch(std::string& msg)- This method specifies what is to

be done in response to the various messages that arrive to this cell. It

appropriately delegates calls to the code that actually implements the

functionality required to handle a particular message type.

Cells use the ExecObject class to assist in packaging of arguments, return values

and other information regarding requests and responses between cooperating

Cells in the Software Matrix.

Sample Request Message:

Figure 4 : readFile message to read c:\temp\test.xml

Sample Response Message:

Figure 5 : reply message with file contents

17

18

2.2.4 Serialization/Deserialization:

The data such as arguments in request messages and return values in response

messages need to be serialized and deserialized so that the resulting persistent

data can be encapsulated in XML messages, passed across various platforms. A

base64 encoder/decoder is used to serialize/deserialize the data in the request and

response messages.

19

2.3 Code Generation Framework

Software Matrix is a runtime infrastructure that acts as a substrate into which

individual pieces of application can plug and applications can be composed

dynamically. In this research, we developed a prototype Computer Aided

Software Engineering tool, called the Athena Designer, for software development

predicated on making software salvage effective. It has been developed using

Windows Presentation Foundation (WPF) [21] framework, developed by

Microsoft, to be released as part of Visual Studio 2008.

At design time, a system is seen as a collection of blocks where some blocks are

existing pieces and some blocks are going to be developed in the future. For this

research we call these blocks Cells. Athena Designer adds design time support

and lets users construct an application graphically by decomposing application

functionality into Cells, constructing a Cell diagram, defining Cell types based on

existing pieces or by putting in empty placeholders and then generating code, at a

later time.

Consider a real world application like a Directory Synchronizer, used as an

example by Riddhiman Ghosh in his original Software Matrix Research. The

Synchronizer allows the content of a directory on one machine to be synchronized

with contents of a directory on a remote machine so that we always have the latest

20

version of a specified set of files on one or both machines. If we think in terms of

building blocks of this application, there are four major building blocks:

• User interface block that allows the user to operate the application, view

errors, etc.

• Communication block to transfer file data between local and remote

machines.

• Policy block that decides which files to transfer, update, overwrite or

delete based on pre-defined rules.

• File Management block which does all file and directory operations.

The User interface is the main block which uses services of communication block

and policy block directly and policy block uses the service of the File

Management block. So a typical Cell Diagram will look something like this:

Figure 6 : Cell Diagram for Directory Synchronizer

The File Management block and Communication block are common blocks and

might be already developed for some other application. Let’s assume that they are

available when constructing this Cell Diagram. Policy block is the heart of this

application and might not be encountered before so let’s assume that it is not

available.

For the functionality which is not present at the design time, we put empty

placeholder cells and the system can be assembled using existing cells and

placeholder cells. Each Cell on diagram represents a piece of code and the

connections between Cells show how they will be registered with each other to

exchange message and use each other’s services.

21

Figure 7 : creating empty placeholder Cell

Based on connections between Cells on Athena Designer canvas, a relation.xml

file is generated which has all the information about how Cells should be

registered with other Cells.

22

The Loader reads this relation.xml file and registers Cells accordingly.

For the Cell Diagram, code is generated as a Visual Studio solution file. Each Cell

represents the unit of composition and reuse in our system and so for every Cell in

the diagram, code is generated as a separate project and has output build type as a

DLL file, and is part of the solution file1.

2.3.1 Building an Application using Athena Designer

This section outlines the concrete steps needed to build system taking advantage

of the Software Matrix.

23

1 See appendix for more details about project and solution file formats for Visual Studio

In order to enable salvage, pieces of an application are wrapped in a Cell. All

Cells conform to the ICell protocol. For example:

 FileInfo : public ICell { // code here };

All Cells have to enter required source and header files information in

specific.xml file. It is manifest file which is used by Athena Designer to generate

code. All cells are placed inside “filedb” directory.

Figure 8 : source and header files in filedb directory

Athena Designer loads Cell profiles at startup by reading specific.xml file.

24

25

Next one needs to construct a diagram for the target application using our Athena

Designer. Each block in the diagram maps to a particular Cell and the user does

the mapping by selecting a block and mapping CellType to Cell profile loaded by

Athena Designer. If a particular block is not mapped to any Cell profile, Athena

Designer will generate an empty cell as a place holder for that block and the user

is free to add functionality later.

After constructing a diagram one can instruct Athena Designer to generate code

and Athena Designer generates the application as a Visual Studio Solution2 [22]

and generates project files as part of the main solution for each individual Cell.

2 Solution file is compatible with Visual Studio 2005 and later versions.

26

2.4 Extensions to the Software Matrix:

In this section we will discuss the various improvements to the original Software

Matrix Framework made by previous developers of this research technology.

2.4.1 Changes made to core framework by Anirudha Krishna

2.4.1.1 Directory watcher for the loader module

Software Matrix loader monitors plugins directory for the Cells and as

soon as new Cell is added or existing Cell is modified, it loads new Cell.

Earlier framework used polling method and it was modified to use event

signaling.

2.4.1.2 Integration of Network Access – the network cell

Software Matrix framework elements were modified to exchange message

across computers to build distributed applications. Now message can be

addressed to both local and remote Cell in exactly the same fashion.

2.4.2 Changes suggested to core framework by Vijay Appadurai

2.4.2.1 Improving Efficiency

A new functionality “Matrix Query” was added to improve the messaging

efficiency. It is used to query the Matrix for a Cell providing a particular

service which returns a pointer to a specific Cell providing the service to

make direct, unmediated, communication between Cells possible.

27

2.4.3 Changes suggested by this research

2.4.3.1 Testing Support

Software Matrix Cells derive from the ITest interface. It is a protocol that

should be followed by all the cells in the Software Matrix to support

automated test harness based testing of cells. Each individual cell is

packaged in the form of a dll file, so an automated test harness server can

load dlls (Cells) and call each test routine and log the test results.

2.4.3.2 Intelligent loader

In the original Software Matrix framework, the loader continuously

monitors a plugins directory to discover and to add new Cell or to replace

an existing Cell. In this research, we have fixed a set of Cells which

should be loaded in the Matrix and the loader has information about a

particular Cell’s connections with other Cells via the relation.xml file. So

now the loader is not required to monitor plugins directory continuously

but rather it loads them all once, reads the relation.xml file and registers

Cells as connected in the Cell Diagram.

2.4.3.2 Auto Cell Discovery

Cells are registered with each other based on connections between them in

Cell diagram. In this research, we added an auto Cell discovery feature so

that if one Cell is not registered with some other Cell and it tries to send a

message to that Cell, given both Cells are registered in Matrix, the other

Cell will automatically be registered to the requesting Cell upon service

request.

28

Chapter 3 Sniffer Application

In this chapter we present a process and port sniffer application that was built by

adopting the Software Matrix approach to show how effectively Software Matrix

can support Model Driven Development for Rapid Application Development, or

nearly Instant Application Development in some cases.

3.1 Sniffer Application

The Sniffer Application is a useful tool often used by network administrators to

check the security of their network. It scans all machine ports and observes all

ports currently hosting a connection. It also scans machine to observe processes

running on that machine. It maintains a persistent collection of all ports on which

it has observed connection and a property that records if the client had indicated it

to be safe and similarly it maintains a persistent collection of safe/unsafe

processes and allows user to mark process safe or unsafe.

