
 

 

 

 

ISCA 20th International Conference on 

Computers and Their Applications  

(CATA-2005) 

 

March 16-18, 2005 

 

New Orleans, Louisiana, USA 



 

RELATIONSHIP BETWEEN CODE METRICS AND CHANGE HISTORY 
Based on Data from Open-Source Mozilla Project 

 

 

James Fawcett, Ph.D. 

jfawcett@twcny.rr.com 

(315) 443-3948

Murat Gungor, MSCS 

mkgungor@ecs.syr.edu 

(315) 443-4003 

 

Arun Iyer, MSCS 

aviyer@ecs.syr.edu 

(315) 443-4003

Kanat Bolazar, MSCS 

kanat2@yahoo.com 

(315) 443-4003

Electrical Engineering and Computer Science 

Syracuse University 

Syracuse, New York 13244, USA 

 

 

Abstract 
 

This paper studies relationships between code metrics and 

change count histories for a large open-source project, 

Mozilla.  We examine several structural and code 

property metrics and construct statistically significant 

relationships with code base changes.  Our results provide 

one step toward tool support for software managers to 

detect problems in large development projects. 

 

Keywords: Change analysis, metrics, open-source 

 
1. INTRODUCTION 

 

This paper studies relationships between code metrics and 

change count histories for a large project.  The analysis is 

file based.  That is, we compute a variety of metrics for 

each source code file in several large libraries from the 

open-source Mozilla project, and relate them to the 

number of cumulative changes for each of those files in 

several builds.  We use files because changes are recorded 

for files in the data we examined; and because files are 

the units of configuration management in large software 

projects.   

 

Others, German [1] and [2], Huntley [3], have examined 

open-source project data but we’ve found no modeling of 

the reliability of metrics to measure potential for change, 

as reported here.  Graves, et. al. [4] analyzed relationships 

between change metrics and predicted faults, using data 

from a telephone switching system.  Our focus is on 

modeling change history using code metrics. 

 

We chose Mozilla because it is large1, accessible, and has 

provided a wealth of change data in its source code 

repository (CVS) database.  Most of the data presented 

here is drawn from the Windows build of Mozilla [5], for 

several releases, spaced approximately one year apart.   

 

                                                 
1 There are 6193 source code files in the Windows build 

for version 1.4.1 

We downloaded the CVS archive for these releases and, 

using make tools provided by the Mozilla project, built 

Windows executables for one specific release, 1.4.1.  

During the build, we captured all the files being compiled 

and used that file set for our analysis of variation of 

metrics with time2. 

 

In the next section, we show how changes and the total 

number of files have grown over the life of the entire3 

Mozilla project.  We then show how changes, number of 

files, estimated defect counts, and metric values, have 

varied over the four releases and one CVS check-out we 

analyzed. 

 

In the third section we analyze four libraries and the entire 

Windows build for the 1.4.1 release, 10 October 2003.  

The analysis uses Multiple Linear Regression (MLR) [6] 

[7] to model production of changes as functions of the 

metrics set, described below.  The results are evaluated in 

terms of resulting t-test and adjusted R-square statistics.  

In all analyses, we find statistically significant 

relationships between some of the metrics used and 

change history, for each of the four libraries, and for the 

entire Windows build.  The results show, however, that 

not all of the change is related to these metrics and is 

dominated by two of them, fan-out and total lines of code. 

 
2. PROJECT WIDE MEASURE OF 

SIZE AND CHANGE 
 

All change and defect data were extracted from the CVS 

change logs of the Mozilla project.  Figure 1 shows the 

number of files and cumulative changes over the lifetime 

                                                 
2 Mozilla code management is based on libraries that 

contain files for all supported platforms.  We used the 

output of building 1.4.1 for Windows to identify the 

source code for the Windows build, and used those files 

present in each of the other builds to analyze changes in 

average metric values with time.  
3 Entire means all files and all changes for all of the 

platforms supported by Mozilla. 



 

of the entire Mozilla project, as of 10 September, 2004.  

The latest data consisted of 36,800 files, of which, 14,210 

are C/C++ source code4.  Mozilla CVS captures changes, 

with and without bug numbers.  In the metric analysis we 

count only changes for source code files with an 

associated bug number in its change log.  The numbers 

for the entire Mozilla project are shown in Table 1.   

 

Table 1 – Cumulative Change Counts 

             10 September 2004 

 

Changes All Files Source Code Files 

All Changes 502,753 305,844 

Changes with 

Bug numbers 

255,904 156,903 

 

To quantify defects, we counted the number of unique 

bug numbers for all the changes against a specified file.  

