
 
 

 
 

 

 

 

FRONT FLYLEAF PAGE 

This page has been intentionally left blank 



 
 

 
 

 

 

 

Abstract 

The research performed under this publication will combine virtualization technology with 

current kernel debugging techniques to provide a more powerful set of debugging 

capabilities than those which are currently available. More specifically, the combination of 

current kernel debugging technology and virtualization technology can provide a kernel 

debugger with a more robust set of features to distinguish and breakpoint on critical points 

in low-level code execution. With these improved features, many new and powerful 

enhancements can be added to the current state-of-the-art in kernel debugging 

technologies. 

  



ii 
 

 

Enhanced Debugging 

Capabilities through the 

Application of Virtualization 

Technology 
 

SYRACUSE UNIVERSITY 

Master's Thesis 

December 2011 

 
 

Submitted in partial fulfillment of the requirements for the graduate degree of Master of 

Science in Computer Engineering, in The Department of Electrical Engineering and Computer 

Science (EECS), at Syracuse University. 

 

 

By: 

Ryan M. Wilson 

B.S. Clarkson University 2005 

 

 

Jim Fawcett, Ph.D. 

Approved by: _____________________ 

Date: ____________________ 

  



iii 
 

 

 

 

 

 

 

Copyright 2011 Ryan Wilson 

All rights reserved 

  



iv 
 

 

Table of Contents 
1. Chapter 1 - Introduction .......................................................................................................... 1 

1.1 Research Statement ..................................................................................................... 1 

1.2 Overview ...................................................................................................................... 1 

1.2.1 Main Concept ........................................................................................................... 1 

1.2.2 Kernel Debugger ...................................................................................................... 2 

1.2.3 Virtual Machine Monitor ......................................................................................... 3 

1.2.4 Loading a VMM ........................................................................................................ 4 

1.2.5 Core Idea for Thesis ................................................................................................. 5 

1.3 Contributions ............................................................................................................... 5 

1.3.1 Enhanced Kernel Debugging Capabilities................................................................. 6 

1.3.2 Applications of Enhanced Debugging Capabilities ................................................... 8 

1.3.3 Additional Applications and Experiments .............................................................. 10 

1.4 Thesis Layout .............................................................................................................. 10 

1.4.1 Chapter 1 – Introduction ........................................................................................ 10 

1.4.2 Chapter 2 – Technology Background ..................................................................... 10 

1.4.3 Chapter 3 – Enhanced Debug Capabilities ............................................................. 11 

1.4.4 Chapter 4 – Applications of Enhanced Debug Capabilities .................................... 11 

1.4.5 Chapter 5 – Conclusion .......................................................................................... 11 

2. Chapter 2 – Technology Background ..................................................................................... 12 

2.1 Virtualization Technology .......................................................................................... 12 

2.1.1 Types of Virtualization ........................................................................................... 13 

2.2 Kernel Debugging ....................................................................................................... 20 

2.2.1 Hardware Breakpoints ........................................................................................... 21 

2.2.2 Software Breakpoints ............................................................................................. 25 

2.2.3 Examples of Debugger Applications ...................................................................... 26 

3. Chapter 3 – Enhanced Debugging Capabilities ...................................................................... 28 

3.1 Traditional Debugging Capabilities ............................................................................ 28 

3.2 Enhanced Debugging Capabilities .............................................................................. 29 

3.2.1 Enhancement 1 - Setting Virtual Breakpoints ........................................................ 30 

3.2.2 Enhancement 2 - Unlimited Virtual Breakpoints ................................................... 30 

3.2.3 Enhancement 3 - Full Control over Guest State ..................................................... 31 



v 
 

 

3.3 Exit Reasons / Breakpoint Functionality .................................................................... 31 

3.4 Experiments ............................................................................................................... 34 

3.4.1 Experiment 1 – Demonstration of virtual breakpoints .......................................... 35 

3.4.2 Experiment 2 – Implementation of more than four hardware breakpoints ......... 43 

3.4.3 Experiment 3 – Full Control over Guest OS System State ...................................... 47 

3.5 Conclusions of Enhanced Debugging Capabilities ..................................................... 52 

4. Chapter 4 – Applications of Enhanced Debugging Capabilities ............................................. 54 

4.1 Applications of Enhanced Debugging Capabilities ..................................................... 54 

4.1.1 Application 1 - Filter Unwanted Data During Dynamic Analysis ............................ 54 

4.1.2 Application 2 - Debugging Exceptions and Error States ......................................... 55 

4.2 Background Information for Applications of Enhanced Debugging Experiments ..... 56 

4.3 Experiments ............................................................................................................... 58 

4.3.1 Smart Filtering of Data During Dynamic Analysis .................................................. 59 

4.3.2 Analysis of Complex Debug Environments ............................................................ 68 

5. Chapter 5 - Conclusion ........................................................................................................... 75 

5.1 Summary .................................................................................................................... 75 

5.1.1 Traditional vs. Enhanced Debugging Capabilities ...................................................... 75 

5.1.2 Enhanced Debugging Capability Experiments ........................................................... 76 

5.1.3 Applications of Enhanced Debugging Capability Experiments .................................. 79 

5.2 Future Work ............................................................................................................... 82 

5.2.1 Implementation of Additional Virtual Breakpoints .................................................... 82 

5.2.2 GUI Interface to Debugger ......................................................................................... 84 

5.2.3 Software Debugger for Multiple Environments ......................................................... 85 

Appendix A –Basic Exit Reasons ..................................................................................................... 87 

Appendix B – Index of Acronyms ................................................................................................... 90 

Appendix C – Kernel Code used in Experiments ............................................................................ 91 

Appendix D – Related Literature .................................................................................................... 96 

Appendix E – Bibliography ........................................................................................................... 115 

 

  



vi 
 

 

Table of Figures 

Figure 1 – Kernel Debugger Breakpoint Trap - Execution Flow ....................................................... 2 

Figure 2 - VMM / Guest VM Interaction Flow .................................................................................. 3 

Figure 3 - Relationship between Guest OS, VMM, and CPU ............................................................ 4 

Figure 4 - Chapter 3 - Experiment 1 Source Code .......................................................................... 41 

Figure 5 – Chapter 3 - Experiment 1 Results (Debug Output) ....................................................... 43 

Figure 6 - Chapter 3 - Experiment 2 Results (Debug Output) ........................................................ 46 

Figure 7 - Instruction Pointer Modification in VMM ..................................................................... 49 

Figure 8 - Sequence of I/O Instructions Run in Kernel without EIP Modification .......................... 51 

Figure 9 – Sequence of I/O Instructions Run in Kernel with EIP Modification from VMM ............ 52 

Figure 10 - Chapter 4.3.1 - Processor Mode Switch Hypervisor Handler Code ............................. 61 

Figure 11 - Output from Processor Mode Switch Breakpoint Experiment .................................... 63 

Figure 12 - MSR Functionality Virtual Breakpoint Handler Code ................................................... 66 

Figure 13 - Output from MSR Based Virtual Breakpoints .............................................................. 68 

Figure 14 - Portion of Hardware Breakpoint Exception Hypervisor Handler ................................. 70 

Figure 15 - Output from Hardware Breakpoint Exception Virtual Breakpoint .............................. 71 

Figure 16 - Assembly Level Representation of Divide by Zero Ring 3 Application ........................ 73 

Figure 17 - Output from Divide by Zero Exception Virtual Breakpoint .......................................... 74 

Figure 18 - Kernel code to trigger virtual breakpoint experiments ............................................... 92 

Figure 19 - Kernel code to trigger multiple simultaneous virtual breakpoints experiment .......... 93 

Figure 20 - Kernel Code Used to Observe EIP Modification .......................................................... 94 

Figure 21 - Kernel Code to Trigger Processor Mode Switch Breakpoint ........................................ 94 

Figure 22 - Kernel Code to Trigger MSR Based Virtual Breakpoints .............................................. 95 

 



1 
 

 

1. Chapter 1 - Introduction 

1.1 Research Statement 

The research performed under this publication will combine virtualization technology with 

current kernel debugging techniques to provide a more powerful set of debugging 

capabilities than those which are currently available. More specifically, the combination of 

current kernel debugging technology and virtualization technology can provide a kernel 

debugger with a more robust set of features to distinguish and breakpoint on critical points 

in low-level code execution. With these improved features, many new and powerful 

enhancements can be added to the current state-of-the-art in kernel debugging 

technologies. 

 

1.2 Overview 

1.2.1 Main Concept 

Powerful enhancements can be provided to current state-of-the-art kernel debugging 

technologies through creative applications of virtualization technology, or more 

specifically, with the assistance of a virtual machine monitor (VMM). A VMM that makes 

use of Intel’s Virtualization Technology (VT) has the ability to set specific conditions and 

take control of the central processing unit (CPU) when these conditions are met. These 

conditions are called exit reasons, or VM-Exits, and they proceed to pass execution 

control to a software handler that executes inside of the VMM. The term exit reason is 

used because execution flow is exiting the guest virtual machine and entering the VMM. 

From a debugging standpoint, the ability to trap (or breakpoint) on these events can 

greatly increase traditional debugging capabilities beyond simple memory and I/O 

breakpoints.  

 



2 
 

 

1.2.2 Kernel Debugger 

A typical kernel debugger provides the ability to utilize a set of internal CPU debug 

registers that are resident on Intel x86 processors. These debug registers are used to 

configure and enable up to four hardware-based breakpoint conditions. When one of 

these breakpoint conditions is executed, it is trapped on and control is passed to 

interrupt handler 0x01. When interrupt handler 0x01 handles the breakpoint, control is 

passed back to the code execution that caused the trap to interrupt handler 0x01. With 

the ability to break execution flow and trap to a software handler, the user of a 

debugger can analyze and manipulate the state of the system at any point in time where 

he/she was able to successfully place a breakpoint. Figure 1 – Kernel Debugger 

Breakpoint Trap - Execution Flow visually demonstrates this concept below: 

 

Figure 1 – Kernel Debugger Breakpoint Trap - Execution Flow 

 



3 
 

 

1.2.3 Virtual Machine Monitor 

The virtualization technology that is detailed in this paper, Intel VMX technology, is 

made use of through a series of interactions with x86 assembly VMX commands that are 

provided by Intel processors that support VMX Virtualization Technology. The basic 

concept behind this technology is that the CPU can be placed into a state where it 

passes execution flow between a host VMM (Virtual Machine Monitor) and a single or 

multiple guest VMs (Virtual Machines). This execution flow is enforced in hardware by 

the processor. The main functionality of interest that is provided by a VMM is the ability 

to handle any instruction or event taking place within a VM Guest that generates a “VM-

Exit”. A list of VM-Exits has been provided in Appendix A –Basic Exit Reasons. When a 

VM-Exit occurs within a VM Guest, execution flow exits the VM and is passed to the 

VMM for handling. The virtual machine monitor virtualizes the instruction or event that 

caused the VM-Exit and then passes control back to the Guest VM where execution 

continues after the instruction or event that caused the VM-Exit. This concept of VMMs, 

Guest VMs, and VM-Exits is illustrated below in Figure 2 - VMM / Guest VM Interaction 

Flow.  

 

Figure 2 - VMM / Guest VM Interaction Flow 



4 
 

 

 

Please Note that the visual shown above in Figure 2 is a modification of a figure from 

the Intel Architecture Software Developer’s Manuals [1].  

 

1.2.4 Loading a VMM 

It is important to note that the work performed for this thesis loads a VMM from an 

already running operating system. For instance, a device driver is loaded from the 

Windows operating system and is used to interface the processor to bring up a VMM. 

Once the VMM is configured and loaded, the loading operating system is now 

considered a guest operating system of the VMM. Therefore, once loaded, the VMM sits 

directly between the operating system and the CPU. The relationship between the 

operating system, VMM, and CPU is illustrated below in Figure 3 - Relationship between 

Guest OS, VMM, and CPU. 

 

Figure 3 - Relationship between Guest OS, VMM, and CPU 



5 
 

 

 

1.2.5 Core Idea for Thesis 

The ability for a VMM to trap on a specific system-level event and pass control to a 

software handler is analogous to the ability of a kernel debugger to trap on a specific 

breakpoint and pass control to the interrupt 0x01 handler. In contrast to a debug 

breakpoint, which can only be set to trap on a specified memory or I/O location, a VMM 

can trap on a multitude of conditions, as listed in Appendix A –Basic Exit Reasons. By 

combining the vast set of exit reasons provided by a VMM with the traditional 

capabilities of a kernel debugger, the kernel debugger can be enhanced to provide more 

specific fine-grained control over a system or application that is being manipulated by 

the debugger. With this greater degree of control a debugger can benefit from the 

enhancements described in section 1.3. 

 

1.3 Contributions  

This section provides an overview of the contributions that this thesis will make to existing 

capabilities and research within the community. Each of these contributions will be covered 

in greater detail in chapters 3 and 4. A summary of the enhancements described in this 

sections is as follows: 

Enhanced Debugging Capabilities: 

 More than four breakpoints can be set at once - A VMM can trap or set a virtual 

breakpoint for every possible exit reason. A handler can then further elaborate on 

the reason that the virtual breakpoint has chosen to trap. 



6 
 

 

 More fine-grained control can be obtained using a virtual breakpoint rather than a 

standard debug breakpoint. This control can be as detailed as the low-level events 

associated with each exit condition.  

 Full view and control of the system state is inherently available to a VMM, greatly 

simplifying complex interactions with low-level aspects on a system being 

debugged. A VMM contains a set of data structures representing the state of the 

system in detail. 

 

Applications of Enhanced Debugging Capabilities: 

 Enhanced basic debugger capabilities - Large extension to the number of available 

breakpoints and the ability to trap on a multitude of system events, beyond 

traditional memory and I/O breakpoints. 

 Smart Filtering of Data During Dynamic Analysis - Areas of interest can be isolated 

much easier and faster. 

 Analysis of complex debug environments - Dynamic detection and analysis of 

exceptions and crashes. 

 

1.3.1 Enhanced Kernel Debugging Capabilities 

Typical hardware based kernel debugging support on an x86-based system provides the 

ability to set breakpoints on either virtual memory addresses or port I/O addresses. Intel 

processors support up to four of these breakpoints to be set at one time via the 

processor’s debug registers. Having the ability to trap to a breakpoint handler on any 

given virtual memory or I/O address can be very powerful, but it can also be very 



7 
 

 

limiting to only have four simultaneous breakpoints and two categories of breakpoints 

(memory address or port I/O address). 

 

Although not necessarily intended for debugging purposes, Intel VMX technology 

provides the ability to set “virtual breakpoints” to trap execution flow to a hypervisor 

handler, on a large variety of conditions that go far beyond virtual memory addresses or 

Port I/O locations. These virtual breakpoints can also be set in nearly unlimited 

quantities, as opposed to the four hardware breakpoints provided by an x86-based 

processor’s debug registers[1]. The term “virtual breakpoint” is being used as a 

programming, or debugging, analogy for an Intel VT-based VM-Exit, or exit reason. VM 

exits allow for the ability to filter the execution flow of a large number of x86-based 

events and commands. The ability to filter a specific command or event, as well as 

providing and trapping to a handler for this filtered command is comparable to the 

concept of a debugger breakpoint, where virtual memory and port I/O addresses are 

filtered out and forced to pass execution control to an interrupt handler. When filtering 

and trapping to a VM-Exit handler based on a specified command or event, even more 

power and control is available than with a traditional debug breakpoint. This is because 

the command or event can be handled before the actual execution occurs, the state of 

the guest system can be retrieved without direct interaction against the guest system's 

resources, and the option exists to prevent the command or event from ever occurring. 

A list of exit conditions that an Intel VMX-based VMM can handle is listed in Appendix A 

–Basic Exit Reasons. Also, the CPU state of the guest VM is under complete control of 

the VMM, and can be monitored and/or modified on every VM-Exit. 

 



8 
 

 

1.3.2 Applications of Enhanced Debugging Capabilities 

The aforementioned enhancements can greatly improve the capabilities that a debugger 

can provide. Some improvements that could be provided to a debugger with the use of 

these enhancements are described in this section. 

 

One of the novel capabilities that can be created as a result of the combination of VMX 

and Kernel debugging technologies is an ability to isolate areas of interest in code by 

intelligently filtering out specific data during the process of dynamic debugging. Kernel 

debugging can be extremely time consuming and tedious, especially when little is 

known about the module being debugged. This is partially a result of the amount of time 

that can be wasted searching through code to find a problem or piece of functionality. 

This issue is especially problematic in advanced operating systems, where a great deal of 

execution almost constantly takes place due to the large amount of code being 

executed.  

 

Through the application of the research performed under this thesis, specific sets of 

virtual breakpoints can be tailored to target particular functionality within large sets of 

code. Previously, the memory or I/O location would already need to be known, or could 

require a person to manually step through and analyze large amounts of undesired code 

and data. The potential now exists to greatly decrease the amount of time it takes to 

debug through large amounts of code by applying more advanced virtual breakpoints 

targeting specific functionality. 

 



9 
 

 

Environments exist where it would be extremely difficult to perform debug analysis with 

traditional debugging facilities. The enhanced debugging capabilities that can be 

provided through the use of a VMM can greatly ease dynamic debugging analysis on 

many of these environments. This may include the ability to dynamically analyze system 

crashes, error states, and kernel debugger programs. 

 

Errors that would typically crash or reboot a program or system generally leave behind 

some static debug information or nothing at all. With the capabilities provided by this 

research, the debugger has the potential to dynamically analyze the state of the system 

all the way into an error state. This will dramatically simplify the process of determining 

the cause of a crash. For example, a VM-Exit condition can be set to trap on exceptions. 

Exceptions are often generated due to error conditions or undetermined behavior, such 

as a divide by zero error. With the ability to trap to a handler within a VMM immediately 

upon generation of an exception, the code location that caused the exception can be 

located, as well as a full potential analysis of the system state. Another VM-Exit reason 

that can be handled through the use of Intel VT is a triple fault. A triple fault is 

generated when an x86-based CPU attempts to invoke an exception handler that 

invokes a fault itself. An x86-based system forces a reset or shutdown to occur when a 

triple fault occurs, making this extremely difficult to debug with traditional means. With 

Intel VT extensions, this error state can now be trapped on, demonstrating exactly 

where the system crashed, instantly providing the debugger with dynamic analysis 

opportunities. It may also be possible to recover from a crash without fully rebooting 

the entire system. 

 



10 
 

 

1.3.3 Additional Applications and Experiments 

The technology presented within this thesis is not limited to the specific experiments 

and examples that are overviewed here. I am currently, and will continue to, extend the 

research performed under this thesis by completing additional experiments and 

attempting to discover new applications of this technology. Some of the experiments 

and applications that I'm currently working through, and planning to work through in 

the future, will be listed as well, in section 5.2 - Future Work. 

 

1.4 Thesis Layout 

This section provides an overview regarding the layout of this thesis. Each section will be 

listed below with a short description of the information contained in that section. 

 

1.4.1 Chapter 1 – Introduction  

Chapter 1 provides a high-level overview of the thesis topic, touches on the 

contributions that have been discovered through this research, and identifies related 

research. The overview gives a high-level description of the thesis topic and important 

related technologies. The contributions section explains how the research performed 

under this thesis will contribute to the current state-of-the-art within the community. 

The related research section will overview similar research that is publically available 

and explain how the research is related to this thesis topic.  

 

1.4.2 Chapter 2 – Technology Background 

Chapter 2 gives an overview of both kernel debugging and virtualization technologies, as 

these two technologies construct the foundation for this thesis. A section is devoted to 

each technology, giving both an analysis of the technology and an overview of how this 

technology is currently being used in the public. 