29

On a client request it discloses to the client all unsafe or all safe port connections

on which connection was observed. It can disclose list of safe and unsafe

processes in the same way upon user request. On user command it marks any

group of ports/processes as safe or unsafe.

The Sniffer application has a server-client architecture consisting of a sniffer

server and sniffer client. Sniffer server is installed on the machine on which we

want to observe all processes running or ports currently hosting a connection and

client can be running on the same machine or on any other machine within local

network which can connect to Sniffer server through socket connection.

3.1.1 Sniffer Application Components

The Software Matrix is concerned with the large building blocks of applications,

rather than small fine-grained units of functionality. For this application three

major blocks were identified for Sniffer Server, these blocks are ideal candidates

to be developed as Matrix Cells:

• Sniffer block which continuously observes all processes running or ports

currently hosting a connection and updates safe/unsafe process/port list on

user request.

• Communication block to share information about all ports hosting

connection, exchange command from client to server to add port to

safe/unsafe list.

30

• Executive block to host above two blocks and provide service to client

using sniffer and communication block.

Similarly two blocks were identified on Sniffer client side:

• User interface block that allows the user to operate on application, view

processes running or ports hosting connection, view safe/unsafe

process/port list, view errors etc.

• Communication block to communicate with Sniffer server

These blocks can be easily developed as a Software Matrix Cell. The application

as built contains the required blocks as Cells.

This is screen shot of sniffer application showing safe and unsafe process list:

31

Figure 9 : screenshot of sniffer Client

3.1.1.1 Sniffer Cell

The main function of the Sniffer Cell is to maintain a persistent collection of

processes running and ports currently hosting connections and marking them as

safe and unsafe on user command.

The Sniffer Cell maintains two threads to monitor running processes and to

observe ports hosting connections at regular intervals. Both threads also maintain

safe and unsafe process/port list. The persistent safe/unsafe list is thread safe and

32

synchronization is achieved using GLock3 class. Users have the option to

initialize a safe process/port list, and processes/ports not marked as safe are

considered to be unsafe.

The capability list of the Sniffer Cell is populated to indicate the types of

messages it is capable of handling. Sniffer Cell can handle service requests for the

messages with the following message type:

• matrix.snfrCell.getProcList – this type of message is a request to get

list of all the processes running on machine hosting Sniffer Cell.

• matrix.snfrCell.getSafeProcList - this type of message is a request to

get list of all processes marked as safe.

• matrix.snfrCell.getUnsafeProcList - this type of message is a request

to get list of all processes marked as unsafe.

• matrix.snfrCell.addToSafeProcList - this type of message is a request

to add name of process passed as message parameter to safe process

list.

• matrix.snfrCell.addToUnsafeProcList - this type of message is a

request to add name of process passed as message parameter to unsafe

process list.

• matrix.snfrCell.initSafeProcList - this type of message is a request to

initialize safe process list with process names passed as message

3 GLock, Thread classes are taken from Dr. Fawcett’s code repository

33

parameter. If user does not initialize safe process list, all processes are

considered to be unsafe by Sniffer Cell.

• matrix.snfrCell.initUnsafeProcList - this type of message is a request

to initialize unsafe process list with process names passed as message

parameter.

• matrix.snfrCell.getPortList - this type of message is a request to get list

of all the ports currently hosting connection on machine hosting

Sniffer Cell.

• matrix.snfrCell.getSafePortList - this type of message is a request to

get list of all ports marked as safe.

• matrix.snfrCell.getUnsafePortList - this type of message is a request to

get list of all ports marked as unsafe.

• matrix.snfrCell.addToSafePortList - this type of message is a request

to add port number passed as message parameter to the list of safe

ports.

• matrix.snfrCell.addToUnsafePortList - this type of message is a

request to add port number passed as message parameter to the list of

safe ports.

• matrix.snfrCell.initSafePortList - this type of message is a request to

initialize safe port list with port numbers passed as message parameter.

If user does not initialize safe port list, all ports hosting connection are

considered to be unsafe by Sniffer Cell.

• matrix.snfrCell.initUnsafePortList - this type of message is a request to

initialize unsafe port list with port numbers passed as message

parameter.

Class diagram for sniffer Cell

Figure 10 : Sniffer Cell – Class diagram

3.1.1.2 Communication Cell

In the Communication Cell implemented by Anirudha Krishna, the

Communication/Network Cell created a channel between different Mediator Cells

through which messages could be transferred. Messages may be sent to both

Local and Remote Cells in exactly the same fashion. Messages to Remote Cells

contained some extra connection information i.e. IP Address and Port number. So

to pass a message to a Remote Cell, the Local Cell creates a message similar to

messages addressed to other Local Cell but with added IP Address and Port

34

35

information so that Mediator can forward that message to Communication Cell

for remote delivery.

In this research, Cells are registered to each other by the loader according to

connections in the Cell diagram. So if any Cell needs to communicate with a

Remote Cell, it could be connected directly with Communication Cell so that it

can exchange messages to the remote Cell through Communication Cell without

Mediator intervention. Every Cell maintains a list of Cell references based on

connections in the Cell diagram. So it can get a reference to the Communication

Cell from its local list and can directly pass messages to it. If some Cell is not

connected with Communication Cell in Cell diagram and if it requests service of

the Communication Cell, in our research, we have provided an auto Cell

discovery mechanism. Thus if a Communication Cell reference is not available in

the local list, the sender will query the Matrix for Cell reference providing the

service and Matrix returns the Cell reference and Cell updates its local list by

adding a reference to the Communication Cell. Thus the Communication Cell is

establishing channel between different Cells instead of just different Mediators to

exchange messages.

The capability list of the Communication Cell is populated to indicate the types of

messages it is capable of handling. Communication Cell can handle service

request for the messages with the following message type:

• matrix.commCell.listen – this type of message is a request to

commCell to start listening on port number passed as message

parameter.

• matrix.commCell.sendMessage – this type of message is a request

to send xml string message to destination. Xml string, destination

IP Address and destination port number are passed to

Communication Cell as message parameters.

Class diagram for communication Cell

Figure 11 : Communication Cell – Class diagram

36

37

The commCell class is the actual Communication Cell and it provides service for

above mentioned message types. It is inherited from ICell class which actually

provides basic Cell functionality like Blocking Queue, message dispatcher thread

etc to exchange messages with other Cells.

The Communicator class provides the abstraction to actual communication

activities, i.e. it runs socket listener on its own thread so commCell doesn’t block

waiting for connections.

Sockets class provides network communication service, using WinSock2. It

provides connect request, service to read and write string over socket.

SocketSystem provides WinSock loading, unloading and other services.

BlockHandler class provides packaging for raw bytes that sockets know how to

send. Blocks are composed of header and data sections.

3.1.1.3 User Interface Cell

As standard C++ Library does not support creation of User Interfaces, User

Interface Cell is developed using Managed Extensions for C++ (Managed C++)

[24][25]. Managed C++ is Microsoft's set of deviations from C++, including

grammatical and syntactic extensions, keywords and attributes, to extend the C++

syntax and language to the .NET Framework. These extensions allow C++ code

to be targeted to the Common Language Runtime (CLR) in the form of managed

code as well as continue to interoperate with native code.