The results for defects were far less statistically 

significant than for change counts.  We observed 

aggregate file check-ins with shared logs which may 

inflate estimated defect counts. So, we believe our 

construction of defect counts, based on this data, is not 

very accurate, but find no other data in the CVS change 

logs or Bugzilla database used by the Mozilla team, that 

relates to defects.  For that reason, we will not consider 

defects further in this paper, other than to show variation 

of our definition over several releases in Figure 5. 

 

For large projects, like Mozilla, the volume of files and 

their rate of change make it virtually impossible for one 

person to understand the structure and semantics of the 

entire project.  It is crucial that the tools we develop to 

analyze systems of this size do not require detailed 

understanding of all the lines of code in the project, or 

even the lines of code in a single build for a single 

platform.  

 

Our goal is to develop tools that program managers and 

architects can use to understand when a large program is 

developing problems in its code base.   One measure of 

these problems is the volatility of its changes.  Making 

changes are expensive in schedule time and staffing costs.  

Managing change is an essential part of managing budget 

and schedule.   

 

We show, in Figure 1, the history of cumulative change, 

number of source files in the code base, and, in Figure 2, 

the number of changes per file, as a function of time over 

the entire history of the Mozilla project [8], starting on 28 

March, 1998, as measured from the first CVS check-in, 

through our last data extraction on 10 September, 2004. 

 

                                                 
4 Files that are not source code include files with 

extensions ini, mk, idl, html, css etc. 

The level of effort required to manage hundreds of 

thousands of  changes, as experienced in the Mozilla code 

base since the project began six years ago, would be 

difficult to sustain for any project, but especially for 

projects that do not follow the open-source model with 

large numbers of volunteer developers.   Project managers 

need mechanisms to predict and control change.  We 

show, in the following, that changes experienced by the 

Mozilla code base are significantly related to only a few 

of the metrics analyzed. 

Figure 1 - Total Buggy Change Count, Number of Source Files

0

20000

40000

60000

80000

100000

120000

140000

160000

3
/2

8
/1

9
9

8

6
/2

8
/1

9
9

8

9
/2

8
/1

9
9

8

1
2

/2
8

/1
9

9
8

3
/2

8
/1

9
9

9

6
/2

8
/1

9
9

9

9
/2

8
/1

9
9

9

1
2

/2
8

/1
9

9
9

3
/2

8
/2

0
0

0

6
/2

8
/2

0
0

0

9
/2

8
/2

0
0

0

1
2

/2
8

/2
0

0
0

3
/2

8
/2

0
0

1

6
/2

8
/2

0
0

1

9
/2

8
/2

0
0

1

1
2

/2
8

/2
0

0
1

3
/2

8
/2

0
0

2

6
/2

8
/2

0
0

2

9
/2

8
/2

0
0

2

1
2

/2
8

/2
0

0
2

3
/2

8
/2

0
0

3

6
/2

8
/2

0
0

3

9
/2

8
/2

0
0

3

1
2

/2
8

/2
0

0
3

3
/2

8
/2

0
0

4

6
/2

8
/2

0
0

4

Date
T
o
ta
l 
C
h
a
n
g
e
 C
o
u
n
t

0

2000

4000

6000

8000

10000

12000

14000

16000

N
u
m
b
e
r 
o
f 
S
o
u
rc
e
 F
il
e
s

Total Buggy Change Count

Number of Source Files

 
Figure 2 - Average Number of Buggy Changes over Life of All Alive Source Files

0

2

4

6

8

10

12

3
/2

8
/1

9
9

8

6
/2

8
/1

9
9

8

9
/2

8
/1

9
9

8

1
2

/2
8

/1
9

9
8

3
/2

8
/1

9
9

9

6
/2

8
/1

9
9

9

9
/2

8
/1

9
9

9

1
2

/2
8

/1
9

9
9

3
/2

8
/2

0
0

0

6
/2

8
/2

0
0

0

9
/2

8
/2

0
0

0

1
2

/2
8

/2
0

0
0

3
/2

8
/2

0
0

1

6
/2

8
/2

0
0

1

9
/2

8
/2

0
0

1

1
2

/2
8

/2
0

0
1

3
/2

8
/2

0
0

2

6
/2

8
/2

0
0

2

9
/2

8
/2

0
0

2

1
2

/2
8

/2
0

0
2

3
/2

8
/2

0
0

3

6
/2

8
/2

0
0

3

9
/2

8
/2

0
0

3

1
2

/2
8

/2
0

0
3

3
/2

8
/2

0
0

4

6
/2

8
/2

0
0

4

Date

 
 

3. METRIC ANALYSIS 
 

For analysis of the relationship between various metrics 

and change counts we use only source files for the 

Windows platform build.  There are 6,193 source code 

files in release 1.4.1 for Windows, for example, and we 

count the changes with bug numbers for those files.   