11 
 

 

 

1.4.3 Chapter 3 – Enhanced Debug Capabilities 

Chapter 3 details the core contributions presented by this thesis, concentrating on the 

idea of providing an enhanced set of virtual breakpoints to a kernel debugger through 

the use of a hardware-assisted VMM. Some of the capabilities provided by this concept 

are overviewed, and demonstrated through a series of experiments. The experiments 

each identify a specific functional enhancement that can be provided to a kernel 

debugger, giving an overview of the experiment, its implementation details, and an 

explanation of the experiment’s results. 

 

1.4.4 Chapter 4 – Applications of Enhanced Debug Capabilities 

Chapter 4 concentrates on some of the applications of the technology presented in this 

thesis that can be obtained through the use of the aforementioned enhanced debugging 

capabilities. The first broad set of applications is focused on filtering out large sets of 

unwanted data during dynamic analysis. The second broad category concentrates on 

debugging through challenging environments such as program or system error states. 

 

1.4.5 Chapter 5 – Conclusion 

Chapter 5 will review the key research contributions that were presented within this 

thesis. This will help to summarize the most relevant information that was detailed 

throughout this paper. In addition, a section will be given in the thesis that outlines the 

future work that will follow the completion of this thesis.  



12 
 

 

2. Chapter 2 – Technology Background 

2.1 Virtualization Technology 

In the area of computer science and information technology, virtualization is the ability to 

abstract a system from its underlying resources. This essentially means to create a virtual 

version, rather than an actual version of an entity or resource. Often, a host control program 

called a hypervisor, or virtual machine monitor, provides the virtualization layer for guest 

software to run within. 

 

According to the Popek and Goldberg virtualization requirements [2], a true hypervisor must 

provide:  

 Equivalence and Fidelity 

 Resource Control and Safety 

 Efficiency and Performance 

 

Equivalence and fidelity ensure that software running under the control of a hypervisor 

experiences identical behavior to that of running on physical hardware. Resource control 

and safety requires that a hypervisor remain in absolute control of virtualized resources. To 

provide efficiency and performance, the majority of machine instructions must execute 

without hypervisor interruption.  

 

Some well-defined types of virtualization include[3]: 

 Hardware Virtualization 

 Software Virtualization 

 Memory Virtualization 



13 
 

 

 Storage Virtualization 

 

Applications and methods of virtualization are used under a great deal of circumstances, 

some of which will be discussed in Chapter 2 – Technology Background. Every possible use is 

not covered, but many common applications are listed below. 

 

2.1.1 Types of Virtualization 

2.1.1.1 Hardware Virtualization 

Also referred to as platform virtualization, this type of virtualization technology 

utilizes a host software program to simulate a computer, or hardware environment, 

for guest software to run on. The guest software can be an entire operating system, 

as the hypervisor is essentially providing a simulated version of a set of system 

hardware. The guest software will most likely not detect that it is not running on 

true hardware. The host software program responsible for simulating a hardware 

environment is commonly referred to as a hypervisor or virtual machine monitor.  

 

Sub categories of hardware virtualization include hardware-assisted virtualization, 

full virtualization, partial virtualization, and paravirtualization. 

 

2.1.1.1.1 Hardware-Assisted Virtualization 

It is important to note that hardware virtualization and hardware-assisted 

virtualization are not synonymous. Hardware-assisted virtualization requires 

that a physical hardware component provide architectural support to aid in the 

development of a hypervisor. This support is commonly provided through CPU 

extensions on modern processors. In 2005 and 2006 both Intel and AMD 



14 
 

 

independently provided virtualization processor extensions in some of their 

product lines. Intel’s hardware-assisted virtualization technology was given the 

name Intel VT-x, while AMD’s was given the name AMD-V. Both are examples of 

modern hardware-assisted virtualization technologies. 

 

Hardware-assisted virtualization reduces resources required for development 

and maintenance of virtualization technologies as it practically eliminates the 

requirement for changes to be made to guest operating systems. This 

characteristic also provides for a more robust and extensible technology since 

little integration is required for a specific set of software. Performance increases 

can also be enjoyed because the virtualization extensions exist in hardware, 

reducing much of the software execution overhead. The main disadvantage of 

hardware-assisted virtualization is that the hardware extensions do not exist 

within every processor line, requiring a user to obtain specific hardware to 

utilize this functionality. Also, different vendors, such as AMD and Intel, use 

different specifications for their extensions, meaning the different hypervisors 

would need to be implemented for variant hardware. 

 

2.1.1.1.2 Use of Intel's Hardware Assisted VT by this Thesis 

The research performed under this thesis specifically makes use of many of the 

processor extensions provided by Intel's VT-x [1]. Intel VT-x is an umbrella term 

for Intel's suite of virtualization technologies. It is important to note that only a 

sub-set of these extensions are utilized for debugging purposes. For example, 

only a portion of the Intel VT-x exit reasons and architectural features are 



15 
 

 

leveraged. Also, Intel's VT-d (Intel Virtualization Technology for directed I/O) 

[26] is not yet leveraged by this thesis, although this could provide additional 

useful future work for further enhancing debugging capabilities related to 

analysis of hardware and I/O. This is because Intel VT-d adds extra virtualization 

capabilities to the standard Intel VT based capabilities by allowing for I/O device 

assignment, DMA remapping, interrupt remapping, and the ability to catch DMA 

and interrupt errors that could have corrupted system memory or impacted VM 

isolation. 

 

2.1.1.1.3 Full Virtualization 

Full virtualization[4] simulates an entire hardware environment for guest 

software, such as an operating system, to run on. All system elements that are 

required by software and provided by a physical machine must be simulated. 

With full virtualization, software that is capable of running on system hardware, 

such as an operating system, should be able to run identically within the virtual 

machine. Although many close attempts have been made by programs, such as 

VMware, true full virtualization was not easily obtainable on x86 systems until 

the recent introduction of both Intel’s and AMD’s hardware-assisted 

virtualization extensions. The reason is that every action performed within a 

virtual machine must not have an effect on anything outside of the virtual 

machine, including other virtual machines, the hypervisor, or the physical 

hardware, but must still maintain identical functionality. To account for 

instructions that could alter overall machine state, such as privileged 

instructions, a form of translation often occurs to replace the privileged 



16 
 

 

instructions with a safe set of instructions that emulated the same task. With 

instruction translation, the exact same output cannot feasibly be guaranteed for 

any set of input. For example, virtualization of hardware I/O would be very 

difficult to translate identical output for a complex device. 

 

2.1.1.1.4 Partial Virtualization 

Partial virtualization[6] simulates part of a hardware environment, allowing for 

some software to be run without modification. As opposed to full virtualization, 

an operating system may not be able to run in a partial virtualization 

environment because the full hardware environment is not simulated. Partial 

virtualization can be tailored to run specific software, by simulating all of the 

resources required by that specific set of software. A common application of a 

partially virtualized environment is to provide address space virtualization for 

the purpose of separating memory resources between separate users, or virtual 

machines. For this case, each virtual machine would receive its own set of 

memory, all of which are contained within the system’s overall physical memory 

resource. 

 

2.1.1.1.5 Paravirtualization 

Paravirtualization[7][8] allows for multiple software instances, such as operating 

systems, to run within the same set of hardware by placing each set of guest 

software in its own domain, rather than simulating the system’s hardware. 

Guest software will need to be modified to run within a paravirtualization 

environment. This modification requires that guest software, such as an 



17 
 

 

operating system, be hooked so that certain events can be redirected to the 

paravirtualization environment to make use of its custom API.  

 

Paravirtualization often provides better performance than many full 

virtualization environments because every element in hardware is not 

emulated. The drawbacks associated with this approach include a loss of 

flexibility and security. Flexibility is lost because the guest operating system 

requires specific modifications for compatibility with a paravirtualization 

environment. As a result, certain operating systems may not support a 

paravirtualized environment. Security can be negatively impacted by 

paravirtualization by allowing the guest operating system to run closer to 

hardware. If the software modifications made to a guest operating system did 

not successfully isolate all of the hardware, the guest operating system could 

have an effect on other guests through modification to the system hardware. 

For example, if a guest operating system was able to write to the host system’s 

entire physical memory range, it could overwrite memory state of other guest 

operating systems. 

 

2.1.1.2 Software Virtualization 

Software virtualization typically refers to using an operating system kernel to isolate 

or simulate resources for application level guest software components. Multiple 

guest instances can be simultaneously running inside of the same operating system 

and its corresponding kernel.  

 



18 
 

 

2.1.1.2.1 Operating System Level Virtualization 

For operating system level virtualization[9], an operating system kernel will host 

multiple user-mode guest software instances. Each guest software instance will 

be isolated from other guest instances so that they cannot modify each other’s 

resources, or those of the host operating system kernel. Operating System level 

virtualization is often used by servers to host multiple distrusted guests. Security 

is provided through the isolation of each guest’s set of resources.  

 

This type of virtualization suffers very little performance impact because it does 

not require simulation or emulation of underlying resources. A major 

disadvantage associated with operating system level virtualization is the fact 

that it is inflexible since guest software must be built to run under the same 

operating system as the host kernel.  

 

2.1.1.2.2 Application Virtualization 

Application virtualization[10] makes use of encapsulation to separate 

applications from operating system resources. An operating system resource is 

often replaced with a virtual resource for a specific application to interface. All 

attempts from an application to access a specified system resource will be 

caught by the virtual environment and directed to the virtual resource that has 

been reserved for that application. For example, newer versions of the 

Microsoft Windows operating system have virtualized unprivileged calls to the 

system registry to enable the use of legacy programs that required registry 

access with user privileges. This was performed to provide security protection to 

the Windows registry without disabling the use of legacy programs. 



19 
 

 

 

2.1.1.3 Memory Virtualization 

Memory virtualization[11][12] is used to combine memory as a shared resource 

between multiple individual systems into a distributed memory pool available for 

use as a shared resource by one or more systems. Memory virtualization can also be 

used to extend memory beyond a physical system’s capacity and to allow for shared 

memory between multiple systems. By extending a system’s memory capacity 

through a combined use model, a higher degree of performance can be achieved. 

For example, with a larger pool of memory, large-scale memory intensive operations 

can be performed without writing data out to disk, which is a common performance 

bottleneck. By allowing for the memory of one physical system or server to be 

shared between multiple systems, less hardware can be required to perform 

numerous tasks. 

 

2.1.1.3.1 Virtual Memory 

Virtual memory[1] is commonly used to give software the impression that it has 

a set of contiguous usable memory, rather than the physical set of fragmented 

memory. This can be accomplished by using a mechanism called paging. Paging 

is a process that maps a system’s physical address space to virtual addresses. 

More virtual addresses can be available than physical addresses, allowing 

memory to be allocated more flexibly.  

 

2.1.1.4 Storage Virtualization 

Storage virtualization[13][14] provides the ability to abstract virtual storage from 

physical storage so that data can be accessed without regard for physical storage 



20 
 

 

space on a hardware level. This type of virtualization provides the opportunity for 

both a distributed file system and to pool storage space from multiple devices into a 

common pool. A distributed file system allows multiple users access to a shared set 

of files located within one storage media. Pooled storage can provide one large set 

of storage space distributed over multiple physical devices, without requiring the 

user to face the complexities of manually distributing large amounts of data across 

these devices since the storage pool is virtualized into one common resource. 

 

2.1.1.5 Emulation 

Emulation[15] allows for one device to imitate a separate program or another 

device so that the resulting behavior appears identical to the original device being 

imitated. Both hardware and software environments can be emulated. Using an 

emulator, a set of hardware or an operating system can run software that it was not 

designed to run. Emulation can allow hardware and software to run programs that 

would otherwise be incompatible with a hardware or software-based environment, 

save the cost of purchasing hardware when it can be emulated, and allow for the 

use of legacy devices or applications. 

 

2.2 Kernel Debugging 

Applications and methods of kernel debugging are used for a variety of purposes. A list of 

many common kernel debugging applications is provided below, as well as a list of some 

publically available kernel debuggers, and also, some implementation details explaining how 

a developer would go about creating a kernel debugging application. 

 



21 
 

 

Kernel debugger's are commonly used to provide the ability to dynamically step through a 

low-level representation of an OS kernel, as a high-level representation may not be 

available. This is especially true at runtime of a program or device driver module where 

source code is not available. If symbols are available, a higher-level representation of the 

kernel code can be debugged. Microprocessors, such as those adhering to the x86 

architecture, provide low-level dynamic debugging support through CPU design. More 

specifically, Intel x86-based processors offer a set of debug registers that present a user with 

up to four hardware breakpoints to aid in trapping on I/O or memory addresses. In an x86-

based system, hardware breakpoints trap execution flow to interrupt vector 0x01 for 

handling by a debugger program, while software breakpoints (triggered by the 0xCC op-

code) trap execution flow to interrupt vector 0x03. 

 

A very common application of a kernel debugger is to aid in the development and bug fixing 

process of operating systems and device drivers. Dynamic software analysis of code that 

directly controls primary system resources can be extremely difficult to approach. This is 

especially true through static analysis, with a nearly unlimited set of potential system states 

in a complex system. This can become even more complicated where the software meets 

the hardware and all interactions do not provide predictable outcomes. A kernel debugger 

can also be used to perform analysis of an unknown program where source code is not 

available.  

 

2.2.1 Hardware Breakpoints 

The following six steps provide an overview of the functionality required to implement a 

hardware breakpoint based debugging capability. A kernel debugging capability was 



22 
 

 

developed under an independent study preceding this thesis. Portions of the code from 

this independent study have been leveraged in this section[16] to help describe the 

process of developing a hardware breakpoint capability using Intel debug registers on an 

x86-based processor.  

Step 1 – Set Breakpoint Conditions 

Breakpoint conditions determine which type of operation will cause the debugger to 

trap to its breakpoint handler. The options exist to breakpoint on Instruction Execution, 

Data Writes (only), Port I/O reads or writes (x86 IN and OUT instructions), and both data 

reads and writes. The following code example demonstrates these four options and 

displays the values that each option is associated with.  

 

#define DE_INST_EXEC 0x00 //- Break on Instruction Execution Only 

#define DE_DATA_WRITES 0x01 //- Break on Data Writes Only   

#define DE_PORT_IO_RW 0x02 //- Break on I/O reads or writes  

#define DE_RW_NO_IF 0x03 //- Break on Data Reads or Writes but 

not Instruction  

 

The values representing each breakpoint condition must be set by masking and 

unmasking corresponding bits in DR7 (Debug Register 7).  

 

Step 2 – Set Breakpoint addresses in debug registers 

The address that a breakpoint is used to monitor must be set in DR0-DR3 (Intel Debug 

Registers 0, 1, 2, and 3). The address can be either a virtual memory address, or a port 

I/O address (This is distinguished by the condition that was set in Step 1). Each of the 



23 
 

 

four debug registers can correspond to a different breakpoint, allowing up to four 

hardware breakpoints.  

 

Step 3 – Enable / Disable Debugging Extensions 

The DE (Debugging Extensions) flag is controlled by a bit in CR4 (Intel Control Register 4) 

and is used to control how the CPU interprets breakpoint condition configurations. The 

different breakpoint condition configuration interpretations are listed below based on 

whether or not the DE flag is set in CR4.  

 

Breakpoint Condition Configurations 

WHEN DE FLAG SET 

00₂ - Break on Instruction Execution Only 

01₂ - Break on Data Writes Only        

10₂ - Break on I/O reads or writes (Meaning Port IO - INs and OUTs) 

11₂ - Break on Data Reads or Writes but not Instruction Fetches 

 

WHEN DE FLAG NOT SET 

00₂ - Break on Instruction Execution Only 

01₂ - Break on Data Writes Only 

10₂ - Undefined 

11₂ - Break on Data Reads or Writes but not Instruction Fetches 

 

Step 4 – Set Breakpoint Length 



24 
 

 

The length that is monitored starting from the breakpoint address that was set in one of 

the debug register (DR0-DR3) is specified by setting a breakpoint length condition field 

within DR7 (debug register 7). The four possible breakpoint lengths are 1 byte, 2 bytes, 4 

bytes, and potentially 8 bytes in some processor families. These lengths are represented 

by the following data combinations, which are written into DR7: 

 

Breakpoint Length Configurations 

00₂ - 1 Byte Length 

01₂ - 2 Byte Length 

10₂ - Undefined (or 8 byte length for some families) 

11₂ - 4 Byte Length 

 

Step 5 – Enable / Disable a Breakpoint  

Once a breakpoint condition has been set, the breakpoint address has been indicated, 

the DE flag is enabled, and the length of the breakpoint is chosen, the breakpoint can be 

either enabled or disabled. A breakpoint will only trap to its handler if it is set to 

“enabled”. Also, a total of four breakpoints can independently be enabled or disabled. 

The breakpoint is enabled or disabled by toggling a bit that is located in DR7 (debug 

register 7). 

 

Step 6 – Hook Interrupt 0x01 and use for breakpoint handler 

Hardware breakpoints, such as those mentioned in the above sections, will transfer 

execution to interrupt handler 0x01 when triggered. Interrupt 0x01 must be hooked in 

order to provide control over a hardware breakpoint. This can be accomplished by 



25 
 

 

determining the virtual address of the IDT (interrupt descriptor table) using the x86 SIDT 

command, and modifying the pointer to the location of the interrupt 0x01 handler in the 

IDT structure. Once modified, interrupt 0x01 must point to code that was placed in 

memory to handle a breakpoint. 

 

2.2.2 Software Breakpoints 

A brief overview detailing the generation of a software breakpoint will be provided in 

this section. Software breakpoints are much simpler to develop than hardware 

breakpoints, and therefore, will not require as much detail to describe, compared with a 

hardware breakpoint. 

 

The x86 architecture provides a specific opcode, 0xCC, which will generate a software 

breakpoint when executed. To set a software breakpoint, the first byte of an instruction 

is replaced with a 0xCC, as opposed to a hardware breakpoint which does not require 

modifications to the the code being debugged since it is using the hardware support. 

When a software breakpoint is triggered through the execution of the 0xCC opcode, 

control flow is trapped to interrupt 0x03 to be handled by debugging software. The 

debugger is responsible for saving the value of the byte of the instruction that was 

replaced by 0xCC, and for subsequently restoring this value once the 0xCC causes a 

breakpoint to trigger. Unlike a hardware breakpoint, which is limited to four 

simultaneous breakpoints, an unlimited number of software breakpoints can be placed 

in code at any time. Another major difference between a software breakpoint and a 

hardware breakpoint is that a software breakpoint can only be set on a memory address 

in executable code, whereas a hardware breakpoint can be used to monitor code 

execution, read/write access to a memory address, and execution of a port I/O 



26 
 

 

command. A software breakpoint can only be used on executable code because it needs 

to be executed itself to cause the instruction pointer to trap to interrupt 0x03. 

 

2.2.3 Examples of Debugger Applications 

A famous, but obsolete, x86-based kernel debugger was named SoftICE. Soft-ICE is 

believed to be named as a reference to a “Software In-Circuit Emulator”. SoftICE was a 

kernel debugger that was designed for the Microsoft Windows operating system, 

although older versions exist for DOS. Developed by NuMega, and later acquired by 

Compuware, SoftICE was a very prominent kernel debugger from the late 80’s through 

the early 2000’s. A major advantage that SoftICE had over other Microsoft Windows 

kernel debuggers such as WinDBG was the ability to halt the entire operating system 

and provide debugging services without the use of a second machine, with an included 

DOS style graphical user interface. Other typical kernel debuggers required the use of 

two machines dedicated to the debugging process. The more modern versions of 

SoftICE have been documented to make patches in the Microsoft Windows Kernel to 

acquire control of the operating system when in use, and appear to make use of Intel 

processor debug registers to obtain its core functionality. 