38

In Managed C++, multiple inheritances are not supported. This is a design artifact

of the CLR. A class managed under the CLR's garbage collector cannot inherit

more than one class. A user Interface created using Managed C++ inherits from

Form class of Windows Class which is again part of System Class in .NET

framework. So the User Interface class can’t inherit ICell class and can’t

communicate with Matrix directly. The problem is solved using a

messageHandler class. The User Interface class holds a reference of the

messageHandler class and exchanges messages with other cells through this

messageHandler class. The messageHandler class inherits from ICell and so it

has all the functionality required for message exchange with other Cells. For

communication between messageHandler and User Interface class,

messageHandler class is required to use interop service from System.Runtime

namespace. If any class is inheriting from ICell class, it is required to implement

clone() function required for thread processing. If interop functionality is

implemented inside messageHandler, it won’t be able to implement clone

function as it can’t marshal between managed type and standard type. The

problem is solved with introduction of exchanger class. User Interface class and

messageHandler class shares a reference of exchanger class. User Interface class

registers one of its methods with a delegate of the exchanger class. So whenever

any Cell passes messages to messageHandler, it sends the message to exchanger

which forwards it to User Interface Cell through the delegate.

Class diagram for user interface Cell

Form1

exchanger

messageHandler architect

matrix

Figure 12 : User Interface Cell – Class diagram

The User Interface Cell is an executive Cell. It loads all Cells (dll files) using the

architect class. Architect class is actually a loader class as per the notations used

in standard Software Matrix framework defined by Riddhiman Ghosh [9], we call

it architect as it does wiring of Cells based on connections in Cell diagrams and

constructs the Matrix. Athena Designer generates cellinfo.xml file while

generating code. The architect class reads this file and based on information

stored in the file, it assigns unique GUIDs to each Cell. The architect class

registers Cells based on the connections shown in the Cell Diagram. Athena

Designer generates the relation.xml file containing all information about Cell

connections shown in the Cell diagram. It generates relation.xml file with the

same GUIDs stored in cellinfo.xml and using both files, architect class can

register different Cells to create an application. All loaded Cells are also

39

40

registered with executive while loaded into the matrix. So if some Cell has no

direct reference of some other Cell, it can search for Cell reference using Cells

registered with itself. Executive Cell is registered with all Cells loaded into

Matrix and all Cells are registered with Executive Cell and this ensures that any

Cell can get a reference of another Cell loaded into Matrix even if the two are not

registered with each other initially. Executive Cell is an executable file and it

creates instance of architect class to load Cells (dll files) into Matrix; so Executive

Cell needs to register itself directly using register() function of the matrix class.

As it is not loaded by architect, it needs to get a unique GUID on its own. This

GUID should match with the GUID assigned to Executive Cell in cellinfo.xml

and relation.xml as Athena Designer conveys all information about Cells and

Connections through unique GUID. Athena Designer generates guid.txt for

Executive Cell to convey this unique GUID and Executive Cell reads guid.txt and

uses unique GUID read from file to register itself into matrix.

3.1.2 Constructing Sniffer Application

It is not required to have all Cells ready to build an application. However, to

demonstrate application construction, we are building all Cells and generating

application using Cells built for this application. If Cells with required

functionality are not available at the time of Diagram construction or code

generation, we have the option of putting empty place holder Cells for the

functionality to be developed in the future. Each Cell is generated, by the Athena

designer, as a separate Visual Studio project and so we can open it anytime and

add functionality to it. The Cell Diagram for the sniffer server will look like:

Figure 13 : Cell Diagram for sniffer server

When we click on the generate code button, it will ask for a directory where we

want to place code for our application. The Athena Designer will generate code

once we provide the path to generate application code and click apply.

41

Figure 14 : code Generate properties window

Here is a screenshot of the destination directory where Athena Designer has

generated code. Different folders represent different Cells.

42

Figure 15 : generated solution for snfrServer

43

The Cell Diagram for the sniffer client will look like:

Figure 16 : Cell Diagram for sniffer client

In the same way we need to provide a path for destination directory to generate

client application code.

The generated User Interface Cell is just a blank windows form without any

controls and so we need to add required components and request messages to get

information from sniffer server. Here is the screenshot of the running application

after adding all required UI components and request message:

44

45

Figure 17 : screenshot of sniffer Client

46

Chapter 4 Athena Designer

In this chapter we discuss the details of Athena Designer Computer Aided

Software Engineering tool that we developed for our research, to demonstrate

Model Driven Development using the Software Matrix framework.

4.1 Background

The original idea behind this research work was to build a prototype Computer

Aided Software Engineering tool to support Model Driven Development. Instead

of reinventing the whole wheel and building a full fledge Integrated Development

Environment (IDE), we chose to rather develop a tool providing design time

support with compatibility to some well known existing IDE. The tool we

developed for our research allows a user to connect Cells visually to construct an

application. No coding is required to connect Cells together. The Athena [26]

name is chosen for the designer after the Greek Goddess Athena, an armed

warrior goddess who is also goddess of wisdom and patroness of weaving, as this

tool is actually an assembler using which an application can be constructed by

crafting Cells.

Athena Designer is developed using Windows Presentation Foundation (WPF)

which is a major component of new .NET 3.0 framework. Windows Presentation

Foundation is a framework to deliver high-quality-sometimes cinematic-

experience to user. For our research we wanted a tool which can provide a blank

47

canvas on which user can add Cells, make connections between different Cells,

move Cells to any place in the canvas and create a visual model of the application

to be constructed. Here are some of the reasons we chose WPF for development

of our tool:

• Broad Integration - WPF is a framework for Software Developers and

Graphic Designers to create modern user experience without mastering

several difficult technologies like GDI+, DirectX etc. To build

applications with 2D graphics there are several independent technologies

and number of inconsistencies. however WPF covers all these areas with

a consistent programming model as well as tight integration when each

type of media gets composited and rendered. Graphics effects are

consistently applied across different media types.

• Resolution independence - WPF puts emphasis on vector graphics and so

elements can be enlarged or shrunk independent of screen resolution.

• Declarative programming – With introduction of Extensible Application

Markup Language (XAML) applications can be developed using a large

range of expressive artifacts, based on arranging markup in a common-

sense fashion. Styles, templates, and skins can be defined for a user

interface and can be separated from code which implements behaviors.

• Rich composition and customization – WPF controls are extremely

composable. All controls are now containers and so any control can be

embedded inside the other control and no code for this customization is

required to be written. Using this functionality we created a canvas, and

48

to present a Cell in Cell Diagram, we just add a button with customized

look to canvas. That can then be moved across the canvas as the user

chooses.

The Athena Designer generates code in a Visual Studio Solution which is

compatible with Microsoft Visual Studio 2005 and later versions. Microsoft

Visual Studio is a complete set of development tools for building ASP.NET Web

applications, XML Web services, desktop applications, and mobile applications.