 

Several of the metrics we examine, e.g., Fan-In, Fan-Out, 

and size of strong components (groups of mutually 

dependent files), are based on the dependency graph 

between files in a project [9].  This dependency graph 

captures static type and function calling dependencies.  It 

is built using a dependency analyzer tool we developed 

based on a modest subset of the C/C++ language 

grammar.  We also examine size and complexity metrics 

evaluated with a tool used by one of us for grading 



 

graduate software design project assignments5.  We have 

also looked at maximum function cyclomatic complexity, 

maximum function size per file, average function size per 

file, and complexity per line of code, but settled on the 

metrics in Table 2 as being the best measures of those we 

examined. 

 

The modeling tool used here is Multiple Linear 

Regression Analysis (MLR), which attempts to predict 

historical change counts as a linear combination of the 

metrics in Table 2. 

 

Table 2 – Metrics used in this Analysis 

 

Fan-In: 

Number of files that depend on a given file. 

Fan-Out: 

Number of files a given file depends on. 

Instability6: 

I = Fan-Out / (Fan-Out + Fan-In) 

Size of strong component (SCSize): 

Number of files that have mutual dependencies with a 

given file.  Every file in a strong component has a direct 

or indirect dependency on every other file in the 

component. 

Global declaration count per file (GblObjDec): 

The number of global data declarations in a specified 

file. 

Average cyclomatic complexity7 per file (AvgCC): 

The number of regions defined by the control flow graph 

of a function, e.g., one plus the number of loops and 

branches8 per function, averaged over all the functions in 

each file. 

Total lines of code (TLOC): 

The total lines in source file, including white space, 

declarations, executable code, and comments, e.g., every 

line in each function body, summed over all the 

functions in each file. 

Lifetime 

The number of days that the file has been under CVS 

control. 

 

Clearly change counts are not synonymous with quality.  

A file with excellent quality may change because its 

requirements change or because the interface presented by 

some file on which it depends has changed.  Also, a file 

                                                 
5 We think of metrics global object declaration count, 

average cyclomatic complexity, and average function size 

per file, as measures of code quality, but have not 

demonstrated that they are associated with defect counts, 

so we avoid use of that term in the paper.  
6 Similar to the class-based model of Martin [11]. 
7 Our complexity measure is similar, but not identical, to 

the McCabe Cyclomatic Complexity metric. 
8 This includes continue, break, and goto statements. 

with low quality may not change often because it is so big 

and complex that developers are reluctant to make any but 

the most urgent changes to its code.   

 

However, change effort is directly related to a program’s 

ability to meet its budget and schedule obligations [10].  It 

would be interesting to examine change effort directly, 

but the data available in Mozilla CVS does not support 

deriving effort, only change count, so we have used that 

information throughout this paper. 

 
3.1 ANALYSIS OF WINDOWS BUILD RELEASES 

 

In this section we analyze five Mozilla builds for the 

Windows platform, separated by approximately one year, 

each. 

 

 Release Date 

1 0.6 06 December 2000 

2 0.9.7 20 December 2001 

3 1.0.2 07 January 2003 

4 1.4.1 10 October 2003 

5 CVS Check Out 10 September 2004 

 

First, we show the number of files, cumulative changes, 

and defects, for each build, in Figures 3, 4, and 5. 

 

Figure 3 - Number of Files in Library by Release

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5

Release

N
u
m
b
e
r 
o
f 
F
il
e
s

Gkgfx

MozFindDll

RdflDll

XmlExtrasDll

 
 

Figure 4 - Cumulative Changes in Library by Release

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 3 4 5

Release

C
u
m
u
la
ti
v
e
 N
u
m
b
e
r 
o
f 
C
h
a
n
g
e
s

Gkgfx

MozFindDll

RdflDll

XmlExtrasDll

 



 

Figure 5 - Defect Count by Release

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5

Release

D
e
fe
c
t 
C
o
u
n
t 
fo
r 
E
a
c
h
 L
ib
ra
ry

Gkgfx

MozFindDll

RdflDll

XmlExtrasDll

 
Figure 6 shows that metric values are fairly stable over 

the four years of code base evolution captured by these 

releases.  It would be interesting to observe a project 

where these measures were used to direct corrective effort 

to see if corrections had a significant affect on their 

average values. 