 

A modern example of a kernel debugger, that provides a similar interface to SoftICE, is 

Syser Kernel Debugger. Syser Debugger is developed by Sysersoft for the Windows NT 

family of operating systems. Syser Debugger appears to make use of Intel debug 

registers for its core functionality, as well as wrapping itself into the Windows operating 

system (most likely with a series of hooks). Like SoftICE, Syser Debugger is also capable 

of debugging with only a single machine available. The graphical user interface has been 

developed to look and function very similar to that of SoftICE, but appears to be more 



27 
 

 

robust and stable. One of the major problems that SoftICE encountered was hooking 

into graphics drivers for its GUI. This was a problem because graphics drivers can vary 

widely depending on the vendor and model of the video card that is present, and very 

rarely release a developer’s specification – leading to proprietary device drivers. Syser 

Debugger has fixed this problem by utilizing a technique where it hooks into Microsoft 

Windows Direct X API calls to generate its graphical user interface. Multi-core support 

and advanced memory searching features are also provided by Syser Debugger. 

 

Finally, an example of another very widely used kernel debugger is Microsoft’s WinDbg. 

WinDbg provides the ability to debug both user mode and kernel mode applications in 

Microsoft Windows NT-based operating systems. Although WinDbg provides a powerful 

Windows-based graphical user interface, it typically requires the use of two computers 

to harness its full set if capabilities. Despite this restriction, newer versions of WinDbg 

allow for single machine kernel debugging capabilities, but with a subset of its 

capabilities. A somewhat unique and very helpful feature of WinDbg is its ability to 

debug kernel mode memory dumps that are created when a bug check is issued. 

Another unique feature of WinDbg is its ability to load sets of windows debugging 

symbols from a debug server to tailor a debugging session to a more specific set of 

circumstances such as a private source code library. 

  



28 
 

 

3. Chapter 3 – Enhanced Debugging Capabilities 

As mentioned in chapter 1, a VMM can be used to provide an enhanced set of debugging 

features, in addition to those already provided by standard software and hardware based debug 

breakpoint functionality. This is accomplished by using a VMM’s ability to trap on specific 

system-level events to implement precise breakpoints. These breakpoints can be tailored to 

more specific conditions than traditional hardware and software breakpoints that must either 

specify a memory or port I/O address. With the addition of these enhanced capabilities, a 

debugger can be implemented to provide more fine-grained control over the software being 

debugged. 

To help explain and demonstrate these concepts, a map of chapter 3 is as follows: 

 3.1 - Traditional Debugging Capabilities: Basic information about standard debug 

capabilities 

 3.2 - Enhanced Debugging Capabilities: Debugging enhancements introduced in this 

section 

 3.3 - Exit Reasons / Breakpoint Functionality: Brief overview of some relevant exit 

reasons that could aid in the development of virtual breakpoints 

 3.4 - Experiments: Detailed analysis of the enhanced debugging capability experiments  

 3.5 - Conclusions of Enhanced Debugging Capabilities: A summary of the key concepts 

and results associated with this chapter 

 

3.1 Traditional Debugging Capabilities 

Traditional debuggers provide support to set breakpoints on either a memory address or a 

port I/O address. Up to four hardware breakpoints can be set within an x86-based CPU 

without making any modifications to the target software. A practically unlimited number of 



29 
 

 

software breakpoints can be placed, on memory addresses only, by replacing the first byte 

of an instruction with a 0xCC opcode. This special opcode causes execution flow to transfer 

to the system’s interrupt 0x03 handler.  The interrupt 0x03 handler, most likely set up by the 

debugger, is responsible for restoring the correct data in memory for the instruction that 

was at least partially replaced by the 0xCC opcode so that the instruction can still be 

executed correctly.  

 

These standard debugger capabilities are useful, but do not provide a means to configure 

the conditions that will cause a breakpoint to a degree of control beyond memory or Port 

I/O addresses. In addition, hardware breakpoints are very limited, only allowing for four 

simultaneous breakpoints to be set.  

 

An Independent study, completed prior to this thesis, has been referenced[16] and provides 

a detailed explanation of the implementation of a hardware-based kernel debugger. A 

portion of this independent study details the steps required to create a debugger backend, 

and steps through this process with functional source code. Enough detail is included to 

allow developers to implement and configure their own kernel debugger breakpoints by 

directly programming the CPU. 

 

3.2 Enhanced Debugging Capabilities 

By using a VMM's exit reason functionality to implement a set of virtual break points, very 

fine-grained control can be specified over conditions that cause a debugger to trap to its 

breakpoint handler. For the purpose of this thesis, this control can be as specific as the 

architectural conditions that trigger exit reasons, as defined by Intel’s VT. Once an Intel VT-



30 
 

 

based VMM has been set up, configured, and launched, any of the architectural events, 

listed in Appendix A –Basic Exit Reasons, can trigger the guest operating system to exit and 

pass control to the host VMM.  

 

Virtual breakpoints can be set and used through the implementation of an exit reason 

handler placed within the host VMM. When the host VMM gains execution control due to a 

guest VM-Exit, it is essentially allowing the software controlling the host VMM to trap on a 

specified condition and execute a handler. This concept is analogous to that of a debug 

breakpoint; the difference being the exit handler is controlled and executed from a VMM 

rather than a standard Ring 0 program. 

 

3.2.1 Enhancement 1 - Setting Virtual Breakpoints 

The first major enhancement that this provides to our VMM-based debugging capability 

is the ability to set a breakpoint and trap to our debug handler for a multitude of specific 

events, rather than just the memory and port I/O events that a standard debugger traps 

to. This allows for more specific system-level configuration of breakpoints. Each of these 

events has been explained in further detail below in Section 3.3 - Exit Reasons / 

Breakpoint Functionality. It is also important to note that standard memory and port I/O 

breakpoints can still be set in addition to the virtual breakpoints detailed in this thesis. 

This enhancement is detailed below in Section 3.4.1 - Experiment 1 – Demonstration of 

virtual breakpoints. 

 

3.2.2 Enhancement 2 - Unlimited Virtual Breakpoints 

The next enhancement provided by this debugging capability is the ability to set nearly 

unlimited breakpoints rather than being limited to four hardware-based memory and 



31 
 

 

port I/O breakpoints or using software breakpoints that modify the target code and can 

only trap on specified memory addresses. A nearly unlimited number of breakpoints can 

be set based on any event that can trigger an exit condition. Multiple breakpoints can 

even be set for any specific type of exit condition by using a routing algorithm that 

specifies for certain conditions in addition to a specific exit condition to trigger a 

breakpoint. For example, an exit handler can specify any number of port I/O reads or 

writes that will trigger a virtual breakpoint when an I/O instruction exit occurs, spanning 

far beyond the limit of four I/O breakpoints allowed by standard processor debug 

registers. An overview of this enhancement can be found below in Section 3.4.2 - 

Experiment 2 – Implementation of more than four hardware breakpoints. 

 

3.2.3 Enhancement 3 - Full Control over Guest State 

Another enhancement that can be provided to a debugger using a VMM-based 

debugging facility is the full control that the debugger will gain over the target OS. 

Intel’s hardware-assisted virtualization technology is inherently built to maintain full 

control over the system state of the guest OS (target OS for our debugger). In many 

cases this control can supersede that of a standard kernel debugger, allowing for easier 

viewing and modification of the target’s system state. For example, a VMM can easily 

read and modify the instruction pointer (EIP register) of a guest OS, whereas this poses a 

complicated task when running in the kernel. This concept has been demonstrated 

below in Section 3.4.3 - Experiment 3 – Full Control over Guest OS System State. 

 

3.3 Exit Reasons / Breakpoint Functionality 

This section will detail the functionality associated with some of the VMX exit reasons that 

can be used as a condition to trigger a virtual breakpoint. Intel’s VMX-based VMM 



32 
 

 

technology currently supports fifty-five exit reasons, each of which can be used as a 

condition to cause a virtual breakpoint. Some of these exit reasons are overviewed below 

along with a description of what will cause this exit reason to occur and how it can be used 

as a virtual breakpoint. These exit reasons have been provided so that the reader can better 

understand the functionality associated with various exit reasons and the similarity that 

these exits can have to a breakpoint. 

 

Exception:  

Exceptions are often generated when an instruction causes an error, or a special event such 

as a hardware breakpoint occurs. An example of an error that causes an exception is a divide 

by zero error. An exit condition is generated when guest software causes an exception to 

occur. With the ability to trap on exceptions, a virtual breakpoint can be configured to trap 

on types of system errors and special events. 

 

Triple Fault: 

A triple fault is experienced when an exception is generated while attempting to call a 

double fault handler. A double fault occurs if the CPU experiences a problem while handling 

an interrupt or exception. This type of exit reason can be used to configure a virtual 

breakpoint to trap on the occurrence of a triple fault. This has the potential to be a very 

powerful capability since triple faults often force the machine to reboot, making debugging 

through a triple fault a difficult challenge. 

 

CPUID Command: 



33 
 

 

An exit reason can be configured to occur on the execution of the CPUID instruction. The 

CPUID instruction can be used to obtain processor specific information, such as to 

determine if various CPU features are supported by the current processor. This type of exit 

condition has the potential to create a virtual breakpoint within a program that will trap 

when software is attempting to profile the CPU before making critical decisions based on 

CPU capabilities. 

 

Control Register Access: 

Control registers are used to configure specific processor settings such as a processor’s 

mode of execution, the availability of physical address extensions, enabling paging, or 

setting the base address of the system page table. Any access to a control register can be 

configured to cause an exit reason. This provides the potential for a virtual breakpoint to be 

tailored to specific changes in system state, such as a transition from real to protected 

mode. 

 

MOV DR (move data into a debug register): 

Debug registers are used to configure and enable hardware breakpoints that will cause an 

exception when a specified memory or port I/O address is accessed. By writing data to 

debug registers, a VM-Exit can occur. This will enable a virtual breakpoint to trap on 

software that is configuring or enabling/disabling a hardware breakpoint, which provides 

the opportunity to debug a debugger, or to debug software that interacts with a standard 

debugger's hardware breakpoint capability. 

 

I/O Instruction (i.e. IN or OUT Commands): 



34 
 

 

I/O instructions are used to pass data between software and a specified hardware 

component. Any I/O address can be configured to cause a VM-Exit by either setting all I/O 

access to cause a VM-Exit, or by specifying a set of ports that will trigger VM-Exits in the 

hypervisors IO Bitmap VMCS field. A standard hardware breakpoint can set up to four 

simultaneous I/O breakpoints. This capability can be used to set virtual breakpoints to 

simultaneously monitor more than four I/O ports, in combination with other types of 

breakpoints.  

 

RDMSR/WRMSR: 

The RDMSR/WRMSR commands are used to read or write data to an MSR (Model Specific 

Register). MSRs are used to control processor features that are available to specific lines of 

processors. Any read or write access to an MSR can be handled by a VM-Exit. This capability 

will help to configure virtual breakpoints that can be tailored to break on any specific 

functionality associated with an MSR. 

 

IDTR: 

The IDTR is used to store the base physical address and length of the IDT. Any access to the 

IDTR can be configured to cause a VM-Exit. With the ability to monitor access to the IDTR, a 

virtual breakpoint can be configured to help identify when any software attempts to place a 

hook in the IDT. 

 

3.4 Experiments 



35 
 

 

This section will describe the experiments that were conducted in order to demonstrate the 

concepts overviewed throughout Chapter 3 – Enhanced Debugging Capabilities. Three 

categories of experiments were performed as follows: 

 Demonstration of Virtual Breakpoints 

 Implementation of more than four hardware breakpoints 

 Fast and easy retrieval of processor system state 

A summary of each experiment will be provided in order to overview the experiment’s 

intent. This will be followed by the details required to set up and run the experiment, 

including implementation details. Finally, the results of each experiment will be provided to 

demonstrate the feasibility of the enhanced debugger capabilities presented in this paper. 

3.4.1 Experiment 1 – Demonstration of virtual breakpoints 

Experiment 1 Overview: 

This experiment will demonstrate the ability to set and trap on virtual breakpoints. This 

capability is the foundation of this thesis, as it provides a technique to trap to a software 

handler when specified conditions are met, similar to a debugger trapping to an 

interrupt handler when a specified memory or port I/O address is read, written, or 

executed. Any of the fifty-five exit reasons listed in Appendix A –Basic Exit Reasons can 

be used as a virtual breakpoint, but because the concept is the same, only a few of these 

virtual breakpoints will be demonstrated as part of this experiment. For this experiment, 

the following virtual breakpoint conditions will be set and trapped on by our VMM’s 

virtual breakpoint handler function: 



36 
 

 

 Port I/O address 0x0CF8 Read or Write - A virtual breakpoint will be set to trap 

on reads or writes to port I/O address 0x0CF8. Port 0x0CF8 is a standard port 

used to index into PCI configuration space, where information can be retrieved 

and set within various I/O devices. This virtual breakpoint demonstrates the 

ability to trap on both reads or writes to a specified port I/O address. 

 

 Read/Write MSR (Model Specific Register) Execution – One more virtual 

breakpoint will be demonstrated that traps on accesses to specified Model 

Specific Registers. MSRs allow for interactions with various processor 

capabilities. For example, MSR 0x00000010 is used to read or reset the 

processor’s time stamp counter. This virtual breakpoint will be set to trap on 

reads of the time stamp counter MSR.  

 

 VMX Instruction Execution – Another virtual breakpoint will be set to break on 

any VMX instructions that are executed. When Intel’s VMX instruction set is 

used to bring up and make use of a VMM, various VMX instructions must be 

executed. The debugging capabilities presented in this thesis will be capable of 

monitoring VMX activity on a target system. Without this capability, debugging a 

target could experience complications if a Intel VT-based VMM were loaded. 

This is because a VMM can maintain control over system resources such as 

processor capabilities, physical memory, interrupt management, and various I/O 

interactions, effectively trumping the control that a standard debugger could 

maintain over the processor. It is important to note that if a VMM was loaded 



37 
 

 

before the debugger, it could prevent the debugger from correctly loading its 

VMM component. 

 

 Control Register access – The virtual breakpoint handler will also be set to trap 

on Control Register 4 access. The processor’s Control Registers are responsible 

for controlling various features of the CPU. More specifically, control registers 

manage options such as paging, processor modes, some cache settings, and 

enabling/disabling certain instruction sets, such as VMX instructions. This virtual 

breakpoint demonstrates the ability to trap on control registers, and also to 

specify which control registers will trigger the breakpoint. It will also be 

demonstrated that specific settings within the control register can be used to 

trigger a virtual breakpoint, rather than just general read/write access.  

 

Experiment 1 Implementation: 

Experiment 1 loaded a VMM and performed configurations to trap, or set virtual 

breakpoints, on access to I/O port 0x0CF8, the RDMSR instruction, the VMXON 

command, and access to the CPU’s Control Register 4. The source code shown below in 

Figure 4 - Chapter 3 - Experiment 1 Source Code demonstrates the implementation of 

the handler that was included within the VMM to handle the aforementioned exit 

conditions that were configured within the VMM. These handlers can also include code 

to pause execution, communicate with a user interface, and allow a user to take actions 

against the target machine’s execution, such as stepping through the code or analyzing 

the system state.   



38 
 

 

The port I/O virtual breakpoint has been specially configured within the VMM to set up 

and enable an I/O bitmap that is responsible for determining exactly what port I/O 

accesses cause VM-Exits to trap to the VMM. An I/O bitmap was used rather than 

setting all port I/O accesses to cause a VM-Exit, and implementing a filter, because the 

latter induces large amounts of processing overhead since port I/O instructions execute 

frequently within a standard system.  

This was accomplished by enabling the “Use I/O bitmaps” bit within the 

IA32_VMX_PROCBASED_CTLS MSR that must be modified from within a VMM. The I/O 

bitmap consists of two 4KB aligned memory, and is filled with data representing which 

port accesses will cause a VM-Exit. Each bit within the memory range represents a port, 

where a value of 1 indicates that the port will cause a VM-Exit when used, and a value of 

0 indicates that port accesses will execute as normal. Once the I/O bitmaps are allocated 

and configured, the VMCS must be provided with the 64-bit physical address of each I/O 

bitmap. 

The port I/O handler, shown below in Figure 4 - Chapter 3 - Experiment 1 Source Code, 

prints to a debug interface when a specified I/O instruction is encountered and proceeds 

to execute the instruction. For this experiment, I/O port 0x0CF8 is set as a virtual 

breakpoint. Once a specified I/O instruction triggers our handler, the VMM’s Exit 

Qualification can be parsed to determine specific information about the port I/O 

instruction that was executed. The exit qualification information is retrieved from the 

VMCS at offset 0x6400 using the VMREAD command. 

The RDMSR Virtual Breakpoint has been configured within the VMM to trap on RDMSR 

instructions. The handler can be used to ignore certain MSR accesses, and to trap on 



39 
 

 

MSR accesses specified by a virtual breakpoint. The handler used in our experiment, 

shown below in Figure 4 - Chapter 3 - Experiment 1 Source Code, currently prints out 

the MSR that was accessed by the RDMSR instruction. The purpose of this was to 

demonstrate that the code can easily determine which MSR was read, and filter this 

data within the handler based on the MSR address specified by the virtual breakpoint. 

The handler next proceeds to execute the RDMSR instruction as intended on the correct 

MSR address so that the output can be returned to the guest VM. An MSR bitmap could 

also be used to determine which MSRs cause exit conditions, but was not necessary for 

this experiment because the frequency of MSR accesses in a standard system is much 

lower. An MSR bitmap can be enabled by enabling the “Use MSR Bitmaps” bit within the 

IA32_VMX_PROCBASED_CTLS MSR. Once this option is enabled, a bitmap structure in 

memory is used the same way that the aforementioned I/O bitmap was used to specify 

which port I/O addresses caused VM-Exits. 

  

The VMX Instruction Virtual Breakpoint was configured to specifically trap on execution 

of the VMXON command. The handler in our experiment was used to provide debug 

output indicating that the VMXON instruction was called, and to prevent the instruction 

from executing since a VMM was already loaded. A virtual breakpoint can easily be sent 

for each VMX-based instruction as each VMX instruction has its own exit reason. 