Visual Basic, Visual C++, Visual C#, and Visual J# all use the same integrated

development environment (IDE), which allows them to share tools and facilitates

in the creation of mixed-language solutions. Generally Cell diagrams consist of a

number of Cells and connections between them which represent the system as a

whole. Code is generated using the same idea. If we compare generated code and

its Cell diagram, each individual project represents a Cell in the diagram and all

such projects become part of one Visual Studio Solution which represents the

application as a whole.

Header files

Header files

Source files

Source files

Figure 18 : each Cell is generated as separate project. All projects are part of one
solution file which represent whole application

4.2 Building Blocks of Athena Designer

Class Diagram for Athena Designer

diagramInfo designer
1

codeGen projectInfo connectionInfo cellInfo

myCanvas
1

MyButton

Button

Canvas

Figure 19 : Athena Designer - Class Diagram

49

50

4.2.1 myCanvas Class

This class provides a hosting panel and the user can create a Cell Diagram on the

panel. Cells can be moved, and, if moving Cell is connected with other Cells, it

will automatically redraw connections between them. myCanvas class derives

from Canvas. It also provides support for modifying the z-order of the elements it

contains. Most panels in WPF provide automatic layout support such as the

docking behavior of DockPanel or the item wrapping behavior of the WrapPanel.

The Canvas is the only panel in WPF layout system to provide absolute

positioning similar to putting controls on a WinForms panel. The elements in a

Canvas are never moved or resized by the Canvas. This property is therefore

useful as we do not want to change exact size and the location of visual objects

due to window resizing or any similar action.

To create a Cell Diagram it allows hosting of any class which has UIElement

class as its base class. However the designer class restricts it and only hosting of

MyButton (this class element represents Cells in Cell Diagran) and PolyLine (it

draws connection between two Cells) is allowed on myCanvas. So when user

clicks on myCanvas panel, the designer class captures user clicks, and based on

type of request, it notifies myCanvas class. If a user click is the action to add a

new Cell, the designer class creates a new MyButton class instance and adds it to

children collection of myCanvas instance. If user click is to add a new connection

between two Cells, designer class creates and adds a new PolyLine instance

51

between two Cells and again PolyLine instance is added to the children collection

of myCanvas instance.

By default, the DragCanvas manages dragging of every element in its children

collection. Elements AllowDragging property can be set to false to disable

dragging of elements. By default Cells (MyButton class instances) have higher Z-

index value and so they appear in front of connections (PolyLine instances).

The element dragging logic is comprised of three steps:

1. When the left mouse button is depressed, the myCanvas looks for a child

UIElement at the current mouse cursor location. If it finds one, a reference

to that element is stored, information about the element’s location is

saved, and the cursor location is cached.

2. When the mouse moves, if there is a Cell being dragged (i.e., Cell was

found when the mouse button was depressed), then that Cell will be

relocated by the distance between the old and current cursor locations,

relative to the original Cell location.

3. Eventually, when a mouse button is released, the drag Cell reference is

nullified, so that when the mouse moves, there is no Cell to relocate.

When mouse moves and if Cell is being dragged and it has any connections with

other Cells on myCanvas, it will automatically redraw connection lines based on a

routing algorithm. When dragging a Cell on myCanvas panel, the Cell at other

end of the connection is considered to be the center of the coordinate system used

to draw the connection between two Cells. The routing algorithm divides the

plane into quadrants and again divides each quadrant into two equal parts – a

region for line with two folds and a region for line with three folds.

Figure 20 : Region with 3-fold line

52

53

The figure, above, shows a region for 3 fold line. Cell1 is connected with Cell2.

When Cell1 is being dragged, considering myCanvas as plane, Cell2’s center is

considered as center of coordinate system. If Cell1 falls in a region of 3 fold lines,

a connection with 3 line segments is drawn. If Cell1 falls in a region of 2 fold

lines, a connection with 2 line segment is drawn.

Figure 211 : Region with 2-fold line

This figure shows a region for 2 fold line. To determine in which region a Cell

being dragged falls, the slope of the line connecting two cells is calculated as

shown in the figure. Based on that slope, different PolyLine point locations are

updated and will redraw the line automatically. How slope is calculated and how

point locations are assigned is shown in next two figures.

54

Figure 222 : Selecting Region to draw connection

Figure 233 : creating point collection to draw line between Cells

55

56

4.2.2 diagramInfo Class

digramInfo class maintains all necessary information required from the Cell

Diagram to generate code. The designer class maintains some information

necessary for it to redraw connections between Cells and allow dragging of Cell.

The information maintained by designer class is mapped to information which can

be directly used for code generation and mapping. Both are maintained by

diagramInfo class. Whenever a new Cell is added or a new connection is made

between two Cells, information about addition or new connection is passed to

diagramInfo class and position of the Cell or points collection for a connection is

maintained by the designer class. The diagramInfo class correlates both pieces of

information.

diagramInfo class maintains information about the number of Cells in a diagram,

user defined name of Cell, type of Cell, connection between Cells, type of

connection, auto generated GUIDs for each Cell etc. On user command, designer

class lets user change some of the auto generated information. Notification of

such changes are sent to the diagramInfo class and it updates necessary

information locally. When a user clicks on the code generate button from toolbar,

diagramInfo class calls methods of codeGen class to generate necessary project

files and solution file based on available information.

57

4.2.3 codeGen Class

This class provides static methods to generate project and solution files

compatible with Microsoft Visual Studio 2005. Microsoft Visual Studio has a

predefined set of template files for different project types and using those

templates we created a template suitable for code generation.

Original project file snippet Template to create emptyCell snippet

<?xml version="1.0" encoding="Windows‐
1252"?>

<VisualStudioProject

 ProjectType="Visual C++"

 Version="8.00"

 Name=”emptyCell”

 ProjectGUID=”{BD2CE710‐DEE2‐4b4b‐
869F‐4B6E0CC612C8}”

 RootNamespace=”matrix”

<?xml version="1.0" encoding="Windows‐
1252"?>

<VisualStudioProject

 ProjectType="Visual C++"

 Version="8.00"

 Name=" [! safe projectname] "

 ProjectGUID=" { [! safe GUID] } "

 RootNamespace="[!safe
rootnamespace] "

The table, above, shows snippets from original Visual Studio Project file (files

with extension .vcproj) and template file to create empty cell (we have used .tmpl

extension). Necessary information is provided by diagramInfo class and the

template file is populated with this information. Then a new project file (file with

.vcproj extension) is generated in the destination directory. The structure of

58

Microsoft Visual Studio solution files (file with .sln extension) depends entirely

upon the number of projects and their respective GUIDs so it is generated on the

fly without using template. For more information about file format of .vcproj and

.sln file see appendix item A. Microsoft Visual Studio requires the directory

structure to be specified in project and solution file and we have used a simple

structure, storing each project file (.vcproj) and files part of that project (source,

header, resource files) in a separate directory. Each project directory is stored in

the root directory along with the solution file.

4.2.4 designer Class

The whole UI of Athena Designer is defined using markup language XAML and

code behind logic is defined in this class.