 

Figure 6 - Variations of Metric Averages over all Files in Gkgfx Library

By Release

0.1

1

10

100

1000

10000

1 2 3 4 5

Release

M
e
tr
ic
 V
a
lu
e

FanOut

Avg CC

Avg Func Size

SC Size

Glob Obj

Lifetime

Instability

 
 

3.2 MULTIPLE LINEAR REGRESSION 

 

Our goal is to determine if the metrics, shown in Figure 6, 

are related to changes shown in Figure 4.  In Table 3, we 

show a sample set of results from a Multiple Linear 

Regression Analysis (MLR) for the MozFindDll library.  

This models cumulative change for all files in this library, 

using MLR, as a function of the eight metrics shown. The 

Adjusted R Square statistic indicates that this model 

accounts for about 73 percent of the actual changes 

observed.  The t statistic magnitudes greater than 2 

indicate that the metrics Fan-out, Average Cyclomatic 

Complexity, and TLOC are statistically significant.  

Taking into account typical values for each of these 

metrics and the coefficients from the model, we find that 

Fan-out and TLOC dominate predicted change.  

 

In Figure 7, you will see plotted the actual changes, and 

the changes predicted by the linear regression model.  We 

have sorted the file sequence by actual change value to 

make the plot easier to interpret.  When the model 

predicts small change the actual changes tend to be small 

and when predicted changes are large the actual change 

tends to be large.  The results are similar for each of the 

four libraries examined, as indicated by the plots in 

Figures 8 through 10.  When we analyze the entire 

Windows build, the Adjusted R-Square statistic and actual 

versus modeled change improves. 

 

Table 3 – Results of Multiple Linear Regression 

MozFindDll, Release 1.4.1 

 
SUMMARY OUTPUT Predicted and Actual Changes for Mozilla's MozFindDll Library 

Release 1.4.1, 10 October 2003

Regression Statistics

Multiple R 0.858457045

R Square 0.736948497

Adjusted R Square 0.731926034

Standard Error 9.752451239

Observations 428

ANOVA

df SS MS F Significance F

Regression 8 111644.6583 13955.58229 146.7304964 1.9991E-116

Residual 419 39851.21786 95.11030517

Total 427 151495.8762

Coefficients Standard Error t Stat P-value

Intercept 2.630161 3.649069 0.720776 0.471449

FanIn -0.001011 0.046063 -0.021958 0.982492

FanOut 0.949522 0.078886 12.036699 0.000000

AvgCC -0.545876 0.165891 -3.290572 0.001084

SCSize 0.001222 0.003771 0.324012 0.746090

GObjDeclCount 0.023998 0.101890 0.235531 0.813912

TotalLOC 0.016478 0.001033 15.944396 0.000000

LifeOn_2003_10_10 0.000095 0.001898 0.050215 0.959975

Instability -2.514524 1.726392 -1.456520 0.145998

  

In the correlation matrix, given in Table 4, we see that 

Fan-out is most strongly correlated with predicted change, 

and also to a lesser extent, correlated with TLOC and 

Average Cyclomatic Complexity.  Predicted change most 

strongly correlates with TLOC, followed closely by Fan-

out.  

 

Table 4 Correlation Matrix for MLR Model MozFindDll, 

Release 1.4.1 
Predicted and Actual Changes for Mozilla's MozFindDll Library 

Release 1.4.1, 10 October 2003

FanIn FanOut AvgCC SCSize GObjDeclCount TotalLOC LifeOn_2003_10_10 Instability Cumulative Change Count Until 1.4.1

FanIn 1

FanOut 0.071353 1

AvgCC -0.000963 0.39313 1

SCSize 0.099422 0.423766 0.306617 1

GObjDeclCount 0.059384 0.21411 0.025957 0.139319 1

TotalLOC 0.176208 0.588954 0.593417 0.341359 0.140996 1

LifeOn_2003_10_10 0.183703 -0.090313 0.067559 0.030067 0.008245 0.147321 1

Instability -0.372109 0.413485 0.197215 0.166101 0.025796 0.143086 -0.242959 1

Cumulative Change Count Until 1.4.10.153469 0.731609 0.412359 0.357888 0.180698 0.784982 0.053095 0.201202 1