 

////////////////////////////////////////////////////////////// 

//Chapter 3 - Experiment 1      // 

//Set virtual breakpoints on:      // 

// -Port I/O address 0x0CF8 read or write -0x0000001E // 

// -RDMSR Execution     -0x00000031 // 

// -VMX Instruction (VMXON Command)  -0x00000027 // 

////////////////////////////////////////////////////////////// 

   

  



40 
 

 

//Exit Reason Handler if an I/O instruction that has been set in 

the I/O bitmap is executed 

if( ExitReason == 0x0000001E ) 

{ 

DbgPrint("[VMX] - I/O Instruction Encountered at port: %X", 

ExitQualification >> 16); 

   

 //Execute the Port I/O instruction 

 __asm 

 { 

  popad 

 

  mov edx, ExitQualification 

shr edx, 16 //Determine port number that caused exit 

    

   //Determine the direction of the I/O access 

   mov eax, ExitQualification 

and eax, 0x00000008 //Bit 3 determines 

direction - 1 for IN, 0 for OUT 

 

   cmp eax, 0 

   jz OUT_INS 

    

   //Determine the size of the I/O access 

   mov eax, ExitQualification 

   and eax, 0x00000003 

    

//Execute the appropriate instruction based on 

size 

   cmp eax, 0 

   JE IN8 //8-bit IN 

   cmp eax, 1 

   JE IN16 //16-bit IN 

   JMP IN32 //32-bit IN 

    

   IN8: 

   in al, dx 

    

   IN16: 

   in ax, dx 

    

   IN32: 

   in eax, dx 

 

   jmp Resume 

    

//Branch here if the I/O instruction direction 

is OUT 

   OUT_INS: 

    

   //Determine the size of the I/O access 

   mov eax, ExitQualification 

   and eax, 0x00000003 

    

   //Execute the appropriate instruction based on 

size 

   cmp eax, 0 



41 
 

 

   je OUT8 //8-bit OUT 

   cmp eax, 1 

   je OUT16 //16-bit OUT 

   jmp OUT32 //32-bit OUT 

    

   OUT8: 

   mov eax, GuestEAX 

   out dx, al 

    

   OUT16: 

   mov eax, GuestEAX 

   out dx, ax 

    

   OUT32: 

   mov eax, GuestEAX 

   out dx, eax 

 

   jmp Resume 

  } 

 } 

  

  

 

 //Exit reason handler for an RSMSR instruction execution 

 if( ExitReason == 0x0000001F ) 

 { 

DbgPrint("[VMX] - RDMSR Instruction Encountered for 

MSR: %X", GuestECX); 

  __asm 

  { 

   popad 

   mov  ecx, GuestECX 

   rdmsr 

   jmp Resume 

  } 

 } 

  

 //Exit reason handler for a VMXON instruction execution 

 if( ExitReason == 0x0000001B ) 

 { 

DbgPrint("[VMX] - VMXON Instruction Encountered, not 

allowing instruction execution"); 

  __asm 

  { 

   popad 

   jmp Resume 

  } 

 } 

Figure 4 - Chapter 3 - Experiment 1 Source Code 

 

Experiment 1 Results: 



42 
 

 

The output from our experiment 1 virtual breakpoint handler has been recorded and 

shown below in Figure 5 – Chapter 3 - Experiment 1 Results (Debug Output), for each 

virtual breakpoint experiment. A Windows device driver was used to execute code that 

triggers the aforementioned virtual breakpoints. This kernel code is shown in Appendix 

C – Kernel Code used in Experiments, Figure 18 - Kernel code to trigger virtual 

breakpoint experiments. 

The debug output shown directly below displays the output that was printed when the 

exit reason handler code from Figure 4 - Chapter 3 - Experiment 1 Source Code was 

triggered by our kernel module code shown in Appendix C – Kernel Code used in 

Experiments, Figure 18 - Kernel code to trigger virtual breakpoint experiments. These 

results demonstrate that a VMM was effectively used to create breakpoints on specific 

system-level functionality including port I/O access, MSR access, VMX instruction 

execution, and control register access. As previously mentioned, a virtual breakpoint can 

be set for any of the 55 exit reasons listed in Appendix A –Basic Exit Reasons. 

  

 



43 
 

 

Figure 5 – Chapter 3 - Experiment 1 Results (Debug Output) 

 

The code shown in Appendix C – Kernel Code used in Experiments, Figure 18 - Kernel 

code to trigger virtual breakpoint experiments, was used to cause our virtual 

breakpoints to trigger and trap to our VMM handler code, as previously mentioned. The 

first section of code reads data in from port 0x0CF8 and triggers our virtual breakpoint 

that is monitoring access to port 0x0CF8. The second section of code uses MSR 

0x00000010 to read the current value of the system’s time stamp counter, and triggers 

our virtual breakpoint that is monitoring read access to MSRs. The third section of code 

executes a VMXON instruction to trigger the virtual breakpoint that is specifically 

monitoring the VMXON x86 instruction.  

 

3.4.2 Experiment 2 – Implementation of more than four hardware 

breakpoints 

Experiment 2 Overview: 

Experiment two will demonstrate the ability to concurrently set well over four virtual 

breakpoints. Any number of virtual breakpoints, of both the same and different types, 

can be set concurrently. To compare this capability directly to breakpoints that can be 

set by a standard debugger, port I/O breakpoints will be used. Intel processors currently 

support four hardware breakpoints, which are required to break on port I/O access. This 

experiment will simultaneously demonstrate ten virtual port I/O breakpoints and 

demonstrate the ability to trap to a handler for each of these breakpoints. It is 

important to note that the ten virtual breakpoints set in this experiment does not 



44 
 

 

represent a limit, but is being used to avoid needlessly repeating the same experiment. 

A virtual breakpoint can feasibly be set for every single port I/O address, as well as 

concurrently setting additional virtual breakpoints for other purposes. This experiment 

will also concurrently set a breakpoint to trap on access to MSR 0x00000010 to 

demonstrate this concept.  

Experiment 2 Implementation: 

Experiment 2 loaded and configured a VMM to trap on access to I/O ports 0x00-0x60, as 

well as on reads or writes to MSRs. MSR 0x10, which provides access to the system’s 

Time Stamp Counter, was specifically chosen to be filtered to represent a breakpoint 

applied to MSR 0x10. I/O ports 0x00-0x60 were chosen to demonstrate the ability to set 

a great deal of simultaneous port I/O VBPs. 

The I/O Port VBPs were enabled by setting the corresponding bits within the I/O bitmap 

that was described in detail under experiment one. The MSR 0x10 VBP was enabled by 

disabling the “Use MSR Bitmap” bit within the IA32_VMX_PROCBASED_CTLS MSR, and 

then filtering MSR exit conditions to trap on accesses to MSR 0x10. Through the use of 

basic filter functionality in software, accesses to all other MSRs can be ignored. If 

different MSRs were called frequently on a specific system, producing significant 

execution overhead, a debugger implementation could enable the aforementioned “Use 

MSR Bitmap” to specify exactly which MSRs cause exit conditions.  

This experiment chose to use a software filter rather than an MSR bitmap to 

demonstrate an alternative method of specifying VBPs as opposed to that used by the 

port I/O VBP implementation. It was also feasible to use this simpler technique for MSR 



45 
 

 

breakpoints because the amount of MSR calls being made will unlikely cause significant 

execution overhead due to an abundance of VM-Exits.  

Experiment 2 Results: 

The output from the experiment 2 virtual breakpoint handler has been recorded and 

shown in Figure 6 - Chapter 3 - Experiment 2 Results (Debug Output). This code 

demonstrates the large number of breakpoints that were concurrently set and trapped 

to. Similar to experiment 1, a Windows device driver was used to execute code that 

triggered the virtual breakpoints set in experiment 2. This kernel code is shown in 

Appendix C – Kernel Code used in Experiments, Figure 19 - Kernel code to trigger 

multiple simultaneous virtual breakpoints experiment.  

The debug output shown directly below displays the output that was printed when the 

VMM’s exit reason handler was triggered for the virtual break points set for experiment 

2, by the kernel code shown in Appendix C – Kernel Code used in Experiments, Figure 19 

- Kernel code to trigger multiple simultaneous virtual breakpoints experiment. These 

results demonstrate that a great deal of port I/O breakpoints can simultaneously be set, 

providing many more than a standard debugger. This experiment also demonstrated 

that we are not limited to port I/O based virtual breakpoints, as an MSR breakpoint was 

also concurrently set and trapped to with this experiment. There is no specific limit on 

the number or type of virtual breakpoints that can simultaneously be set. 

 



46 
 

 

 

Figure 6 - Chapter 3 - Experiment 2 Results (Debug Output) 

 

The kernel code shown in Appendix C – Kernel Code used in Experiments, Figure 19 - 

Kernel code to trigger multiple simultaneous virtual breakpoints experiment was used to 

demonstrate that well over 4 virtual breakpoints are simultaneously set on port I/O 

addresses, as well as additional virtual breakpoints of other types. The first section of 

code reads from ten different port I/O addresses within the range of 0x60 port I/O 

addresses that are currently enabled as virtual breakpoints. This code starts at port 

0x0000 and increments by 8 bytes for each consecutive port I/O read. This was done to 

demonstrate that each port read would have represented a completely different 

breakpoint for a standard kernel debugger since each port I/O breakpoint can only span 



47 
 

 

4 bytes. The second section of code read from MSR 0x10 to demonstrate the virtual 

breakpoint set on MSR 0x10. 

 

3.4.3 Experiment 3 – Full Control over Guest OS System State 

Experiment 3 Overview: 

Even though the debugging capabilities detailed in this thesis are running within a VMM, 

in a separate mode than the Guest OS, the software running within the VMM still has 

full control over the Guest OS. In many cases running software from within a VMM 

provides better control over the OS state that if the code were run from within the OS’s 

own kernel. As a result, the debugging capabilities presented within this thesis can still 

read and modify the system state, as does a standard debugger, but often with less 

effort required. For example the instruction pointer (EIP register) cannot normally be 

directly modified, even when the code is executing with Ring 0 privileges within the 

kernel. An indirect trick must be used to modify the value of the instruction pointer 

from Ring 0, for example, by altering the return address of a function call on the stack 

and calling a ret instruction to pop the modified return address into the EIP register. 

Code running in the VMM, such as the debugging software presented in this thesis, has 

full control over the system state. As a result, the debugging capabilities presented 

within this thesis can easily read and modify guest OS state. Standard x86 processor 

registers such as the general purpose registers EAX, EBX, ECX, and EDX can be modified 

within the VMM using a MOV or POP instruction, and will retain their value when 

returning to the guest. Other processor registers can be modified within the VMM by 

writing their desired value to the corresponding guest state fields within the VMCS using 

the x86 VMWRITE command. The non-standard registers include control registers, 



48 
 

 

debug registers, the stack pointer register, the instruction pointer register, the flags 

register, the task register, the GDT register, the LDT register, and the IDT register, some 

specific MSRs, and the SMBASE register[17].  

Experiment 3 will demonstrate the ability to easily modify the value of the instruction 

pointer (the EIP register) in the guest OS, from code executing within the VMM. The 

purpose of this experiment is to show that the debugging capabilities presented in this 

thesis can easily modify the state of the target OS, even for registers that would 

normally be very complicated to alter. This is an important feature for any kernel 

debugger as the user may desire to view or alter various aspects of the system during 

testing or analysis. To demonstrate the modification of the EIP register, when a specified 

case within the VMM is reached, the VMM will increment the value of the EIP register 

within the guest OS by altering its value using the VMCS.  

 

Experiment 3 Implementation: 

Experiment 3 was performed by adding code to our VMM that examines each exit 

condition for a specific set of circumstances to hold true, and then increments the 

instruction pointer by 12. It would be trivial for a debugger running in the virtual 

machine monitor to alter the instruction pointer based on user input, but a full interface 

is not the main focus of this thesis, so code is used to demonstrate this capability as with 

the other experiments. The source code shown in Figure 7 - Instruction Pointer 

Modification in VMM demonstrates how we altered the instruction pointer before 

returning to the guest OS. The GuestResumeEIP variable contains the address that the 

guest OS instruction pointer will receive when the VMM returns control to the guest OS 



49 
 

 

after it is trapped to as the result of an exit condition being triggered. Normally the 

VMM is responsible for incrementing the instruction pointer by the length of the 

instruction that triggered an exit from the guest OS into the VMM. This ensures that the 

same instruction in the guest OS in not infinitely repeated. If the instruction pointer was 

not incremented before returning to the guest OS, the same instruction would get 

executed, causing the same exit reason to occur repeatedly. Once the GuestResumeEIP 

variable is calculated and updated, it is written to the VMCS location responsible for 

restoring the instruction pointer upon re-entry into the guest OS. To alter the instruction 

pointer, the code shown below simply adds an addition 12 bytes before writing the 

value to the VMCS. The conditions used to trigger this experiment include a port I/O 

access (exit reason 0x1E) to I/O port 0x01.  

It is important to note that for a debugger implementation, when the debugger has 

reached a virtual breakpoint and has halted the system to the point that the user can 

observe and modify system state, it will have passed control to the VMM, making the 

aforementioned concept feasible in implementation. 

GuestResumeEIP = GuestEIP + ExitInstructionLength; 

  

//Chapter 3 Experiment 3 - Modify instruction pointer. Add 12 to 

instruction pointer to skip instructions under specified 

condition 

if( (ExitReason == 0x1E) && ( (ExitQualification >> 16) == 1) ) 

{ 

DbgPrint("[VMX - EIP TEST] Specified EIP Condition 

detected, incrementing EIP by 12"); 

  

GuestResumeEIP = GuestResumeEIP + 12; 

} 

  

WriteVMCS( 0x0000681E, (ULONG)GuestResumeEIP ); 

Figure 7 - Instruction Pointer Modification in VMM 

 



50 
 

 

Figure 20 - Kernel Code Used to Observe EIP Modification, found in Appendix C – Kernel 

Code used in Experiments, consists of the kernel code that was used to help 

demonstrate the modification of the instruction pointer from within the VMM. The code 

includes 8 sets of port read instructions that increment the port being read after each 

instruction completes. Each set of instructions consists of three bytes of machine code, 

0xEC, 0x66, and 0x42. Therefore, after the execution of each corresponding IN and INC 

instruction, the instruction pointer will have incremented by three bytes. This code 

starts out by reading port 0, and finished by reading port 7. A virtual breakpoint is set 

for each of the 7 ports when this code is executed for this experiment. This code is run 

twice, once to trigger the virtual breakpoints for each I/O instruction, and again to 

trigger the virtual breakpoints as well as to modify the instruction pointer when port 

0x01 triggers a breakpoint. The instruction pointer is incremented by 12 bytes, to skip 

over 4 sets of port I/O instructions. The results of this experiment are detailed below in 

the results section. 

 

Experiment 3 Results: 

Two screen shots are provided below to demonstrate the results of this experiment; 

Figure 8 - Sequence of I/O Instructions Run in Kernel without EIP Modification and 

Figure 9 – Sequence of I/O Instructions Run in Kernel with EIP Modification from VMM. 

The first of the two figures shows the resulting output from the execution of our 

aforementioned kernel code that executed 8 port I/O instructions, incrementing the 

port number after the execution of each instruction. It is important to remember that 

virtual breakpoints were set on each I/O instruction. The virtual memory address 



51 
 

 

representing the instruction pointer after each port I/O instruction is printed out after 

the completion of each of the I/O instructions. It is clearly demonstrated that the 

execution of each IN and INC instruction increments the instruction pointer by 3 bytes, 

since the machine code for these two instructions adds up to a length of 3 bytes. Each 

I/O instruction is executed as expected, triggering a virtual breakpoint that prints out 

some EIP and exit reason data. 

 

Figure 8 - Sequence of I/O Instructions Run in Kernel without EIP Modification 

The next figure, Figure 9 – Sequence of I/O Instructions Run in Kernel with EIP 

Modification from VMM, provides output from the same kernel code execution, but 

after we have included the instruction pointer modification code into the VMM as 

shown above in Figure 7 - Instruction Pointer Modification in VMM. The resulting output 



52 
 

 

clearly shows that the virtual breakpoint triggered by the I/O port 0x01 access caused 

the instruction pointer to increment by 12, skipping four of the port I/O instructions and 

demonstrating code execution at an instruction pointer 12 bytes past where the kernel 

code would expect.  

 

Figure 9 – Sequence of I/O Instructions Run in Kernel with EIP Modification from VMM 

This demonstration has proven the ability of our debugging capabilities to easily view 

and modify the system state of a guest OS being debugged. This access and modification 

to the guest OS provides a greater degree of control than a standard kernel debugger 

running within the OS’s kernel due to its privileged control of the target and ease of 

access/control over the processor’s registers. 

 

3.5 Conclusions of Enhanced Debugging Capabilities 

This section has demonstrated the fundamental ideas of this thesis; that analogies between 

a VMM's exit conditions and a kernel debugger's breakpoint capabilities can be used to 

greatly enhance the current state of the art in kernel debugging on x86-based systems. This 



53 
 

 

similarity has been used to enhance the capabilities that can be provided by a kernel 

debugger through the introduction of a plethora of additional breakpoint conditions, a 

greater number of hardware-based breakpoints, and a debug environment that has 

extremely granular control over the system being debugged. The experiments within this 

section clearly demonstrate these concepts and provide examples in order to prove the 

feasibility of each claim, as well as to help increase the reader's understanding of each 

concept. The first experiment, overviewed in section 3.4.1 - Experiment 1 – Demonstration 

of virtual breakpoints, created and triggered various types of virtual breakpoints and 

triggered these breakpoints with code executing in the kernel, which trapped to our virtual 

breakpoint handler. The second experiment, overviewed in section 3.4.2 - Experiment 2 – 

Implementation of more than four hardware breakpoints, demonstrated the ability to set a 

nearly unlimited number of virtual hardware breakpoints, as opposed to a standard x86-

based processor’s four hardware breakpoint limit. The third experiment, overviewed in 

section 3.4.3 - Experiment 3 – Full Control over Guest OS System State, demonstrated that 

our virtual debugger, operating from within a hardware-assisted VMM, has powerful and 

granular control over the target system being debugged. The newly provided enhancements 

presented within this chapter open up the opportunity for numerous applications of 

enhanced kernel debugging, which will be covered in the following chapter, Chapter 4 – 

Applications of Enhanced Debugging Capabilities.  



54 
 

 

4. Chapter 4 – Applications of Enhanced Debugging Capabilities 

The enhanced kernel debugging capabilities that have been presented in chapter three provide 

the opportunity for numerous enhanced debugging applications. To demonstrate this concept, a 

few of the applications of this technology will be presented and overviewed throughout this 

chapter, along with step by step demonstration and analysis of each application that is 

presented. 

To help explain and demonstrate these concepts, a map of chapter 4 is as follows: 

 4.1 - Applications of Enhanced Debugging Capabilities: How enhanced debugging 

capabilities can be applied in practice 

 4.2 - Background Information for Applications of Enhanced Debugging Experiments: 

Background information on the concepts required to understand the chapter 4 

experiments 

 4.3 - Experiments: Detailed analysis of the applications of enhanced debugging 

capabilities experiments 

 

4.1 Applications of Enhanced Debugging Capabilities 

As indicated in section 1.3.2 - Applications of Enhanced Debugging Capabilities, the 

enhanced debugging capabilities presented in chapter 3 can be tailored and applied to aid a 

debugger under more specific circumstances. Two sets of circumstances will be overviewed 

and demonstrated within this chapter. In addition, extra examples will be discussed that I 

am currently implementing, or that I plan to implement in the future as time permits. 

 

4.1.1 Application 1 - Filter Unwanted Data During Dynamic Analysis 



55 
 

 

A powerful application of the virtual breakpoint concept presented throughout this 

thesis is the ability to tailor these virtual breakpoints to trap under extremely specific 

conditions in order to filter out large sets of unwanted data during dynamic analysis of a 

system. It is often difficult to isolate a desired section of code during dynamic analysis of 

a complex system, especially if source code is not available. Often, a bug is being sought, 

but the location is unknown. Standard memory and port I/O breakpoints may not 

provide the functionality necessary to quickly isolate the functionality being sought 

after. The experiments presented in section 4.3.1 - Smart Filtering of Data During 

Dynamic Analysis will help demonstrate a few scenarios where this concept proves 

useful.  