The designer class is the executive class of the Athena Designer application. It

loads myCanvas panel and lets users construct Cell Diagrams. It directs other

classes to let a user change default behavior of Diagram i.e. by changing Cell

name, Cell type, type of connection etc. It maintains information about Cells

available on myCanvas panel, and connections between Cells. It also maintains

information necessary to redraw a connection while Cell is being dragged. When

a user adds a new Cell to diagram, Cell name is auto generated and diagramInfo

class is notified about Cell creation. It will store Cell location locally and add the

instance to children collection of myCanvas. In the same way, when two Cells are

59

connected via a connection, it notifies diagramInfo class about it and stores points

collection for that connection locally and points collection instance is added to

myCanvas children collection.

When a user right clicks on any Cell added to Cell Diagram, it creates instance of

cellInfo class so that the user can specify parameters to change the default

behavior and properties of the Cell. When user right clicks on the connection, it

creates instance of connectionInfo class so that user can change type of

connection.

4.2.5 MyButton Class

This class actually represents Cells in the Cell diagram. It derives from Button

class so basically it’s a button control with different look and feel, which can be

loaded on myCanvas panel and dragged across the panel. It adds new properties

of name and image source to default behavior. When an instance of MyButton

class is created, it initializes its source property with Cell image and name with

default auto generated Cell name. It also stores information about the number of

connections maintained with other instances created on Cell Diagram.

4.2.6 ProjectInfo Class

This class creates a window to enter project name and destination directory to

generate code. Later this information is passed to diagramInfo and codeGen class

by diagram class.

60

4.2.7 connectionInfo Class

This class creates windows to change default connection type. To draw a

connection between two Cells user needs to click on source Cell (“from” Cell)

and then destination Cell (“to” Cell). By default connection type is always

assumed to be source to destination. That means the loader will register the

destination Cell with source Cell. A user can change this default behavior to

destination to source type of connection or both Cells holding reference of each

other when loaded into the matrix.

4.2.8 cellInfo Class

The cellInfo class creates a window to change default Cell properties. When user

adds a new Cell to Cell Diagram, designer class will create default name for Cell

and Cell type is set to emptyCell by default. User Can change this to any unique

Cell name and any type listed in the window.

4.3 Screen shots of Athena Designer

Generate code
based on cell
Diagram

Add connection
between two
Cells

Create a
new Cell

Canvas to create
Cell Diagram

Figure 244 : Different toolbar buttons and their function

Right Click to open Window to change Cell name
and Cell Type

61

Figure 255 : Edit default Cell properties

Figure 266 : Edit default connection Type

62

Figure 277 : Parameters required for code generation

63

Chapter 5 Conclusions

This chapter summarizes the goals of the Model Driven Development, our

contributions to Model Driven Development using the Software Matrix for

effective software salvage, and future work.

5.1 Literature Review

In the bibliography, we cite some papers and journal articles that are related to our

work or have provided insight or inspiration for this effort. In order to provide a

context for our contributions, we review some of them that have been particularly

useful.

Ju An Wang [7] proposed a solution for highly reusable software components

and suggested that a revolutionary change is required to move from writing code

line by line to assembling prebuilt components systematically. In our research,

we proposed a simple framework for creating reusable components which can

64

even encapsulate object oriented reuse to provide high level of abstraction. The

framework proposed by our research does not required drastic changes in the

software development process and can be easily adapted with current software

development processes.

Giuliano Armano and Michele Marchesi [6] described application development

using a tool named UMLTALK to generate prototype code in Smalltalk language

based on diagrams constructed using UML. They claimed that small and medium

sized projects based on refactoring and supported by suitable language and tools

allow team productivity to be greatly enhanced. In the architecture proposed by

this research, an application is viewed as compositions of different pieces-of Cells

in the Matrix-where some of the Cells are to be developed in future and some

Cells encapsulate existing functionality. We also observed that by using

refactoring activities at design and analysis level instead of just using at the

implementation level improved productivity significantly.

Albert F. Case, Jr. [8] described an evaluation and implementation strategy for

using Computer Aided Software Engineering to improve systems development

productivity. In his conclusion he wrote that Computer Aided Software

Engineering can have dramatic impact on our ability to improve systems

development productivity. We also observed with the architecture and tool

proposed by our research, that model driven development increases development

65

speed and helps to ensure that quality is built into system at every phase of

development.

L. Balmelli, D. Brown, M. Cantor and M. Mott [27] described a Model Driven

Development approach using RUP® SE (Rational Unified Process® for Systems

Engineering) and described Model Driven Development approach well-suited to a

system development environment characterized by rapidly changing conditions

and requirements. In our research we observed that Model Driven Development is

based on system decomposition rather than requirement decomposition and the

resulting systems are better suited for internal reuse. Model Driven Development

leads to robust solutions that provide a solid basis for evolving the system as

stakeholders require change.

5.2 Addressing Model Driven Development

Effective recycling of software assets has been an important, yet partially

unfulfilled goal of the software engineering discipline; if integrated with a Model

Driven Development approach it holds out the promises of robustness and

improved quality, gains in development schedule and quicker time to market, and

reduced development and maintenance cost. While these benefits are widely

recognized, practice of systematic and effective reuse with Model Driven

Development approach is certainly not widespread.

66

In this thesis we have been concerned with finding the missing link between

effective reuse of software assets and Model Driven Development. We also aimed

to facilitate building applications with effective software asset salvage without

changing the software development process drastically.

67

5.3 Contributions of this Thesis

Our contribution in this thesis focused on significantly improving Model Driven

Development by promoting software assets reuse using Software Matrix

framework.

• We proposed an architecture which supports Model Driven Development

using the Software Matrix, a framework supporting software salvage. So

we demonstrated that the Software Matrix can be used effectively to reuse

existing software assets to build a new application with very little effort.

We also demonstrated that an application could be built graphically by just

connecting different Cells with each other.

• We also added testing support to Software Matrix. Matrix Cells now

follow a common testing protocol and so could be loaded independently

into a test harness server for testing purpose. We also improved

performance of the Software Matrix by allowing direct communication

links between Cells residing on different machines instead of establishing

links between two mediators and exchanging messages through mediator

links. We also added an auto Cell discovery feature into Software Matrix

so now Cells can discover a Cell containing required functionality but not

registered for direct message exchange and can exchange message directly

after discovery.

68

• We also developed a sample sniffer application using Model Driven

Development approach. We generated code for the sniffer application by

constructing a Cell Diagram consisting of required functionality Cells and

connections between them.

5.4 Future Work

During the process of working on Model Driven Development using the Software

Matrix, directions for future research and development were identified. Pursuing

these areas will add several improvements to the Software Matrix.

5.4.1 Integrated Designer, Repository and Test Harness

Athena Designer reads manifest file to get information about required files

to generate code for particular Cell types. Based on information in a

manifest file, it copies required files from local codedb directory. This

could be improved by integrating a code repository system and test

harness server4. So while generating code, designer could make a request

to the repository system for required information. While developing a

system, user creates empty Cells for functionality to be developed in

future. User may even change or enhance existing functionality. In such

cases, loader could detect such changes and request test harness server to

perform testing before loading dll into the system.