 

4.1.2 Application 2 - Debugging Exceptions and Error States 

Another great application of the concepts presented in this thesis is the ability to easily 

debug through exceptions and error states. Bugs or errors that would have previously 

hindered the capability of a debugger, operating system, program being debugged, or 

required extremely complex algorithms to handle, can now be trapped on and 

dynamically analyzed with greater ease. In addition, the exact location of a bug can be 

determined and analyzed through a virtual breakpoint, with a minimal amount of time 

and effort. This can also be accomplished without the requirement to obliviously step 

through large amounts of code in search of the bug. The experiments presented in 

section 4.3.2 Analysis of Complex Debug Environments will help demonstrate a couple 

scenarios associated with these concepts.  

 



56 
 

 

4.2 Background Information for Applications of Enhanced 

Debugging Experiments 

This section will provide background information on various architectural concepts that help 

to understand the experiments that are overviewed in section 4.3. The architectural 

concepts that will be overviewed include the following: 

 Processor mode switch using Control Register 0 

 Model Specific Registers: IA32_THERM_INTERRUPT and IA32_PAT 

 A hardware breakpoint generated exception 

 A divide by zero error  

 

Control register 0 is responsible for setting various operating modes and states of the 

processor. Specific to this thesis, bits 0 and 31 of control register 0 are of interest, because 

these bits are used to configure paging and to set the processor’s mode of execution to 

either real mode or protected mode[1]. By enabling paging, the processor translates 

physical addresses to virtual addresses. For each translation, a virtual address’s cache type 

and access rights are also determined. Paging is enabled by setting bit 31 of control register 

0 and disabled by clearing this bit. Paging can only be enabled when executing in protected 

mode, otherwise a general protection exception will occur. A processor's mode of execution 

is set to real mode if bit 0 of control register 0 is cleared, and set to protected mode if this 

bit is set to 1. When in real mode, the processor can address a 20-bit memory space and has 

direct access to physical memory. When in protected mode, a processor can address an 

extended memory range of 32 bits, paging is used for address translation, and other various 

capabilities such as ring-based privilege levels. Traditionally an x86-based system begins 

booting in real mode for compatibility purposes, and eventually switches into protected 



57 
 

 

mode when an operating system such as Microsoft Windows is loaded. Addition modes of 

operation, such as, but not limited to, IA_32e mode can also be enabled with various 

processor configurations.  

 

Model specific registers are provided to allow for specific functionality and various 

processor implementations. Many MSRs on Intel x86-based processors are supported across 

many lines of processors. MSRs that will not change on future processor generations are 

considered architectural MSRs, and are given the prefix "IA32_". The RDMSR x86 assembly 

command can be used to read from an MSR, while the WRMSR x86 assembly command can 

be used to write to an MSR. Two MSRs that will be overviewed this section, which are 

relevant to this section's experiments, include the IA32_PAT MSR and the 

IA32_THERM_INTERRUPT MSR. The IA32_PAT MSR contains eight fields, each of which is 

responsible for specifying a memory cache type. The cache types include uncacheable, write 

combining, write-through, write-protected, and write-back. Page table entries configured 

their corresponding memory pages cache type by selecting one of the fields within the PAT. 

The IA32_THERM_INTERRUPT contains bit settings that enable interrupts to be generated 

under specific temperature conditions. Multiple interrupts can be enabled to trip when 

specified processor temperature values are detected. These values are also programmed 

into and stored within the IA32_THERM_INTERRUPT. 

 

Intel x86-based processors provide low-level dynamic debugging support through CPU 

design. More specifically, these processors supply a set of debug registers that present a 

user with up to four hardware breakpoints. These breakpoints can be set to monitor either a 

memory address or a port I/O address. When a specified breakpoint condition is 



58 
 

 

encountered an exception is generated that traps execution flow to interrupt vector 0x01 

for handling by a debugger program. The use of hardware breakpoints can be advantageous 

to software breakpoints, which modify part of the target instruction by replacing its first 

byte with the 0xCC opcode, because they do not modify the target software and can also be 

placed directly on port I/O addresses rather than just memory addresses. 

 

For the x86 architecture certain error conditions cannot be handled, and will cause 

exceptions. When the DIV or IDIV assembly instructions are issued with a divisor of zero, a 

divide by zero error occurs. This causes a hardware-generated exception on the processor, 

exception zero, which passes control to an interrupt for handling.  

 

4.3 Experiments 

This section will describe the experiments that were conducted in order to demonstrate the 

concepts overviewed throughout Chapter 4 – Applications of Enhanced Debugging 

Capabilities. Two main categories of experiments included: 

 Smart filtering of data during dynamic analysis 

 Analysis of complex debug environments 

A summary of each experiment will be given in order to overview the experiment’s intent. 

This will be followed by the details required to set up and run the experiment, including 

implementation details. Finally, the results of each experiment will be provided to 

demonstrate the specific application of the enhanced debugging capabilities presented in 

this thesis. 

 



59 
 

 

4.3.1 Smart Filtering of Data During Dynamic Analysis 

This set of experiments demonstrates a couple cases where virtual breakpoints can be 

used to filter out large sets of unwanted data during dynamic analysis, and very quickly 

locate and analyze the specific section of code being sought after. These two 

experiments by no means represent the full scope of smart filtering capabilities that can 

be provided through the use of the virtual breakpoints overviewed in this thesis, but aim 

to help demonstrate how these virtual breakpoints can be used to isolate specific areas 

in code during dynamic analysis.  

4.3.1.1 Experiment 1 - Processor Mode Switch 

Experiment 1 Overview:  

This experiment demonstrates the ability to trap on processor mode switches. More 

specifically, this experiment monitors for changes that would toggle the processor 

between protected mode and real mode. This experiment also monitors for changes 

to processor state that would enable or disable paging. Switching between real and 

protected mode, as well as enabling or disabling paging, will have a major effect on 

the system and the code running within the system. These changes could certainly 

cause side effects that produce errors in running code. The code used in this 

experiment specifically monitors for paging to be disabled from an enabled state, or 

for the protected mode enable bit in CR0 to be cleared to a setting representing real 

mode. Other settings provided by CR0 could also be monitored similarly via a virtual 

breakpoint. 

 

These types of changes pose an enormous challenge to a debugger as it must 

anticipate the change in system state and adapt its own software to these changes 

so it does not crash.  When enabling paging, code no longer has direct access to 



60 
 

 

physical addresses including memory, and memory-mapped I/O. When switching 

from real mode to protected mode, 32 bits of memory is addressed instead of 20 

bits, paging is enabled, segmentation occurs where available memory can be broken 

into separate segments of various configurations and attributes, as well as other 

settings such as the ring based security scheme to help enforce privileges of running 

code. With many challenges and issues associated with a mode switch, a virtual 

breakpoint that monitors for this behavior can isolate the event and provide the 

ability to analyze the system state immediately before the switch occurs, through 

the mode switch itself. 

 

Experiment 1 Implementation: 

Experiment 1 has set a virtual breakpoint to trap on write accesses to control 

register 0. This has been determined by using the exitQualification field to 

determine which control register was accessed, if it was a read or a write, and 

where the data is being written from or read to (so we can determine the data being 

applied to the register). Additional configurations have been set to monitor bits 0 

and 31 of control register 0. The current state of the processor has these bits set to 

1, as the guest OS is presently running Windows XP, which is running in protected 

mode with paging enabled. If either of these bits are cleared in the guest OS, the 

virtual breakpoint handler will print a debug message stating that these bits were 

accessed and cleared. The virtual breakpoint handler currently does not allow these 

bits to be cleared, and simply returns to the guest without allowing the modification 

to control register 0. The code used in this handler is shown below in Figure 10 - 

Chapter 4.3.1 - Processor Mode Switch Hypervisor Handler Code. 



61 
 

 

 

//Chapter 4 - Mode Switch Experiment 

if( ExitReason == 0x0000001C) //Control Register Access 

{ 

 //Which CR number was accessed 

 movcrControlRegister = ( ExitQualification & 0x0000000F ); 

  

 //Access type - i.e. read or write 

 movcrAccessType = ( ( ExitQualification & 0x00000030 ) >> 4 

 ); 

 

 //Register or memory based access 

 movcrOperandType = ( ( ExitQualification & 0x00000040 ) >> 

 6 ); 

 

 //Which general purpose register involved 

 movcrGeneralPurposeRegister = ( ( ExitQualification &  

 0x00000F00  ) >> 8 ); 

  

//Check for Write Access to Control Register 0 from an AX based 

register 

//CR0 - Write - Register - EAX 

if( (movcrControlRegister == 0) && (movcrAccessType == 0) &&     

(movcrOperandType == 0) && (movcrGeneralPurposeRegister == 0) ) 

{ 

 DbgPrint("[VMX] - MOV CR0, EAX Instruction Encountered:  

 %X", GuestEAX); 

    

 if( (GuestEAX & 0x80000000) == 0) 

 { 

  DbgPrint("[VMX] - Bit 31 of CR0 cleared from ring  

  0"); 

 

  DbgPrint("[VMX] - Ring 0 code disabling paging"); 

 } 

 if( (GuestEAX & 0x00000001) == 0) 

 { 

  DbgPrint("[VMX] - Bit 0 of CR0 cleared from ring 0  

  code"); 

 

  DbgPrint("[VMX] - Ring 0 code switching the processor 

  into real mode"); 

 } 

    

 __asm 

 { 

  popad 

  jmp Resume 

 } 

} 

Figure 10 - Chapter 4.3.1 - Processor Mode Switch Hypervisor Handler Code 

 



62 
 

 

The code shown in Appendix C – Kernel Code used in Experiments, Figure 21 - 

Kernel Code to Trigger Processor Mode Switch Breakpoint, was used to trigger the 

breakpoint that was set to trap on changes to the processor mode. This was 

accomplished by writing a value to CR0 where bits 0 and 31 are both cleared to 0. 

This would effectively put the processor into 16-bit real mode. Because this 

experiment is running in a 32-bit protected mode Microsoft Windows environment, 

the hypervisor does not allow for this change to take place, but acknowledges the 

attempted change through debug output.  

 

 

 

Experiment 1 Results: 

The handler used in this experiment successfully trapped on write accesses to the 

CR0 register. The virtual breakpoint handler in the hypervisor detected that bit 0 of 

CR0 was being cleared to disable paging and that bit 31 was being cleared to switch 

the processor into real mode. The debug output generated from the virtual 

breakpoint handler is shown below in Figure 11 - Output from Processor Mode 

Switch Breakpoint Experiment. As previously mentioned, the hypervisor was 

configured to disallow these changes to avoid crashing the guest operating system 

during this experiment. As with any virtual breakpoint handler, the exact code 

location that triggered this virtual breakpoint can always be determined since the 

hypervisor has direct access to the guest OS's instruction pointer value from when it 

caused an exit condition to occur. This experiment has demonstrated one 

application of a virtual breakpoint placed on a control register. Any specific bit 

within CR0 or another control register can just as easily be configured to trigger a 



63 
 

 

virtual breakpoint. As with most virtual breakpoints, the applications can be tailored 

to a large set of scenarios. 

 

Figure 11 - Output from Processor Mode Switch Breakpoint Experiment 

 

4.3.1.2 Experiment 2 - Specific MSR Functionality 

Experiment 2 Overview: 

This experiment has demonstrated the overarching ability to tailor virtual 

breakpoints to trap on functionality associated with accesses to specific MSRs. More 

specifically, the IA32_PAT MSR and the IA32_THERM_INTERRUPT MSR registers are 

monitored for write access during this experiment. As mentioned in Section 4.2 - 

Background Information for Applications of Enhanced Debugging Experiments, The 

IA32_PAT MSR is used to control cache types of memory ranges specified through 

entries in the page table and the IA32_THERM_INTERRUPT MSR is used to specify 

when an interrupt will be triggered under specific thermal conditions. Two scenarios 

have been overviewed where a code bug associated with either of these MSRs has 

occurred, and where it is extremely difficult to track down the specific code module 

that is responsible for this bug.  

 



64 
 

 

The first scenario relates to the ability of the IA32_PAT MSR to determine the cache 

type of various pages of memory. During the development of an operating system, 

this MSR may be configured to control the cache type associated with different 

memory ranges. Once set up by the OS, this register is not expected to experience 

modifications. If a code module in an OS boot loader or kernel were to contain a 

small bug where the ecx register incorrectly calculated an offset that ended up 

writing to this register, the effects may not be noticed immediately, but the OS 

would most likely become unstable or crash later on, when random pages of 

memory were configured to a different cache type than expected. The bug would be 

difficult to track down since the instability or crash might not occur until long after 

the misconfiguration has occurred since the affected memory pages may not be 

used immediately after. Even with the knowledge that the specific MSR was being 

misconfigured, dynamically tracking the erroneous code down could prove to be 

very time-consuming in a large operating system environment. Static analysis would 

be difficult since many MSRs could be written to, and the value of the ecx register 

would not be known for each MSR interaction without a dynamic view of the system 

state. With the ability to set a virtual breakpoint on the specific MSR in question, 

any attempts to access this register could be set to cause breakpoints. Upon 

triggering the breakpoint, the exact location of the code as well as the system state, 

including the ecx register, could be determined. Inspection would quickly 

demonstrate that the ecx register was incorrectly writing to the wrong MSR from a 

specified code module. 

 



65 
 

 

The second scenario covered in this experiment is similar to the first, where an MSR 

is misconfigured from the boot loader or kernel of an OS, but for this scenario the 

MSR in question is the IA32_THERM_INTERRUPT MSR. A second scenario was used 

to demonstrate the wide array of functionality that a MSR-based virtual breakpoint 

can address. In this case, the IA32_THERM_INTERRUPT MSR was configured to 

trigger an interrupt upon the processor reaching a critical temperature. This 

functionality can be used to prevent thermal damage to the processor. If the data in 

this MSR were corrupted similarly to the way the IA32_PAT MSR was corrupted in 

the first scenario, critical CPU temperatures could be reached with no software 

warning, potentially causing a hard reboot or even CPU damage. Once it has been 

discovered that this interrupt setting is being cleared at some point in the execution 

of an OS boot loader or kernel, it would be very difficult to track down the exact 

point that the MSR was modified. By setting a virtual breakpoint on this MSR, the 

offending error code could be easily tracked down without the need for stepping 

through large amounts of code during dynamic analysis, in search of the error. 

 

Experiment 2 Implementation: 

Experiment 2 sets a virtual breakpoint that will trap on write access to the IA32_PAT 

MSR as well as the IA32_THERM_INTERRUPT MSR. The exit condition will trap on 

the x86 assembly WRMSR command, the technique used to write to an MSR. When 

MSR write access is detected by the hypervisor, it is configured to filter and ignore 

all MSR access except for the aforementioned MSRs, effectively creating a virtual 

breakpoint on specific MSRs. For the purpose of this experiment, writes to both of 

these MSRs are prevented from taking effect in the hypervisor so that we do not 



66 
 

 

destabilize the guest OS. The virtual breakpoint handler code is shown in Figure 12 - 

MSR Functionality Virtual Breakpoint Handler Code. 

 

//Hypervisor code to trap on write access to IA32_PAT and 

IA32_THERM_INTERRUPT MSR's 

if( ExitReason == 0x00000020 ) //WRMSR exit reason 

{ 

 if( GuestECX == 0x00000277 ) //IA32_PAT  

 { 

  DbgPrint("[VMX] Write to the IA32_PAT MSR detected  

  from code at address: %X", GuestEIP); 

  DbgPrint("[VMX] Value written to IA32_PAT MSR:   

  %08X:%08X", GuestEDX, GuestEAX); 

 

  __asm 

  { 

   popad 

   jmp Resume 

  } 

 } 

  

 if( GuestECX == 0x0000019B ) //IA32_THERM_INTERRUPT 

 { 

  DbgPrint("[VMX] Write to the IA32_THERM_INTERRUPT MSR 

  detected from code at address: %X", GuestEIP); 

 

  DbgPrint("[VMX] Value written to IA32_THERM_INTERRUPT 

  MSR: %08X:%08X", GuestEDX, GuestEAX); 

  __asm 

  { 

   popad 

   jmp Resume 

  } 

 } 

} 

Figure 12 - MSR Functionality Virtual Breakpoint Handler Code 

 

The code shown in Appendix C – Kernel Code used in Experiments, Figure 22 - 

Kernel Code to Trigger MSR Based Virtual Breakpoints, was used to trigger the 

breakpoints that were configured to trap on manipulation of either the IA32_PAT 

MSR or the IA32_THERM_INTERRUPT MSR, in order to monitor changes to the 

system's memory page cache types and the system's thermal interrupt 

configurations. This was accomplished by forcing a write to each of these MSR 



67 
 

 

registers to simulate the corruption of the functionality previously detailed in this 

section's overview. 

 

Experiment 2 Results: 

The VMM handler in this experiment was able to trap on any write accesses to the 

specified MSRs. The virtual breakpoint handler successfully detected when either of 

the specified MSRs were being modified. The breakpoint handler's debug output 

prints out the value that was being written to one of the MSRs along with the 

memory address (the current instruction pointer) of the code that was performing 

the MSR write to either MSR. It is important to remember that the memory address 

of the code that triggered the breakpoint can be printed for any virtual breakpoint. 

This debug output is shown below in Figure 13 - Output from MSR Based Virtual 

Breakpoints. This experiment has successfully demonstrated using a virtual 

breakpoint to trap on functionality associated with an MSR. MSRs control a wide 

array of system functionality, and would otherwise be difficult to trap on without 

already knowing exactly where in the code the MSR was being modified from. In 

many cases this is a difficult problem to solve, especially if source code level 

debugging is not an option, or if the MSR was unexpectedly being written to, as 

mentioned in the scenario provided earlier in this section. 

 



68 
 

 

 

Figure 13 - Output from MSR Based Virtual Breakpoints 

 

4.3.2 Analysis of Complex Debug Environments 

The experiments overviewed in this section represent a set of cases where virtual 

breakpoints can help to dynamically debug through traditionally complex environments. 

The experiments in this section are only two of many situations where virtual 

breakpoints can decrease the complexity of debugging over traditional debugging 

capabilities. These cases are centered on debugging of exceptions and error states 

generated from both Ring 0 and Ring 3. 

 

4.3.2.1 Experiment 1 - Hardware Breakpoint Exception 

Experiment 1 Overview: 

The experiment presented in this section demonstrates the ability to set a virtual 

breakpoint to easily trap on an exception. The exception chosen for this experiment 

was generated from the kernel and was caused by a traditional hardware 

breakpoint. Traditional x86-based hardware breakpoints are configured through a 

processor’s debug registers to monitor a specified memory or port I/O address, and 

trigger an exception to interrupt 0x01 when triggered. This exception was selected 

to demonstrate the ability to trap on Ring 0 based exceptions, as well as to point out 

the fact that our debugger can even be used to debug a traditional kernel debugger 



69 
 

 

that makes use of hardware debug breakpoints. Using the virtual breakpoint 

concept provided throughout this thesis, these exception states, such as the 

exception overviewed in this section, can be debugged without making any 

modifications to the guest operating system that would potentially alter or 

contaminate the system state, such as hooking the interrupt 0x01 handler code. The 

virtual breakpoint used in this section also allows for analysis of the system before 

the exception handler is reached. 

 

Experiment 1 Implementation: 

This experiment has configured and set a virtual breakpoint that will trap when a 

hardware breakpoint generates an exception in the guest OS. The exit reason code 

for an exception is 0. A hardware breakpoint will trigger exception number 1. To 

ensure that a specific exception causes a VM-Exit, the bit corresponding to the 

exception number must be set in the exception bitmap field of the VMCS. As shown 

below in Figure 14 - Portion of Hardware Breakpoint Exception Hypervisor Handler, 

our virtual breakpoint handler is configured to detect exception number 1. It is 

important to note that the ExitQualification field receives the exception that caused 

the VM-Exit, which allows for us to easily distinguish between different exceptions 

when setting a virtual breakpoint to trap on a specific exception. When the 

hardware debug breakpoint causes the exception in this experiment our virtual 

breakpoint handler code passes the exception along and allows for interrupt 0x01 to 

handle the exception in the guest OS.  

 

if( ExitReason == 0x00000000 ) 

{ 



70 
 

 

 DbgPrint("[VMX] - EXCEPTION detected: %X", 

 ExitQualification); 

  

 DbgPrint("[VMX] - Instruction Pointer (EIP): %X", 

 GuestEIP); 

  

 DbgPrint("[VMX] - Instruction Length: %X", 

 ExitInstructionLength); 

   

 if(ExitQualification == 1) 

 { 

  DbgPrint("[VMX] - Allowing BP Handler - Calling Int  

  0x01"); 

  __asm 

  { 

   int 0x01 

  } 

 } 

 ... 

} 

Figure 14 - Portion of Hardware Breakpoint Exception Hypervisor Handler 

 

To trigger the virtual breakpoint set for this experiment, a kernel hardware 

breakpoint was set to trap on access to I/O port 0x0CF8. A kernel driver was then 

loaded and executed, which wrote data to I/O port 0x0CF8 in order to trigger the 

kernel hardware breakpoint that was previously enabled. These steps caused an 

exception to be generated in order to handle the kernel-based hardware 

breakpoint. Interrupt 0x01 was hooked when setting up the kernel hardware 

breakpoint so that the kernel hardware breakpoint could be handled in the guest, to 

avoid a crash. 

 

Experiment 1 Results: 

The virtual breakpoint handler that was written for this experiment successfully 

trapped on the exception that was generated when the guest OS's hardware 

breakpoint was triggered by the port I/O access that it was configured to break on. 

When this exception was generated, the hypervisor's virtual breakpoint handler 



71 
 

 

detected the exception, printed out that exception 1 was generated by the guest, 

printed the memory address of the code that caused this exception, and allowed the 

exception to pass control to interrupt handler 0x01 in the guest OS so that is could 

handle the hardware breakpoint that caused the exception. This process is shown 

below in the debug output screenshot, in Figure 15 - Output from Hardware 

Breakpoint Exception Virtual Breakpoint.  

 

 

Figure 15 - Output from Hardware Breakpoint Exception Virtual Breakpoint 

 

4.3.2.2 Experiment 2 - Divide by Zero Error 

Experiment 2 Overview: 

The experiment overviewed in this section demonstrates that a virtual breakpoint 

can be used to monitor additional exceptions, beyond the hardware breakpoint 

exception that was previously covered. These exceptions can even originate in the 

guest OS from Ring 3, and do not have to be executing with full privileges like the 

hardware breakpoint exception. With this capability, a virtual breakpoint can be 

used to trap on any error that causes an exception. This type of breakpoint can be 

set to a specific exception, or simply trap on any exception to allow for further 

analysis. This capability can significantly simplify the process of locating errors in 

code during dynamic analysis, since the breakpoint actually traps on the error itself. 



72 
 

 

This approach avoids interference with the system being debugged since it does not 

require hooking of the interrupt handlers that the exception may trap to, and also 

allows for analysis of the system before the interrupt handler is triggered in the 

guest. For this experiment, code that will cause a divide by zero error has been 

placed in a Ring 3 user mode application, rather than in the kernel. The user mode 

application with the divide by zero error will be executed to cause an exception for 

our virtual breakpoint to handle. 

 

Experiment 2 Implementation: 

For this experiment, a virtual breakpoint handler is used that is extremely similar to 

the hardware breakpoint exception experiment. For this experiment, the virtual 

breakpoint handler is monitoring for any exception, so that any errors that cause 

exceptions can be detected. To cause a divide by zero exception, a Ring 3 

application was modified to purposely execute a DIV instruction with a divisor of 

zero. This causes a divide by zero error to occur, generating exception 0. For this 

experiment, the application that was used to generate this exception was 

disassembled using OllyDbg to show the error generating code, in an assembly level 

representation. The relevant portion of this application is shown below in Figure 16 

- Assembly Level Representation of Divide by Zero Ring 3 Application. The XOR EBX, 

EBX instruction at memory address 0x004014A0 causes the EBX register to clear, 

ending up with the value 0x00000000. The DIV EBX instruction at memory address 

0x004014A2 attempts to execute a DIV instruction with a divisor of zero. 

 



73 
 

 

 

Figure 16 - Assembly Level Representation of Divide by Zero Ring 3 Application 

 

Experiment 2 Results: 

The virtual breakpoint handler that was used for this experiment was able to trap on 

the exception that was generated when the divide by zero error occurred in the Ring 

3 applications. When this error occurred, exception zero was generated within the 

guest. The virtual breakpoint handler printed output to demonstrate that the 

exception was trapped on by our virtual breakpoint. This output included the 

exception number that was generated, the memory address of the code that 

generated the exception, and the length of the instruction that generated the 

exception. A screenshot of this debug output is shown below in Figure 17 - Output 

from Divide by Zero Exception Virtual Breakpoint. It is important to notice that the 

instruction pointer displayed in Figure 17 - Output from Divide by Zero Exception 

Virtual Breakpoint matches the memory address displayed in the application 

disassembly shown in Figure 16. This verifies that the virtual breakpoint handler’s 

expectation of the memory address of the code that caused the virtual breakpoint is 

accurate.  

 



74 
 

 

 

Figure 17 - Output from Divide by Zero Exception Virtual Breakpoint 

With the virtual breakpoint capabilities demonstrated in this section, it becomes 

feasible to set a virtual breakpoint that will trigger on a variety of error states. These 

error states can even be detected before the system attempts to handle them, or in 

some cases, blue screens or completely crashes. Now the state of the system can be 

dynamically analyzed as the bad instruction is executed. This application of 

enhanced debugging capabilities can help to greatly decrease the time it takes to 

find code errors during dynamic analysis.   



75 
 

 

5. Chapter 5 - Conclusion 

5.1 Summary 

The research performed under this thesis has successfully demonstrated that enhancements 

can be made to a kernel debugger through the use of a hardware assisted virtual machine 

monitor. This was accomplished by utilizing the correlation between an Intel VT based 

VMM's exit condition functionality and that of a kernel debugger hardware breakpoint. 

Under each circumstance, a specific condition is used to halt processor execution, and pass 

control to a software handler. The VMM's exit condition's have been used as "virtual 

breakpoints" to trap to a breakpoint handler location in the VMM when a specified 

condition has been reached in the guest VM. This new set of capabilities has provided a 

plethora of functional enhancements to a kernel debugger, which can enhance a debugging 

capability under a large number of different debugging scenarios. The experiments 

presented in this thesis, within chapters 3 and 4, have adequately demonstrated the 

enhancements that an Intel VT based VMM's exit conditions can provide to a debugger. A 

brief overview of this concepts and experiments will be summarized in this chapter, along 

with a list detailing future areas of research related to this thesis. 

 

5.1.1 Traditional vs. Enhanced Debugging Capabilities 

To reiterate the enhancements that have been provided to a debugger through the use 

of virtual breakpoints, or tailored VMM exit conditions, a comparison of tradition and 

enhanced debugging capabilities is given below. 

 

Traditional debug breakpoints on an x86-based system use facilities provided by the 

processor to trap on specified memory or port I/O addresses. Two categories of these 

breakpoints exist; hardware breakpoints and software breakpoints. Hardware 



76 
 

 

breakpoints are configured using internal processor registers, and are able to trap on 

both memory and port I/O addresses. Up to four hardware breakpoints can be set at 

one time. When a hardware breakpoint condition is met, an exception is generated, 

calling interrupt 0x01 to handle the breakpoint. Also, hardware breakpoints do not alter 

the target software. Software breakpoints are placed only on memory addresses and 

are configured by replacing the first byte of the instruction at  the specified memory 

address with a 0xCC opcode. When the 0xCC opcode is executed by the processor, an 

exception is generated that calls interupt 0x03 to handle the breakpoint. The interrupt 

handler for software breakpoints is responsible for replacing the portion of the 

instruction  that was replaced with 0xCC. An unlimited number of software breakpoints 

can be placed at a given time. 

 

The virtual breakpoints detailed within this thesis are configured by loading an Intel VT-x 

based VMM, and tailoring VM-exit conditions to trap on specified functionality. VM-

exits can be configured to trap on a vast number of exit conditions, each providing a 

specific condition that can be used as a virtual breakpoint. When a VM-exit occurs, 

execution control is passed to a software handler within the VMM. This functionality is 

analogous to the ability of a standard breakpoint to trap on a specified condition and 

then pass execution control to an interrupt handler.  

 

5.1.2 Enhanced Debugging Capability Experiments 

As mentioned in the previous section, 5.1.1, this thesis makes use of a VMM's ability to 

set and configure VM-exits to trap on vast number of specific conditions to create 

virtual breakpoints. Virtual breakpoints provide the ability to trap on a great deal of 



77 
 

 

system level events, providing a debugger with much more granular control over target 

code than a standard memory or port I/O breakpoint can provide. In addition, an 

unlimited number of virtual breakpoints can be set without the need to modify target 

software. The VMM used to set, configure, and handle these virtual breakpoints also 

provided a great degree of control over target software through the use of the VMCS.  

 

The following experiments were provided to help demonstrate the enhanced debugging 

capabilities that can be obtained through the use of virtual breakpoints: 

 Demonstration of virtual breakpoint 

 Implementation of more than four hardware breakpoints 

 Full control over guest OS system state 

A demonstration of virtual breakpoints was provided by setting virtual breakpoints that 

will trap on specified port I/O addresses, reads or writes to specified MSR's, and the 

execution of certain VMX instruction. This experiment exhibited 3 types of the many 

virtual breakpoints that can be configured using exit reasons. One each virtual 

breakpoint was set, a kernel driver was loaded to execute instructions that caused the 

virtual breakpoint to trap to its software handler within the VMM. The VMM's virtual 

breakpoint handler was configured to print out a debug message indicating that the 

breakpoint condition was met, and that execution flow was trapped and passed to the 

VMM's breakpoint handler. 

The next demonstrate was used to show that more than four hardware breakpoints can 

be set simultaneously. Since port I/O breakpoints were previously configurable through 

hardware breakpoints, not configurable through software breakpoints, and limited to a 



78 
 

 

total of four simultaneous breakpoints, port I/O-based virtual breakpoints were chosen 

for this experiment. To demonstrate that more than four of these breakpoints could be 

set, this experiment set virtual breakpoints to trap on any I/O port from 0 to 0x60. A 

kernel driver was loaded that executed I/O instructions to access port 0x00, port 0x08, 

port 0x10, port 0x18, port 0x20, port 0x28, port 0x30, port 0x38, port 0x40, and port 

0x48. The VMM's software handler was set to print debug output indicating any I/O 

ports that were read or written which had been set to trigger a virtual breakpoint. The 

debug output demonstrated that at least ten port I/O-based virtual breakpoints had 

been simultaneously set. 

The third enhanced debugging capability experiment was used to help demonstrate that 

a virtual machine monitor has full control over guest software, which is extremely 

important to debug software. This control is available through configurations to a 

VMM's VMCS, since it holds the state of the guest virtual machine. To demonstrate this, 

the VMM was used to directly modify the instruction pointer (EIP register value) with 

ease, which normally can't be done directly and would require a good amount of effort. 

This experiment set a series port I/O breakpoints that were triggered in series by a 

kernel driver. The VMM breakpoint handler printed debug output indicating each port  

that was accessed, and the current instruction pointer of the guest software that caused 

the virtual breakpoint to occur. The VMM breakpoint handler was then modified to 

increment the instruction pointer by 12 when a virtual breakpoint on I/O port 0x01 was 

triggered. The same kernel driver was then executed. The results demonstrated that the 

instruction pointer artificially increased by a value of 12 when the breakpoint on I/O 

port 0x01 was triggered. The 12 bytes of instructions following the I/O access that 



79 
 

 

caused the breakpoint were passed over in the kernel driver, which caused fewer 

instructions to execute, triggering fewer virtual breakpoints from the guest. 

 

5.1.3 Applications of Enhanced Debugging Capability 

Experiments  

The enhanced debugging capabilities provided by these thesis can be utilized for a 

variety of debugging applications. Experiments within this thesis helped to demonstrate 

a few of the many potential applications of this technology. These experiments included 

the following: 

 Smart Filtering of Data During Dynamic Analysis 

o Processor Mode Switch 

o Specific MSR-based Functionality 

 Analysis of Complex Debug Environments 

o Hardware Breakpoint Exception 

o Divide by Zero Error 

 

The first category of experiments, smart filtering of data during dynamic analysis, 

included two experiments that were used to use virtual breakpoints for the purpose of 

isolating specific functionality within code, where the location of the functionality could 

have previously been unknown. The idea was to show that increased granularity of 

virtual breakpoints could be tailored to isolate a desired section of a program without 

the need to step through large amounts of code in search of this functionality. The 

second category of experiments, analysis of complex debug environments, was used to 

demonstrate that situations that could be difficult to locate and analyze can easily be 

located and dynamically evaluated. 



80 
 

 

 

The processor mode switch experiment was used to demonstrate that a virtual 

breakpoint could be set to trap on major changes in system state such as a processor 

mode switch. Under this experiment a breakpoint was placed on CR0, which monitored 

the bits used to enable/disable paging and to switch between protected mode and real 

mode. If either bit was modified in  the guest, that the VMM breakpoint handler 

detected the change and provided debug output to show how this breakpoint could 

successfully be configured. 

 

The MSR-based functionality experiment was used to demonstrate that functionality 

associated with one of the processor's MSR's could be monitored by a virtual 

breakpoint. If this MSR functionality was altered, a breakpoint would trap and pass 

control to the VMM's breakpoint handler. Two scenarios were laid out for this 

experiment, each revolving around the concept that an MSR was accidently written to, 

which later has adverse side effects on an operating system. Since these MSR's were 

written to in error, the code mode that affected these MSR's is unknown. This would 

making debugging the problem difficult in a large complex system since the vicinity of 

the cause of the error is completely unknown, even if it has been identified that the 

error is a result of an MSR value being altered. The experiment sets a breakpoint on the 

MSR in question to demonstrate that the cause of the problem can be trapped on, 

allowing for dynamic analysis of the code that caused the problem. As a result, 

debugging time can be dramatically decreased. 

 



81 
 

 

The hardware breakpoint exception experiment was used to show that a virtual 

breakpoint could be used to trap on exceptions generated by the processor. Specifically 

for this experiment, exception 0x01 was monitored, which is generated when a 

hardware breakpoint occurs. An interesting point here is the fact that the debugging 

capabilities provided by this thesis can be inherently use do debug a standard kernel 

debugger, even through hardware breakpoints. The ability to trap on exceptions also 

provides the ability to set a breakpoint to occur on error states that generate 

exceptions, which was covered in more detail within the divide by zero error 

experiment. It is also important to note that the breakpoints set to trap on exceptions 

work without the need to make intrusive modifications to the system state of the 

software being debugged, such as hooking interrupts, modifying target code, or 

executing code within the same context as the software being debugged. The virtual 

breakpoint also gains control before the exception handler obtains execution control.  

 

The divide by zero experiment was used to demonstrate that a virtual breakpoint can be 

configured to trap when a variety of errors occurs. This capability can be useful for 

tracking and analyzing error states. With the ability to set a breakpoint on one or more 

exceptions, when an error occurs that causes an exception, the exact location of the 

code that caused the error can be immediately located an analyzed, removing the need 

to search out the cause of the error. For this experiment a virtual breakpoint was 

configured to trap on software that caused exception zero to trigger, and a divide by 

zero error was generated from an application running in ring 3. This ring 3 application 

was chosen to point out the fact that ring 3 software can also be monitored using virtual 

breakpoints. When the code with the divide by zero error was executed, the virtual 



82 
 

 

breakpoint trapped to its software handler, which provided debug output indicating that  

the divide by zero error occurred. The location of the error in memory was also provided 

to demonstrate that the code can easily be analyzed which the guest software is 

paused. 

 

5.2 Future Work 

Upon completion of this thesis document, I still plan on pursuing additional applications of 

this technology. Some of the areas I plan on pursuing in the near future include  the 

following: 

 Implementation of additional types of virtual breakpoints 

 Developing a GUI interface to the virtual debugger 

 Software debugger for multiple environments/operating system's 

 Error recovery 

 

5.2.1 Implementation of Additional Virtual Breakpoints 

In addition to the virtual breakpoints that were developed throughout the experiments 

presented in this thesis, I plan on continuing to identify and implement several more. 

Some additional virtual breakpoints that I plan on implementing include, but are not 

limited to, the following: 

 Triple Fault 

 Interrupt Hooking 

 Debug Register Access 

 



83 
 

 

A specific exit condition is reserved for handling triple faults. A triple fault occurs when 

an exception is generated while the double fault handler is handling an exception that 

was generated when attempting to call a regular exception handler. When a triple fault 

occurs on an x86-based system, the entire system is typically forced to reboot, making 

this error extremely difficult to recover from, if possible at all. This would prevent a 

debugger from performing dynamic analysis through the error since the system reboot 

would clear memory and the system state that would have been visible when the error 

occurred. By creating a virtual breakpoint to trap on and handle triple faults, it will be 

possible to analyze the system as the triple fault occurred in order to help determine the 

cause of the triple fault, and possible the events leading up to it. 

 

Another exit condition is reserved for access to the Global Descriptor Table Register 

(GDTR) and Interrupt Descriptor Table register (IDTR). This exit condition is triggered 

when the SIDT, LIDT, SGDT, or LGDT x86 assembly instructions are executed. The IDTR 

instructions are required to locate and/or change the base address of the interrupt 

descriptor table (IDT), since the IDT can be located anywhere in memory when the 

processor is executing in protected mode. The IDT is used to help provide a response to 

hardware interrupts, software interrupts, and exceptions. As a result, the IDTR is 

essential in the process of placing a hook on an interrupt, since it is required to help find 

the IDT. With the ability to monitor the IDTR, it could be determined when software was 

trying to place a hook on an interrupt. 

 

Debug register access can also configured within a VMM to cause a VM-exit. With the 

ability to monitor all modifications to debug registers, a hardware debugger could be 



84 
 

 

debugged through the use of our virtual breakpoints. Although not an extremely likely 

case, I find it interesting to provide a capability to help debug the development of a 

hardware debugger. Adding this capability will not be too difficult since it really only 

involves one piece of additional functionality that   is not likely to require a complex 

breakpoint handler. Also, I plan on adding as much functionality as possible so the VMM 

debugger that was initiated under this thesis can be built into a more robust capability 

with functionality capable of handling as many use cases as possible. 

 

5.2.2 GUI Interface to Debugger 

Once I have implemented additional virtual breakpoint functionality, I plan on providing 

a Graphical User Interface (GUI) for the VMM debugger. This will be essential to provide 

usable control over the debugging capabilities presented under this thesis, for example, 

viewing and analyzing the full system state on breakpoints, performing operations such 

as single stepping code after a breakpoint has been reached, configuring specific virtual 

breakpoint functionality. I would like to provide a complex GUI application using C# .NET 

since it provides a great deal of control over its GUI applications. 

 

Since the VMM debugger backend will be running from within a VMM, it will be a 

challenge to provide a ring 3 GUI that can interact with the debugger's core 

functionality. A typical kernel debugger GUI program only needs to communicate 

between ring 3 (user-land) and ring 0 (kernel). The VMM debugger presented under this 

thesis will require communication from ring 3 to ring 0 to the VMM and back. If a text 

mode GUI is used, the communication channel may not require this channel between 



85 
 

 

different privilege levels and processor modes, but the interface will be ancient 

compared to a GUI designed in C#.  