4 This structure was discussed by Vijay Appadurai [10]

69

5.4.2 Auto upgrading Systems

The current architecture could load Cells dynamically and add new

functionality to a system which is alive. We could enhance it further by

adding support to replace an existing Cell if a newer version of Cell

becomes available. Mediator detects the change and moves old Cell into

special zone and loads new Cell in same zone. In special zone mediator

lets old version Cell finish message processing based on messages in its

queue and drops a kill message for old version Cell. All new messages are

passed to new version Cell. When old version Cell finishes its message

processing, mediator replaces it with the new version Cell, maintaining

temporary message queue while upgrading Cell reference in Matrix so no

message is lost and later delivers all messages received while upgrading to

new version Cell for processing.

5.4.3 Cross Platform Wrapper Cells

Vijay Appadurai [10] demonstrated cross platform development using the

Software Matrix. This same idea could be integrated with designer, and

while constructing a Cell Diagram, it could be constructed with Cells

developed using different platforms. When two Cells developed using

different platform are connected in diagram, designer would automatically

add a necessary wrapper between them based on user specified

configuration. It would require different mediators responsible for a

specific platform type. The wrapper Cell actually hides message exchange

70

between two cross platform Cells and does message exchange through

platform specific mediators using cross platform message exchange

protocol.

5.4.4 Load Balancing

Software Matrix could be enhanced for multiprocessor systems where

mediator could automatically clone Cells in high demand including itself

and make them run on separate thread to improve overall response from

the Cells in high demand.

5.4.5 Communication wrappers for frequent message exchange

with remote Cell

We could create server client application using Software Matrix. It is

possible that one local Cell communicates frequently with remote Cell.

We could develop communication wrapper Cell which makes permanent

channel with remote Cell to improve performance and local Cell could just

talk to remote Cell assuming its available locally. Communication wrapper

Cell creates illusion that remote Cell is now available locally and manages

all message exchange with remote Cell.

71

Appendix

A. Visual Studio 2005 project and solution file format
details [23]

The format of these files is not published or documented by Microsoft and could

change drastically in future versions.

Solution File
Visual Studio creates two separate files when we create a new solution in Visual

Studio.

• The first file is the .suo (solution user options) file (it is a hidden file),

which stores user settings such as the location of your breakpoints. If we

don’t generate this file, Visual Studio will generate this file when we open

the solution in Visual Studio. So in this research we are not generating this

file. This file is stored in binary format, which does not lend itself to easy

editing.

• The second file that Visual Studio creates is the .sln file. This file stores

information about the projects that make up this solution, source control

settings, and other global settings that apply to all of the projects in the

solution. In this research we are generating a *.sln file.

Details of the Solution file:

72

The first line of the solution file contains a declaration including the version of

Visual Studio that this solution is built for:

Microsoft Visual Studio Solution File, Format Version 9.00

Visual Studio 2005 contains an additional line under this first line, which contains

just the following:

Visual Studio 2005

This line causes the icon of the file to be changed to a Visual Studio 2005-specific

icon, and if removed, will prevent Visual Studio from opening this file when

double-clicked on it.

The next portion of the solution file contains a section for each of the projects that

are contained in this solution:

Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "matrix",
"cell5\cell5.vcproj", {7b783271-7cb8-4763-85fc-475fe2f1efa7}
EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "matrix",
"cell4\cell4.vcproj", {bfd462df-9c2a-4b4d-91f7-110b477eb014}
EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "matrix",
"cell1\cell1.vcproj", {934cf759-752e-49ee-8074-48614df092b4}
EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "matrix",
"cell3\cell3.vcproj", {13d191ca-eac1-401c-9af4-955630f0f394}
EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "matrix",
"cell2\cell2.vcproj", {8bac3539-7d90-420c-bf9d-18196135b9bd}

EndProject

Each project has a Project and EndProject tag as well as a ProjectSection

tag to track the dependencies for the project. The first GUID in the project tag is

used to identify what type of project this is. In this instance, the GUIDs for all

projects are same as they are Win32 console applications. The strings on the right

73

side of the equals sign include the name of the project, its path relative to the

solution root, and the unique GUID for this project. This GUID is used for a

number of things including tracking dependencies.

Project GUIDs can be found in registery at key

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\VisualStudio\8.0\Projects.

Under this key are all the GUIDs for the project available for local machine; the

name and the extension of the project are listed as well.

In Visual Studio 2005, project dependencies are also tracked. These are not the

implicit dependences that are created by project references. When Project A

references Project B, there is an implicit dependency. Project B must be built

before Project A since it references the other project's output. Since this type of

dependency is project-specific information, it is stored in the project file. Project

files and dependencies are described in the later section.

The dependences stored in the ProjectSection tag are configured at the solution

level. They define when a project must be built before another project, but they

may not directly reference each other. This is stored in the ProjectSection tag of

the project that is dependent on the other project.

Visual Studio 2005 completely omits the ProjectSection tag if there are no

dependencies for the project.

74

The next section in the solution file is the Global section, which begins with a

Global tag and ends with an EndGlobal tag. Inside these tags are a number of

GlobalSection tags that store an array of different pieces of information, including

the configuration settings for various projects as well as source control

information. Here is a look at the Global section of this example solution file from

Visual Studio 2005:

Global
 GlobalSection(SolutionConfigurationPlatforms) = preSolution
 Debug|Win32 = Debug|Win32
 Release|Win32 = Release|Win32
 EndGlobalSection
 GlobalSection(ProjectConfigurationPlatforms) = postSolution
 {7b783271-7cb8-4763-85fc-475fe2f1efa7}.Debug|Win32.ActiveCfg = Debug|Win32
 {7b783271-7cb8-4763-85fc-475fe2f1efa7}.Debug|Win32.Build.0 = Debug|Win32
 {7b783271-7cb8-4763-85fc-475fe2f1efa7}.Release|Win32.ActiveCfg =
Release|Win32
 {7b783271-7cb8-4763-85fc-475fe2f1efa7}.Release|Win32.Build.0 =
Release|Win32
 {bfd462df-9c2a-4b4d-91f7-110b477eb014}.Debug|Win32.ActiveCfg = Debug|Win32
 {bfd462df-9c2a-4b4d-91f7-110b477eb014}.Debug|Win32.Build.0 = Debug|Win32
 {bfd462df-9c2a-4b4d-91f7-110b477eb014}.Release|Win32.ActiveCfg =
Release|Win32
 {bfd462df-9c2a-4b4d-91f7-110b477eb014}.Release|Win32.Build.0 =
Release|Win32
 {934cf759-752e-49ee-8074-48614df092b4}.Debug|Win32.ActiveCfg = Debug|Win32
 {934cf759-752e-49ee-8074-48614df092b4}.Debug|Win32.Build.0 = Debug|Win32
 {934cf759-752e-49ee-8074-48614df092b4}.Release|Win32.ActiveCfg =
Release|Win32
 {934cf759-752e-49ee-8074-48614df092b4}.Release|Win32.Build.0 =
Release|Win32
 {13d191ca-eac1-401c-9af4-955630f0f394}.Debug|Win32.ActiveCfg = Debug|Win32
 {13d191ca-eac1-401c-9af4-955630f0f394}.Debug|Win32.Build.0 = Debug|Win32
 {13d191ca-eac1-401c-9af4-955630f0f394}.Release|Win32.ActiveCfg =
Release|Win32
 {13d191ca-eac1-401c-9af4-955630f0f394}.Release|Win32.Build.0 =
Release|Win32
 {8bac3539-7d90-420c-bf9d-18196135b9bd}.Debug|Win32.ActiveCfg = Debug|Win32
 {8bac3539-7d90-420c-bf9d-18196135b9bd}.Debug|Win32.Build.0 = Debug|Win32
 {8bac3539-7d90-420c-bf9d-18196135b9bd}.Release|Win32.ActiveCfg =
Release|Win32
 {8bac3539-7d90-420c-bf9d-18196135b9bd}.Release|Win32.Build.0 =
Release|Win32
 EndGlobalSection
 GlobalSection(SolutionProperties) = preSolution
 HideSolutionNode = FALSE
 EndGlobalSection
EndGlobal