 

To provide communication between the C# GUI application and the core VMM 

debugger functionality, I plan on providing a ring 3 GUI application, a kernel module, 

and the VMM debugger capabilities. I will use IOCTL's to communicate between the C# 

GUI application and the kernel module. The kernel module will use a pre-determined 

port I/O range to pass data to the VMM. This will be accomplished by configuring the 

VMM to trap on any accesses to the pre-determined port I/O range. Since the VMM can 

view the entire guest state, information can be transferred easily through registers or 

memory. The virtual machine monitor can also transfer data back to the GUI by 

modifying the guest's register's or memory. As a result, a full communication channel 

can be established between the C# GUI application and the VMM debugger, allowing for 

the GUI to pass commands to the debugger, and receive system information back from 

the debugger that is required to update the GUI based on user input and system state. 

 

5.2.3 Software Debugger for Multiple Environments 

The MAVMM publication[5] has provided the idea to load a hypervisor from a modified 

GRUB boot loader. In fact, the author of this publication indicated that GRUB was 

successfully used to bootstrap MAVMM's hypervisor. I would like extend this idea to the 

VMM debugging capabilities outlined under this thesis in order to allow for the 

debugger run on different operating systems. A challenge associated with this task will 

be to provide a GUI for the VMM debugger that works across different OS's. My first 



86 
 

 

attempt towards solving the interface problem will be to implement a text mode library 

from the VMM, similar to the interface provided by the SoftICE kernel debugger. 

  



87 
 

 

Appendix A –Basic Exit Reasons 

0 – Exception or NMI (Non Makeable Interrupt) 

1 – External Interrupt 

2 – Triple Fault 

3 – INIT Signal 

4– Startup Inter-Processor Interrupt 

5 – I/O SMI (System Management Interrupt) 

6 – Other SMI 

7 – Interrupt Window 

8 – NMI Window 

9 – Task Switch 

10 – CPUID Command 

11 – GETSEC Command 

12 – HLT Command 

13 – INVD Command 

14 – INVLPG Command 

15 – RDPMC Command 

16 – RDTSC Command 

17 – RSM Command 

18 – VMCALL Command 

19 – VMCLEAR Command 

20 – VMLAUNCH Command 

21 – VMPTRLD Command 

22 – VMPTRST Command 



88 
 

 

23 – VMREAD Command 

24 – VMRESUME Command 

25 – VMWRITE Command 

26 – VMXOFF Command 

27 – VMXON Command 

28 – Control Register Access 

29 – MOV DR (move data into a debug register) 

30 – I/O Instruction (i.e. IN or OUT Commands) 

31 – RDMSR 

32 – WRMSR 

33 – VM-Entry failure due to invalid guest state 

34 – VM-Entry failure due to MSR loading 

36 – MWAIT Command 

37 – Monitor Trap Flag 

39 – MONITOR Command * 

40 – PAUSE command 

41 – VM-Entry Failure due to machine check 

43 – TPR Below Threshold 

44 – APIC(Advanced programmable Interrupt Controller) Access 

46 – Access to GDTR or IDTR * 

47 – Access to LDTR or TR * 

48 – EPT Violation * 

49 – EPT Misconfiguration * 

50 – INVEPT * 



89 
 

 

51 – RDTSCP * 

52 – VMX-preemption timer expired * 

53 – INVVPID * 

54 – WBINVD Command 

55 – XSETBV Command 

  



90 
 

 

Appendix B – Index of Acronyms 

VMX  – Virtual Machine eXtensions 

VMM  – Virtual Machine Monitor 

VM  – Virtual Machine 

VMCS  – Virtual Machine Control Structure 

VT – Virtualization Technology 

VT-d – Intel Virtualization Technology for Directed I/O 

DR  – Debug Register 

CR  – Control Register 

BP  – Break Point 

IDT  – Interrupt Descriptor Table 

MSR  – Model Specific Register 

  



91 
 

 

 

Appendix C – Kernel Code used in Experiments 

 
Kernel Code to Trigger Virtual Breakpoints 

 

DbgPrint("[KERNEL DRIVER] Running Experiment 1 - Demonstrating 

Virtual Breakpoints"); 

  

 //Test rdmsr access on the TSC 

 DbgPrint("[KERNEL DRIVER] Reading MSR 0x10 - TSC"); 

 __asm 

 { 

  PUSHAD //Save general purpose register state 

    

  mov ecx, 0x00000010 //Prepare to read MSR # 10 

   

  rdmsr //Read the MSR specified by ECX 

   

  mov TSC_HIGH, edx //Save the top 32 bits of data read 

  mov TSC_LOW, eax //Save the lower 32 bits of data read 

   

  POPAD //Restore general purpose register state 

 } 

 DbgPrint("TSC_HIGH: %X", TSC_HIGH); 

 DbgPrint("TSC_LOW: %X", TSC_LOW); 

  

 //Test PIO access at port 0x0CF8 

 DbgPrint("[KERNEL DRIVER] Reading from port 0x0CF8"); 

 __asm 

 { 

  pushad //Save general purpose register state 

 

  mov dx, 0x0CF8 //Prepare to read port 0x0CF8 

   

  mov eax, 0x80000000 //Prepare to write the value 0x80000000 

 

  out dx, eax //Write the value in eax to the port in dx 

   

  in eax, dx //Read from the port specified by dx into eax 

   

  mov temp32, eax //Save the value read from the port 

   

  popad //Restore general purpose register state 

 } 

 DbgPrint("[KERNEL DRIVER] Port Read Data: %X", temp32); 

  

 //Test a VMX instruction - VMXON 

 DbgPrint("[KERNEL DRIVER] executing VMXON instruction"); 

 __asm 

 {  

  pushad Save general purpose register state 

  



92 
 

 

  //Place bytecode into memory that will build the VMXON  

  [ESP]  

 

  //assembly instruction since our compiler does not   

  recognize this  

 

  //instruction 

  _emit 0xF3  

  _emit 0x0F 

  _emit 0xC7 // VMXON [ESP] 

  _emit 0x34 

  _emit 0x24 

   

  popad //Restore general purpose register state 

 } 

Figure 18 - Kernel code to trigger virtual breakpoint experiments 

 

Kernel Code to Trigger Multiple Simultaneous Virtual Breakpoints 

DbgPrint("[KERNEL DRIVER] Running Experiment 2 - Demonstrating 10 

simultaneous PIO breakpoints"); 

  

//Test ten PIO breakpoints 

 __asm 

 { 

  pushad 

   

  mov cx, 0x0A 

   

  mov dx, 0x0000 

  LOOP1: 

   in al, dx 

   

   add dx, 0x08 

   dec cx 

  JNZ LOOP1 

   

  popad 

 } 

  

 //Test rdmsr access on the TSC 

 DbgPrint("[KERNEL DRIVER] Reading MSR 0x10 - TSC"); 

 __asm 

 { 

  PUSHAD 

    

  mov ecx, 0x00000010 

   

  rdmsr 

   

  mov TSC_HIGH, edx 

  mov TSC_LOW, eax 



93 
 

 

   

  POPAD 

 } 

 DbgPrint("TSC_HIGH: %X", TSC_HIGH); 

 DbgPrint("TSC_LOW: %X", TSC_LOW); 

Figure 19 - Kernel code to trigger multiple simultaneous virtual breakpoints experiment 

 

Kernel Code to Help Observer Powerful VMM Control Over Guest 

//Test Modification of Instruction Pointer (EIP) from VMM 

DbgPrint("[KERNEL DRIVER] Running Experiment 3 - Changing 

Instruction Pointer from VMM"); 

  

//Modified EIP Experiment 

__asm 

{ 

 pushad 

  

 mov dx, 0x0000 

   

 //Port Read 0 

 in al, dx //0xEC 

 inc dx //0x66 0x42  

   

 //Port Read 1 

 in al, dx 

 inc dx 

   

 //Port Read 2 

 in al, dx 

 inc dx  

   

 //Port Read 3 

 in al, dx  

 inc dx  

   

 //Port Read 4 

 in al, dx 

 inc dx 

   

 //Port Read 5 

 in al, dx  

 inc dx  

   

 //Port Read 6 

 in al, dx  

 inc dx  

   

 //Port Read 7 

 in al, dx  

 

 popad 

} 



94 
 

 

DbgPrint("[KERNEL DRIVER] Completed Experiment 3"); 

Figure 20 - Kernel Code Used to Observe EIP Modification 

 

Kernel Code to Trigger Processor Mode Switch Breakpoint 

DbgPrint("[KERNEL DRIVER] Begin Chapter 4 Experiment - Processor 

Mode Switch"); 

DbgPrint("[KERNEL DRIVER] Clearing Paging and Protected Mode 

Enable bits in CR0"); 

__asm 

{ 

 pushad 

 

 //Write a value to CR0 that clears bits 0 and 31 

 mov eax, 0x0001003a 

 mov cr0, eax 

   

 popad 

} 

Figure 21 - Kernel Code to Trigger Processor Mode Switch Breakpoint 

 

Kernel Code to Trigger MSR Based Virtual Breakpoints 

DbgPrint("[KERNEL DRIVER] Running Page Cache Type Experiment"); 

__asm 

{ 

 pushad 

    

 //-----IA32_PAT-----// 

 mov ecx, 0x00000277 //PAT MSR 

 mov edx, 0x16161616 //Cache Type of WC_WB - alternating (WC 

      is 0x01, WB is 0x06) 

  mov eax, 0x16161616  

   

  wrmsr 

   

  popad 

 } 

  

 DbgPrint("[KERNEL DRIVER] Running Thermal Interrupt 

 Experiment"); 

 __asm 

 { 

  pushad 

   

  //-----IA32_THERM_INTERRUPT-----// 

  mov ecx, 0x0000019B //PAT MSR 

  mov edx, 0x00000000 //Clearing all register values 

  mov eax, 0x00000000  

   

  wrmsr 

   



95 
 

 

  popad 

 } 

} 

Figure 22 - Kernel Code to Trigger MSR Based Virtual Breakpoints 

  



96 
 

 

Appendix D – Related Literature 

This section provides an analysis of publications that contain information related to the topic of 

this thesis. For each related publication, an overview is provided, as well as information detailing 

the relationship between the publication and the topic of this thesis.  

 

Anti-debugging Framework Based on Hardware Virtualization Technology [18] 

Overview 

Most modern anti-debugging products do not guarantee protection against code running 

with high privileges, for example, in Ring 0. This publication demonstrates an anti-debugging 

framework that utilizes a Virtual Machine Monitor (VMM) to provide protection against 

debug analysis. 

Current hardware architecture has a flawed security model, and code running with a high 

enough privilege (i.e. Ring 0) can access the entire system. Code executing in user mode 

(Ring 3) can only control its own specific set of resources. Because of this security issue, 

once code is executing in Ring 0, it cannot be guaranteed that restrictions can successfully 

be put into place. 

Chip vendors, such as Intel and AMD, have been working to enhance their processors with 

the addition of hardware virtualization extensions. With the introduction of these modern 

extensions, specific processor instructions provide additional capabilities to a VMM allowing 

for the VMM to achieve greater performance than a traditional software-only VMM. These 

extensions also allow for a VMM to run directly on the hardware. 



97 
 

 

A VMM has the ability to monitor system events of a guest virtual machine on the fly. The 

VMM can cause the virtual machine to relinquish control to the VMM through a VM-Exit 

condition. Once control is passed to the VMM, additional processing can be performed 

under the control of the VMM. The VMM also maintains data structures to keep track of the 

complete system status of both the VMM and Guest virtual machine. This paper uses a 

Windows device driver to load a VMM in Windows in order to add additional protection to 

the system without changing any existing hardware or part of the existing operating system. 

Anti-Debugging - Software Debug Breakpoints 

The Intel x86 architecture uses an INT 0x03 (software breakpoint) to place a software 

breakpoint into code. This is accomplished by substituting the first byte of an instruction 

with the 0xCC code. When a software breakpoint is executed, it transfers control to a 

debugger, which performs debug analysis and then proceeds to replace the 0xCC byte with 

the original byte that was replaced by the 0xCC. This paper suggests that a VMM can be 

used to hook an INT 0x03 instruction in order to prevent a debugger from using a software 

breakpoint to perform debug analysis.  

Anti-Debugging - Hardware Debug Breakpoints 

Hardware breakpoints can be set in Intel’s debug registers. When the Instruction Pointer (IP) 

shares the same value as one of Intel’s debug registers, an INT 0x01 exception will occur. 

This paper also suggests that the INT 0x01 instruction can be monitored to prevent 

hardware breakpoints from passing control to a debugger.  

Anti-Debugging - Process Protection 



98 
 

 

A process control block (PCB) holds information describing a process and is used by the 

kernel to manipulate various aspects of its process. The Intel CR3 register stores the base 

physical address of the page directory, which helps point to the current process. When a 

process is scheduled by the kernel, the CR3 register is loaded with the page directory 

pointer from the process’s PCB. A VMM can easily be configured to disallow access to a 

specific process from any other process by preventing an unallowable process from 

obtaining CR3 data from the other process’s PCB. 

Relationship to thesis 

The concepts demonstrated in this paper are similar to those presented within this thesis, 

but for the opposite purpose. This thesis is utilizing the extra functionality provided by a 

VMX based VMM in order to provide a debugger with additional power and capabilities; 

whereas this publication is using the functionality provided by a VMX-based VMM in an 

attempt to prevent a debugger from successfully breaking on the code that it is attempting 

to debug. If the capabilities presented within this thesis and the publication that is being 

analyzed were simultaneously loaded into the system, the capability that was loaded first 

would succeed and the other would fail. This is because a VMX-based VMM provides the 

ability to virtualize VMX instructions. Therefore, whichever capability was loaded first would 

have complete control over the other capability since the first would be able to handle VMX 

events triggered by the second. 

 

 

MAVMM: Lightweight and Purpose Built VMM for Malware Analysis [5] 

Overview 



99 
 

 

Malware analysis is critical to gain insight into the intention of malicious software, as well as 

the risks posed by this software. Many current malware analysis techniques are flawed 

because they run alongside the malware, rather than below – or at a higher privilege. VMMs 

such as Xen or VMware are currently being used to improve malware analysis capabilities. 

Unfortunately, general purpose VMMs are designed for performance and functionality, not 

for malware analysis. Because of this, these general purpose VMMs are now being detected 

and evaded by modern malware. This paper details a VMM called MAVMM, which has been 

specifically built for the purpose of malware analysis and also to provide the research 

community with an easy to modify hardware virtualization framework. The MAVMM 

environment was built with the following characteristics: 

 Hardware Virtualization Technology – Intel or AMD hardware virtualization support is 

available 

o This decision was intended to increase virtualization performance, and to 

simplify VMM implementations. 

o The specific implementation of MAVMM used AMD Secure Virtual Machine 

extensions. 

 Special Purpose Hypervisor 

o The author believes that a thin, lean, and simple hypervisor will lead to 

increased transparency and security. 

 Boot-strapped hypervisor 

o MAVMM must be loaded earlier than the software under analysis to ensure that 

it is running at a higher privilege level. 

o The GRUB boot loader was used to boot strap MAVMM. 

 Protected Hypervisor Memory 



100 
 

 

o A nested paging technique is used to protect the VMM memory. This prevents 

guest and host physical addresses from being mapped to the same actual 

address. 

o The IOMMU, a hardware virtualization feature, is also used to protect from 

DMA. 

MAVMM provides specific analysis data from target applications including an execution 

trace, the application’s memory page, a log of intercepted system calls, disk monitoring 

capabilities, and network monitoring capabilities. Information is exported from the guest 

system using either a USB drive or serial port. These choices were selected to minimize 

interactions with the guest to avoid detectability. 

 

Relationship to Thesis 

Both the MAVMM and the research provided under this thesis are centered on an 

implementation of a hardware-based VMM. Each technology used a VMM to provide 

specific control over system events. The MAVMM architecture was mainly intended to 

provide malware analysis capabilities, where this thesis aims to provide advanced debugging 

capabilities. Because MAVMM provides a simple implementation of a hardware based 

VMM, and is built for AMD processors, it could be leveraged as a starting point to port the 

debugging research provided under this thesis to take advantage of some of the different 

capabilities provided by an AMD hardware-based VMM, as opposed to the Intel-based VMM 

used for this thesis. 

 

Debugging operating systems with time-traveling virtual machines [19] 



101 
 

 

Overview 

Traditionally, the user of a debugger will detect an error in program execution and spend a 

great deal of time working backwards from where the error was detected until the cause of 

the error is identified. This common approach requires time and re-execution of the same 

code in order to find the erroneous code location. This approach can be especially 

problematic when debugging an operating system for the following reasons: 

 Operating systems are non-deterministic 

o Their execution and state is effected by a great deal of events that cannot be re-

created under the exact same circumstances. 

 Operating systems can run for extended periods, making it difficult to re-create the 

same event under debugging circumstances. 

 The act of debugging may have un-intended side effects on the state of the OS. 

 Cyclic debugging may cause hardware to fail due to timing issues. 

By running an OS inside of a virtual machine, a debugger can examine and control execution 

of the OS without having such an effect on its state. The Time Traveling Virtual Machines 

(TTVM) capability will take snapshots on the system during execution so that it can provide 

the ability to return to the exact state without requiring to re-run large amounts of code, 

which may have otherwise lead to the aforementioned problems with OS debugging.  

 

Also, using a virtual machine to aid in debugging provides improvements over a traditional 

debugger as follows: 

 Replaying non-deterministic inputs 

 Saving and restoring virtual machine state 



102 
 

 

 No dependency on OS 

 More convenient that a remote debugger 

The VMM used for TTVM is a modified para-virtualized environment called User-Mode 

Linux. This environment is similar to host hardware, but not identical. TTVM makes use of 

this VMM in order to provide the ability to log, replay, and checkpoint the system state so 

that the debugger can revert to any point in a debugged process. Checkpoints can be used 

to help isolate where a bug occurred and step back through the exact conditions that led to 

the bug. Many sources of non-determinism are logged in order to more accurately re-

construct the machine state to replay a debug session from a checkpoint. Many aspects of 

the system being debugged are logged at checkpoints, including CPU register data, the 

virtual machine’s physical memory, the virtual disk, and VMM state or host kernel state that 

affects the execution of the virtual machine. TTVM made use of the GNU project debugger 

(GDB) to apply its time traveling concepts to a debug environment. TTVM helps to handle 

system state changes introduced by GDB such as the injection of the 0xCC opcode for 

software breakpoints. 

 

Relationship to Thesis 

TTVM makes use of a specific para-virtualized VMM for the purpose of adding checkpoints 

to debugging so that debugged code can be conceptually stepped through in reverse or re-

run and debugged under the conditions it was originally executed under. The concepts 

introduced by TTVM are related to the topic of this thesis because an application of a VMM 

is being used in order to improve debugging. A major difference between TTVM and the 

research performed under this thesis is that TTVM operates within a para-virtualized VMM, 



103 
 

 

where as this thesis utilizes a hardware assisted VMM. Using a para-virtualized VMM special 

care must be taken when interacting with devices requiring a form of hardware I/O such as 

port I/O or memory mapped I/O. The TTVM paper stated that this could be addressed by 

either using a software emulator for each specific hardware device or by using a tool to log 

and replay the execution associated with a device driver.  