The SolutionConfiguration and ProjectConfiguration sections contain the

build configuration settings for the solution and its projects. The

75

ExtensibilityGlobals and ExtensibilityAddIns sections are included for the

benefit of add-in authors. The ExtensibilityGlobals section can be used to

store global information about the solution, and the ExtensibilityAddIns

section lists all the add-ins that are used in this solution. In this research we

haven’t added any add-in so that section is not present in solution file.

If the FALSE in HideSolutionNode in GlobalSection is switched to TRUE,

then the solution node is hidden in the IDE.

Project File

Each project creates a number of files to store information about itself. This

includes a project file and a user settings file. The extension for the project file is

based on the language type; for example, a C# Project is saved with the extension

.csproj and a C++ Project is stored with the extension .vcproj. Thankfully, the

internal formats of these various files are based on the same XML schema. The

beginning of each project file includes some basic information about the project,

including the version of Visual Studio that it was created for as well as the GUID

for this project. Here is an example of this section:

<?xml version="1.0" encoding="Windows-1252"?>
<VisualStudioProject
 ProjectType="Visual C++"
 Version="8.00"
 Name="cell1"
 ProjectGUID="{934cf759-752e-49ee-8074-48614df092b4}"
 RootNamespace="matrix"
 Keyword="Win32Proj"
 >

76

Next section has information about platform, various project properties and

settings like output directory, character set etc. Mostly it is all information that is

seen when right clicked on project to open properties dialog box.

<Platforms>
 <Platform
 Name="Win32"
 />
 </Platforms>
 <ToolFiles>
 </ToolFiles>
 <Configurations>
 <Configuration
 Name="Debug|Win32"
 OutputDirectory="$(SolutionDir)$(ConfigurationName)"
 IntermediateDirectory="$(ConfigurationName)"
 ConfigurationType="1"
 CharacterSet="0"
 >
 <Tool
 Name="VCPreBuildEventTool"
 />
 <Tool
 Name="VCCustomBuildTool"
 />
 <Tool
 Name="VCXMLDataGeneratorTool"
 />
 <Tool
 Name="VCWebServiceProxyGeneratorTool"
 />
 <Tool
 Name="VCMIDLTool"
 />
 <Tool
 Name="VCCLCompilerTool"
 Optimization="0"

PreprocessorDefinitions="WIN32;_DEBUG;_CONSOLE"
 MinimalRebuild="true"
 BasicRuntimeChecks="3"
 RuntimeLibrary="3"
 UsePrecompiledHeader="0"
 WarningLevel="3"
 Detect64BitPortabilityProblems="true"
 DebugInformationFormat="4"
 />
 <Tool
 Name="VCManagedResourceCompilerTool"
 />
 <Tool
 Name="VCResourceCompilerTool"
 />
 <Tool
 Name="VCPreLinkEventTool"
 />
 <Tool

77

 Name="VCLinkerTool"
 LinkIncremental="2"
 GenerateDebugInformation="true"
 SubSystem="1"
 TargetMachine="1"
 />
 <Tool
 Name="VCALinkTool"
 />
 <Tool
 Name="VCManifestTool"
 />
 <Tool
 Name="VCXDCMakeTool"
 />
 <Tool
 Name="VCBscMakeTool"
 />
 <Tool
 Name="VCFxCopTool"
 />
 <Tool
 Name="VCAppVerifierTool"
 />
 <Tool
 Name="VCWebDeploymentTool"
 />
 <Tool
 Name="VCPostBuildEventTool"
 />
 </Configuration>
 <Configuration
 Name="Release|Win32"
 OutputDirectory="$(SolutionDir)$(ConfigurationName)"
 IntermediateDirectory="$(ConfigurationName)"
 ConfigurationType="1"
 CharacterSet="1"
 WholeProgramOptimization="1"
 >
 <Tool
 Name="VCPreBuildEventTool"
 />
 <Tool
 Name="VCCustomBuildTool"
 />
 <Tool
 Name="VCXMLDataGeneratorTool"
 />
 <Tool
 Name="VCWebServiceProxyGeneratorTool"
 />
 <Tool
 Name="VCMIDLTool"
 />
 <Tool
 Name="VCCLCompilerTool"

PreprocessorDefinitions="WIN32;NDEBUG;_CONSOLE"
 RuntimeLibrary="2"
 UsePrecompiledHeader="0"
 WarningLevel="3"
 Detect64BitPortabilityProblems="true"

78

 DebugInformationFormat="3"
 />
 <Tool
 Name="VCManagedResourceCompilerTool"
 />
 <Tool
 Name="VCResourceCompilerTool"
 />
 <Tool
 Name="VCPreLinkEventTool"
 />
 <Tool
 Name="VCLinkerTool"
 LinkIncremental="1"
 GenerateDebugInformation="true"
 SubSystem="1"
 OptimizeReferences="2"
 EnableCOMDATFolding="2"
 TargetMachine="1"
 />
 <Tool
 Name="VCALinkTool"
 />
 <Tool
 Name="VCManifestTool"
 />
 <Tool
 Name="VCXDCMakeTool"
 />
 <Tool
 Name="VCBscMakeTool"
 />
 <Tool
 Name="VCFxCopTool"
 />
 <Tool
 Name="VCAppVerifierTool"
 />
 <Tool
 Name="VCWebDeploymentTool"
 />
 <Tool
 Name="VCPostBuildEventTool"
 />
 </Configuration>
 </Configurations>

The next part of the Build section contains all of the references for this project.

Here is an abbreviated example of this section as we have not added any

reference:

 <References>

 </References>

79

After the Build section is the Files section of the project file, which can be seen

here:

<Files>
 <Filter
 Name="Source Files"
 Filter="cpp;c;cc;cxx;def;odl;idl;hpj;bat;asm;asmx"
 UniqueIdentifier="{4FC737F1-C7A5-4376-A066-
2A32D752A2FF}"
 >
 <File
 RelativePath="..\BlockingQueue.cpp"
 >
 </File>
 <File
 RelativePath="..\Threads.cpp"
 >
 </File>
 <File
 RelativePath="..\cell4.cpp"
 >
 </File>
 </Filter>
 <Filter
 Name="Header Files"
 Filter="h;hpp;hxx;hm;inl;inc;xsd"
 UniqueIdentifier="{93995380-89BD-4b04-88EB-
625FBE52EBFB}"
 >
 <File
 RelativePath="..\ICell.h"
 >
 </File>
 <File
 RelativePath="..\BlockingQueue.h"
 >
 </File>
 <File
 RelativePath="..\Threads.h"
 >
 </File>
 </Filter>
 <Filter
 Name="Resource Files"

 Filter="rc;ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe;resx;t
iff;tif;png;wav"
 UniqueIdentifier="{67DA6AB6-F800-4c08-8B7A-
83BB121AAD01}"
 >
 </Filter>
 </Files>

<Globals>
</Globals>

80

This section simply tracks all of the files that are included in this project and in

the end we have globals section.

81

Bibliography

1. The Object Management Group, not-for-profit computer industry consortium

[Online] www.omg.com.

2. Szyperski, Clemens. Component Software: Beyond Object-Oriented

Programming ISBN 0-201-74572-0. 2nd. Boston : Addison-Wesley

Professional, 2002.

3. Messerschmitt, David G. Software Ecosystem: Understanding an

Indispensable Technology and Industry. s.l. : MIT Press, 2003

4. Pressman, Roger S. Software Engineering: A practitioner’s Approach 5th

Edition, McGraw Hill, 2001

5. McKinney, Alfred L., A Report on Computer Aided Software Engineering

(CASE), Journal of Computing Sciences in Colleges, Volume 6 , Issue 5

 (May 1991), Pages: 85 – 92

6. Armano, Giuliano and Marchesi, Michele, A Rapid Development Process

with UML, ACM SIGAPP Applied Computing Review, Volume 8 , Issue 1

 (April 2000), Pages: 4 - 11

7. Wang, Ju An, Towards Component-based Software Engineering,

Consortium for Computing Sciences in Colleges & Proceedings of the seventh

annual CCSC Midwestern conference on Small colleges, Valparaiso Univ.,

Valparaiso, Indiana, United States, Pages: 177 – 189, Year of

Publication: 2000

http://www.omg.com/

82

8. Case, Albert E, Jr., Computer Aided Software Engineering (CASE):

Technology for improving software development productivity, ACM SIGMIS

Database, Volume 17 , Issue 1 (Fall 1985), Pages: 35 - 43

9. Riddhiman Ghosh and Dr. James Fawcett, An Architecture for Software

Salvage, Master’s Thesis 2004

http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/softwarematrix.htm

10. Vijay Appadurai and Dr James Fawcett, Cross Platform Development

using the Software Matrix Master’s Thesis 2007

http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/SWMatrixCrossPlatform

Dev.htm.

11. Anirudha Krishna and Dr James Fawcett, A self-healing framework using

the Software Matrix structure, Master’s Thesis 2005

http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/SelfHealingSoftwa

reMatrix.htm

12. Component-based software engineering (CBSE)

[Online] http://en.wikipedia.org/wiki/Software_component.

13. Microsoft Corp, Component Object Model Technologies

[Online] http://www.microsoft.com/com/default.mspx.

14. Microsoft Developer Network, Component Object Model

[Online] http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/dnanchor/html/componentobjectmodelanchor.asp.

15. Enterprise JavaBeans Technology

[Online] http://java.sun.com/products/ejb/index.jsp.

83

16. Sun EJB Sepcification

[Online] http://java.sun.com/products/ejb/docs.html.

17. IBM Software-Rational Rose

[Online] http://www-306.ibm.com/software/awdtools/developer/rose/index.html.

18. Sparx Systems' Enterprise Architect.

[Online] http://www.sparxsystems.com/products/ea.html.

19. Eclipse - an open development platform.

[Online] http://www.eclipse.org/

20. The official MDA Guide Version 1.0.1.

[Online] http://www.omg.org/docs/omg/03-06-01.pdf.

21. Windows Presentation Foundation.

[Online] http://wpf.netfx3.com/

22. Visual Studio Home

[Online] http://msdn2.microsoft.com/en-us/vstudio/default.aspx

23. OnDotNet.com Hacking Visual Studio

[Online] http://www.ondotnet.com/pub/a/dotnet/excerpt/vshacks_chap1/index.html?page=4

24. Managed Extensions for C++

[Online] http://en.wikipedia.org/wiki/Managed_Extensions_for_C++

25. Managed Extensions for C++ Background

[Online] http://msdn2.microsoft.com/en-us/library/aa712625(VS.71).aspx

26. Athena [Online] http://en.wikipedia.org/wiki/Athena

27. L. Balmelli, D. Brown, M. Cantor, and M. Mott, Model Driven System

Development, IBM Systems Journal, Volume 45, Number 3, 2006

84

	Chapter 1 Introduction
	1.1. Research Problem
	1.2. Prior Approaches
	1.2.1 Software Reuse
	1.2.1.1 Object Oriented Reuse
	1.2.1.2 Component Oriented Reuse

	1.2.2 Model Driven Architecture
	1.2.2.1 Rational Rose [17]
	1.2.2.2 Sparx Systems’ Enterprise Architect [18]

	1.3. Our Approach

	Chapter 2 Tools and Architecture used
	2.1 Software Matrix
	2.1.1 Matrix Cell
	2.1.2 Cell ID:
	2.1.3 Capability List:
	2.1.4 Message Queues:
	2.1.5 Functionality

	2.2 Design
	2.2.1 Loader
	2.2.2 Matrix
	2.2.3 ICell
	2.2.4 Serialization/Deserialization:

	2.3 Code Generation Framework
	2.3.1 Building an Application using Athena Designer

	2.4 Extensions to the Software Matrix:
	2.4.1 Changes made to core framework by Anirudha Krishna
	2.4.1.1 Directory watcher for the loader module
	2.4.1.2 Integration of Network Access – the network cell

	2.4.2 Changes suggested to core framework by Vijay Appadurai
	2.4.2.1 Improving Efficiency

	2.4.3 Changes suggested by this research
	2.4.3.1 Testing Support
	2.4.3.2 Intelligent loader
	2.4.3.2 Auto Cell Discovery

	Chapter 3 Sniffer Application
	3.1 Sniffer Application
	3.1.1 Sniffer Application Components
	3.1.1.1 Sniffer Cell

	Class diagram for sniffer Cell
	3.1.1.2 Communication Cell

	Class diagram for communication Cell
	3.1.1.3 User Interface Cell

	Class diagram for user interface Cell
	3.1.2 Constructing Sniffer Application

	Chapter 4 Athena Designer
	4.1 Background
	4.2 Building Blocks of Athena Designer
	Class Diagram for Athena Designer
	4.2.1 myCanvas Class
	4.2.2 diagramInfo Class
	4.2.3 codeGen Class
	4.2.4 designer Class
	4.2.5 MyButton Class
	4.2.6 ProjectInfo Class
	4.2.7 connectionInfo Class
	4.2.8 cellInfo Class

	4.3 Screen shots of Athena Designer

	Chapter 5 Conclusions
	5.1 Literature Review
	5.2 Addressing Model Driven Development
	5.3 Contributions of this Thesis
	5.4 Future Work
	5.4.1 Integrated Designer, Repository and Test Harness
	5.4.2 Auto upgrading Systems
	5.4.3 Cross Platform Wrapper Cells
	5.4.4 Load Balancing
	5.4.5 Communication wrappers for frequent message exchange with remote Cell