 

Ether: Malware Analysis via Hardware Virtualization Extensions [20] 

Overview 

Ether is a technology that utilizes hardware virtualization to analyze malware, while avoiding 

detection by the malware itself. This was chosen as a topic of importance because of the 

magnitude of anti-debugging and anti-VM capabilities contained in modern malware in 

order to prevent analysis. Detection is avoided by preventing the introduction of side effects 

into the system that can be identified by malware running within the system. By utilizing 

hardware virtualization extensions, Ether is able to isolate itself from the target OS 

environment that malware will be analyzed in, therefore, remaining transparent to the 

malware.  

 

Using hardware virtualization extensions, Ether achieves this transparency by: 

 Maintaining a higher privilege than the malware being analyzed. 

 Preventing any side effects from being introduced by Ether into the guest environment. 

 Guaranteeing that every instruction executed during analysis by Ether exhibits expected 

behavior, as it is not being emulated. 

 Exception handling does not exhibit any modified or abnormal behavior. 



104 
 

 

 Timing changes introduced by Ether are masked to the malware. 

To create Ether, the developer uses Intel VT in conjunction with the Xen hypervisor. Intel VT 

was selected because of the abundance of available documentation and hardware. 

Windows XP was selected as a target operating system for Ether’s experiments because it is 

one of the most widely used modern operating systems, and therefore, a viable target for 

malware. 

 

Using Ether, a tool called EtherUnpack was created to help unpack executable code that had 

previously been obfuscated and encrypted to prevent static analysis. Many code packers are 

capable of preventing dynamic analysis through the use of anti-debugging and anti-VM 

techniques. By protecting against many anti-debugger and anti-VM techniques that rely on 

detection methods associated with in-memory presence, CPU register modification, 

memory protection, privileged instruction handling, Instruction Emulation, and some timing-

based detection methods, EtherUnpack was able to successfully assist in the analysis of an 

abundance of malware sampled from the wild. 

 

Relationship to Thesis 

The tools developed under Ether specifically make use of Intel VT in order to isolate an 

analysis tool from malware so that it can be surreptitiously analyzed. Analyzing dynamic 

code execution of malware is one of the many tasks that can be accomplished through the 

use of a debugger. The techniques used by Ether are comparable to those introduced by this 

thesis because they each utilize strengths introduced through Intel VT for the purpose of 

dynamic code analysis. A key difference between the research performed under this thesis 



105 
 

 

and the research put into the Ether toolset is that this thesis is centered on utilizing Intel VT 

to enhance a variety of debugging techniques, while Ether was specifically oriented towards 

analyzing malware while evading detection.  

 

Evolution in Kernel Debugging using Hardware Virtualization With Xen [21] 

Overview 

This publication provided insight in how to use Xen to debug a guest operating system 

without performing any modifications on the guest operating system. Using Xen, it is 

possible to debug virtually any PC-based operating system during any stage of its execution 

life, including the boot loader. Breakpoints can also be set without performing modifications 

to the operating system and its underlying code. Using Xen and Intel’s VT, a guest operating 

system can easily run at its intended privilege level, but still be under control of the host 

VMM as it is used to transparently handle low-level functionality within the guest. This 

publication was provided by Intel’s Open Source Technology center, and specifically makes 

use of Intel VMX processor extensions for virtualization support. The gdb and gdbserver-xen 

tools were used to help provide a debugging environment against the operating system that 

is running as a guest within Xen. Limitations are introduced through the use of GDB, as it 

only provided INT 0x03 debug traps and gdbserver-xen does not provide hardware 

breakpoints, watch points, or single stepping capabilities. A limitation introduced through 

the use of Xen is the fact that Xen’s guest operating systems cannot directly access platform 

devices, preventing the ability to debug some low-level system software, such as a device 

driver. If support of Intel VT-d were integrated into Xen for this experiment, it could increase 

hardware level debugging capabilities. 



106 
 

 

 

Relationship to Thesis 

The Intel publication makes use of virtualization technology to enhance debugging, as does 

this thesis. The main difference is that the Intel publication makes use of Xen and GDB to 

create a specific debugging experiment that cannot fully debug all system-level 

software/hardware interactions, while this thesis utilizes Intel VT to provide a thin VMM 

capable of debugging through virtually any x86-based software. Also, the Intel publication 

introduces the high-level idea of debugger/virtual machine interactions for the purpose of 

debugging an unmodified guest, whereas this thesis details a large set of functional 

enhancements that can be introduced through the use of Intel VT. This thesis then proceeds 

to identify many capabilities that can be provided to a debugger through these 

enhancements. 

 

Holistic debugging [22] 

Overview 

The Holistic debugging publication states that software development efforts are constantly 

growing in size and complexity, increasing the difficulty to test and debug modern software. 

Common difficulties associated with software debugging include the inability to perform 

repeatable experiments (non-determinism), simultaneously analyzing distributed systems, 

and the fact that probing software often induces side effects. Engineers involved in various 

fields, including software development, are often affected by indeterminism and the probe 

effect. A common solution for these problems involves the utilization of a simulator to 



107 
 

 

observe repeatable experiments without introducing side effects due to intrusion of the 

observed system. An issue associated with software simulation is the fact that it only 

provides information at their abstraction level. Also, simulations allow for repeated 

deterministic experiments, but the results are not identical to those that would be 

generated from a real-world system. The holistic debugging concepts presented in this 

publication run a distributed software system in a simulator and map the low-level data to 

source-level application data. This provides a programmable and extensible environment 

that is able to repeatedly observe the system state of real-time distributed systems. 

 

Relationship to Thesis 

The Holistic Debugging publication addresses the problems associated with debugging a 

system that contains non-deterministic properties and where debugging the system can 

introduce problematic side effects that may lead to an altered system state. These problems 

are partially alleviated through the use of a software simulator. The issues targeted within 

the Holistic Debugging publication are also directly relevant to the topic of this thesis.  

 

The approach taken by this thesis has the potential to alleviate some non-deterministic 

system properties since a VMM has the ability to save and restore system state from a given 

point in execution. Also, a VMM provides the ability to probe the state of a system without 

introducing side effects into the system as a result of the probing. When using a virtual 

machine monitor, simulation of software can also be avoided, providing more realistic 

debugging experiments. Therefore, the introduction of hardware-based virtualization 



108 
 

 

extensions helps to alleviate the issues identified in this paper, possibly with a much lower 

level of effort required.  

 

Virt-ICE: Next-generation Debugger for Malware Analysis [23] 

Overview 

Dynamic malware analysis is a crucial method used to analyze malware. A critical tool in 

performing dynamic malware analysis is a debugger. Traditional debuggers are easy for 

malware to detect and also run in the same security domain as the debugger, which makes 

these debuggers an easy target for malware to tamper with. Virt-ICE aims to provide a 

debug environment that is invisible to malware so that it cannot be detected, as well as 

providing a debug environment that resides in a separate security domain so that it cannot 

be tampered with. This is accomplished by using virtualization technology to run malware 

inside of a VM. In addition to the aforementioned benefits provided by Virt-ICE, running 

malware inside of a VM protects the physical system from infection and saves time by 

providing an environment that can easily be reverted to a clean state after malware analysis 

is complete. Since the Virt-ICE debugging environment makes use of a virtual environment, 

it is possible to provide event-based control to the debugger, including the following: 

 Before and after breakpoints 

 Physical memory access monitoring, as opposed to virtual memory monitoring 

 Interrupt monitoring 

 I/O event monitoring 



109 
 

 

Virt-ICE was implemented through modifications to the Qemu emulator. These 

modifications were made to improve the debugging facilities provided by a current VM 

environment. 

Relationship to Thesis 

The idea behind Virt-Ice, using a virtual machine for malware analysis to obtain an 

advantage during dynamic debugging, is similar to that of this thesis. The Virt-ICE author 

even identified that a virtual environment could be used to provide event-based control 

over the guest environment. As opposed to this thesis, Virt-ICE is mainly interested in the 

advantages that a VM can provide to a malware analyst. Also, the technology being 

researched under this thesis is using pure hardware-assisted virtualization as opposed to an 

emulator.  

 

Dynamic and Transparent Analysis of Commodity Production Systems [24] 

Overview 

This paper proposed a framework to aid in the dynamic analysis of production systems by 

leveraging hardware virtualization technology. This was accomplished by installing a VMM 

and migrating the system into a virtual machine. This framework will provide transparency 

to, and isolation from, the system being analyzed. The framework built by the authors of 

this paper was called HyperDbg. HyperDbg is a kernel debugger used to debug any critical 

kernel component.  

 



110 
 

 

The author stated that dynamic operating system analysis could be performed through the 

use of both kernel-based and VMM-based tools. Kernel analysis tools are described as 

modifications to the kernel to intercept events of interest through the installation of hooks 

into the kernel. These hooks are used to monitor run-time events, and may be difficult to 

place into operating systems that do not provide native support for dynamic analysis. VMM-

based dynamic analysis attempts will typically run the target software in a virtual machine 

and respond to events of interest from the VMM. Although the standard VMM-based 

analysis approach provides transparency, it requires that the system be run as a guest 

virtual machine, or it cannot be analyzed. This can be even more problematic when 

components need to be analyzed at the hardware level, since a great deal of these 

interactions will be virtualized.  

 

A framework was provided by this research that combines a VMM and analysis tools to aid 

in the analysis of a production system. The main advantages identified and provided 

through this approach include a debugging capability that is: 

 Transparent to the guest system 

 Does not require a user to recompile or reboot the target system 

 Does not require the guest OS to be pre-installed as a VM 

 Is nearly OS independent 

 Prevents errors in the analysis tool from affecting the guest system 

 

Relationship to Thesis 



111 
 

 

This publication contains concepts similar to this thesis because it makes use of hardware-

assisted virtualization technology to aid in debugging, although the capabilities and 

advantages sought by this publication diverge from those identified in this thesis. This 

publication mainly seeks to create a framework that provides inherent advantages to a 

guest OS being debugged by running the analysis tools in an isolated VMM. This thesis seeks 

specifically to enhance debug capabilities by using exit conditions analogously to 

breakpoints in order to provide a much more powerful and extensive set of breakpoint 

capabilities. The difference between this thesis and the publication being reviewed is 

especially demonstrated by the technique that the publication uses to implement multiple 

simultaneous breakpoints. The publication makes use of software breakpoints for this 

concept, whereas one of the advantages of the virtual breakpoints presented within this 

thesis is the ability to set nearly unlimited virtual breakpoints without modification to the 

target software, even for hardware-based events.  

 

Although it was not the main focus of this thesis, it is important to point out that the 

debugging capabilities provided by this thesis also share the inherent advantages of running 

a debugger from a VMM, as was identified within the Dynamic and Transparent Analysis of 

Commodity Production Systems publication. 

 

Virtdbg - Using virtualization features for debugging the Windows 7 kernel [25] 

Overview 

VirtDbg is a code project that shares similarities with the topic of this thesis. At the time that 

this thesis was written, VirtDbg was an incomplete open source project, but I wanted to 



112 
 

 

make note of its existence due to the significant underlying similarity that VirtDbg makes 

use of Intel VT for debugging purposes. Recently, VirtDbg was also presented at the Recon 

2011 conference.  

 

VirtDbg’s purpose is to implement a kernel debugger with the assistance of the hardware 

virtualization technology provided by Intel’s VT-x. Its main purpose is stated to provide a 

debugging environment for 64-bit versions of Windows 7 where available kernel debuggers 

are extremely limited. Using VirtDbg will allow a user to debug protected parts of the 

Windows OS, such as PatchGuard, that would otherwise be difficult to debug through using 

available debuggers. A slide show presentation about VirtDbg was given at the Recon 2011 

conference, which outlines the difficulties performing dynamic analysis on the Windows 7 

operating system. The author notes that this  can be especially difficult with  features such 

as patchguard enabled, since these features will prevent direct manipulation of critical 

kernel areas, which are required for use by a kernel debugger. Use Intel VT-x, a debugger 

can still debug parts of the operating system that would otherwise be prevented. 

 

 The VirtDbg code base is currently in a “very alpha state” and does not yet have a great deal 

of documentation or functionality provided beyond the main concept of its implementation; 

a debugger using the assistance of Intel VT-x based technology. The current VirtDbg code 

base can be located at http://code.google.com/p/hyperdbg/. 

 

Relationship to Thesis 

http://code.google.com/p/hyperdbg/


113 
 

 

The VirtDbg project is related to the thesis because it is harnessing Intel's VT-x capabilities 

for the purpose of creating an advanced debugging capability. The main difference is that 

VirtDbg aims to debug a specific part of the MS Windows 7 operating system that is difficult 

to analyze due to strong security features, whereas the capabilities presented within this 

thesis aim to enhance the overall usefulness and power of a kernel debugging capability by 

providing more fine grained control over the debugging process. Although not the primary 

intention, the debugging features presented by the VirtDbg author can be realized by the 

capabilities presented under this thesis because the isolation and high privilege level of a 

debugger running within an Intel VT VMM will still be realized. 

 

Hardware Assisted Virtualization - Intel Virtualization Technology [17] 

Overview 

This paper provides a well-organized, condensed version of the Intel VT-x information that 

can be found in the Intel Developer's Manuals. Some of the challenges required to provide 

virtualization on the Intel architecture are addressed, leading into the need for Intel's VT-x 

technology. A thorough explanation of the various aspects of VT-x is provided, organizing 

the data in a format that appears helpful to a developer creating or extending an Intel VT-x 

based hypervisor. The information in this paper can be obtained from the Intel Developer's 

Manuals, but the paper is organized so that various VT-x concepts can be quickly located 

and interpreted in a clear and understandable format. 

 

Relationship to Thesis 



114 
 

 

This publication provides a great overview of the various capabilities that can be obtained 

through the use of Intel VT-x. The development required to prove the ideas behind this 

thesis was centered on Intel's VT-x using Intel VMX capabilities. This paper has helpfully 

summarized many of the development concepts required to build virtual breakpoints 

through the use of VM-Exit Reasons. 

  



115 
 

 

Appendix E – Bibliography 

[1] Intel Corporation (2011). Intel® 64 and IA-32 Architectures Software Developer’s Manuals 

Volume 1 - 3B. Retrieved from 

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-

manuals.html 

[2] Popek and Goldberg virtualization requirements. (n.d.). Retrieved July, 2011 from Wikipedia: 

http://en.wikipedia.org/wiki/Popek_and_Goldberg_virtualization_requirements 

 [3] Virtualization. (n.d.). Retrieved July, 2011 from Wikipedia: 

http://en.wikipedia.org/wiki/Virtualization 

[4] Full Virtualization. (n.d.). Retrieved July, 2011 from Wikipedia: 

http://en.wikipedia.org/wiki/Full_virtualization 

[5] Nguyen, A., Schear, N., Jung, H., Godiyal, A.,  King, S., and Nguyen, H. (2009). MAVMM: 

Lightweight and Purpose Built VMM for Malware Analysis. ACSAC 2009.  

[6] Hardware Virtualization. (n.d.). Retreived July, 2011 from Wikipedia: 

http://en.wikipedia.org/wiki/Partial_virtualization#Partial_virtualization 

[7] McCarty, R. (2007). Paravirtualization explained. Retrieved from: 

http://searchservervirtualization.techtarget.com/tip/Paravirtualization-explained 

[8] VMware Incorporated (2007). Understanding Full Virtualization, Paravirtualization, and 

Hardware Assist. Retrieved from http://www.vmware.com/resources/techresources/1008 

[9] Operating system-level virtualization. (n.d.). Retrieved July, 2011 from Wikipedia: 

http://en.wikipedia.org/wiki/Operating_system-level_virtualization 

[10] Application virtualization. (n.d.). Retrieved July, 2011 from Wikipedia: 

http://en.wikipedia.org/wiki/Application_virtualization 

[11] Memory Virtualization. (n.d.). Retrieved July, 2011 from Wikipedia: 

http://en.wikipedia.org/wiki/Memory_virtualization 

[12] Cook, C. (2008). Memory Virtualization, the Third Wave of Virtualization. Retrieved from: 

http://vmblog.com/archive/2008/12/14/memory-virtualization-the-third-wave-of-

virtualization.aspx 

 [13] Distributed file system. (n.d.). Retrieved July, 2011 from Wikipedia: 

http://en.wikipedia.org/wiki/Distributed_file_system 

[14] IBM Corporation (2003). Storage Virtualization Technology. Retrieved from http://www-

03.ibm.com/systems/resources/systems_storage_software_virtualization_tutorial_booklet1.pdf 



116 
 

 

[15] Emulator. (n.d.). Retrieved July, 2011 from Wikipedia: 

http://en.wikipedia.org/wiki/Emulation_%28computing%29 

[16] Wilson, R. (2009). Virtual Machine Extensions' Contributions and Interactions with Kernel 

Debugging Technology. (Unpublished independent study). Syracuse University, Syracuse New 

York. 

[17] Zabaljauregui, M. (2008). Hardware Assisted Virtualization. Intel Virtualization Technology. 

University of La Plata, Buenos Ares, Argentina.  

Can be retrieved at: http://linux.linti.unlp.edu.ar/images/f/f1/Vtx.pdf 

[18] Tengfei Yi, Aijun Zong, Miao Yu, Shang Gao, Qian Lin, Peijie Yu, Zhong Ren, and Zhengwei Qi 

(2009). Anti-debugging Framework Based on Hardware Virtualization Technology. 2009 

International Conference on Research Challenges in Computer Science. 

[19] King, S., Dunlap, G., and Chen, P. (2005). Debugging operating systems with time-traveling 

virtual machines. USENIX 2005. 

[20] Dinaburg, A., Royal, P., Sharif, M., and Lee, W. (2008). Ether: Malware Analysis via Hardware 

Virtualization Extensions. ACM CCS 2008. 

[21] Kamble, N., Nakajima, J., and Mallick, A. (2006). Evolution in Kernel Debugging using 

Hardware Virtualization With Xen. 2006 Linux Symposium. 

[22] Albertsson, L. (2006). Holistic debugging. MASCOTS 2006. 

[23] Nguyen A. and Suzaki, K. (2010). Virt-ICE: Next-generation Debugger for Malware Analysis. 

Blackhat USA 2010. 

[24] Fattori, A., Paleari, R., Martignoni, L., and Monga, M. (2010). Dynamic and Transparent 

Analysis of Commodity Production Systems. ASE 2010. 

[25] Aumaitre, D. (2011). Virtdbg - Using virtualization features for debugging the Windows 7 

kernel. Recon 2011. 

[26] Intel Corporation (2011). Intel® Virtualization Technology for Directed I/O - Architecture 

Specification. Retrieved from: 

http://download.intel.com/technology/computing/vptech/Intel%28r%29_VT_for_Direct_IO.pdf 

  



 
 

 
 

NAME OF AUTHOR: Ryan M. Wilson  

 

PLACE OF BIRTH: Keene New Hampshire  

 

DATE OF BIRTH: April 24, 1983 

 

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:  

 Clarkson University, Potsdam, New York  

 

DEGREES AWARDED:  

 Bachelor of Science in Computer Engineering, 2005, Clarkson University  

 

PROFESSIONAL EXPERIENCE:  

 Senior Computer Engineer, Assured Information Security, Inc., 2006 - Present 

 

 

 

 

Special Thanks to:  

 My thesis advisor Dr. Jim Fawcett, mentor Dr. Joseph Sharkey, colleague/friend 

 Paul Petzke, and my family - Nicole, Kayden, and Ashton. 

  



 
 

 
 

 

 

 

BACK FLYLEAF PAGE 

This page has been intentionally left blank 