Figure 7 - Predicted and Actual Changes for Mozilla's MozFindDll Library 

Release 1.4.1, 10 October 2003

-20

0

20

40

60

80

100

120

140

160

1 16 31 46 61 76 91 106 121 136 151 166 181 196 211 226 241 256 271 286 301 316 331 346 361 376 391 406 421

File Sequence Ordered by Actual Change Count

A
c
tu
a
l 
a
n
d
 P
re
d
ic
te
d
 C
u
m
u
la
ti
v
e
 C
h
a
n
g
e
 C
o
u
n
t 
 

Predicted Cumulative Change Count Until 1.4.1

Cumulative Change Count Until 1.4.1

FanIn, FanOut, AvgCC, SC, GObjDeclCount, TotalLOC, 

Lifetime Until 10/10/03, Instability, Cumulative Change Until - 1.4.1

 



 

Figure 8 - Predicted and Actual Changes for Mozilla's XmlExtrasDll Library 

Release 1.4.1, 10 October 2003

-20

0

20

40

60

80

100

120

140

160

1 18 35 52 69 86 103 120 137 154 171 188 205 222 239 256 273 290 307 324 341 358 375 392 409 426 443 460 477

File Sequence Ordered by Actual Change Count

A
c
tu
a
l 
a
n
d
 P
re
d
ic
te
d
 C
u
m
u
la
ti
v
e
 C
h
a
n
g
e
 C
o
u
n
t 
 

Predicted Cumulative Change Until 1.4.1

Cumulative Change Until 1.4.1

FanIn, FanOut, AvgCC, SC, GObjDeclCount, TotalLOC, 

Lifetime Until 10/10/03, Instability, Cumulative Change Until - 1.4.1

 
Figure 9 - Predicted and Actual Changes for Mozilla's GKGFX Library 

Release 1.4.1, 10 October 2003

-20

0

20

40

60

80

100

120

140

160

1 14 27 40 53 66 79 92 105 118 131 144 157 170 183 196 209 222 235 248 261 274 287 300 313 326 339 352

File Sequence Ordered by Actual Change Count

A
c
tu
a
l 
a
n
d
 P
re
d
ic
te
d
 C
u
m
u
la
ti
v
e
 C
h
a
n
g
e
 C
o
u
n
t 
 

Predicted Cumulative Change Until -1.4.1

Cumulative Change Until -1.4.1

FanIn, FanOut, AvgCC, SC, GObjDeclCount, TotalLOC, 

Lifetime Until 10/10/03, Instability, Cumulative Change Until - 1.4.1

 
Figure 10 - Predicted and Actual Changes for Mozilla's RDFLDLL Library 

Release 1.4.1, 10 October 2003

0

20

40

60

80

100

120

140

160

1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193 205 217 229 241 253 265 277 289 301 313 325 337 349

File Sequence Ordered by Actual Change Count

A
c
tu
a
l 
a
n
d
 P
re
d
ic
te
d
 C
u
m
u
la
ti
v
e
 C
h
a
n
g
e
 C
o
u
n
t 
 Predicted Cumulative Change Count Until 1.4.1

Cumulative Change Count Until 1.4.1

FanIn, FanOut, AvgCC, SC, GObjDeclCount, TotalLOC, 

Lifetime Until 10/10/03, Instability, Cumulative Change Until - 1.4.1

 
 

In Table 5 we show results of an MLR analysis on the 

entire Windows build for Mozilla, release 1.4.1.  The 

model accounts for about 80 percent of the variation in 

cumulative change count and Fan-out, Average 

Cyclomatic Complexity, number of Global Object 

Declarations, Total Lines Of Code, and Instability are all 

statistically significant.  

 

Table 6 shows correlation matrix resulting from this MLR 

analysis. It is interesting that Fan-out correlates more 

strongly with change than total size.  Figure 11 illustrates 

predicted and actual changes for this MLR analysis.  

 

Figure 11 - Predicted and Actual Changes for Windows Build of Mozilla 

Release 1.4.1, 10 October 2003

-100

0

100

200

300

400

500

600

700

1 147 293 439 585 731 877 1023 1169 1315 1461 1607 1753 1899 2045 2191 2337 2483 2629 2775 2921 3067 3213 3359

File Sequence Ordered by Actual Change Count

A
c
tu
a
l 
a
n
d
 P
re
d
ic
te
d
 C
u
m
u
la
ti
v
e
 C
h
a
n
g
e
 C
o
u
n
t 
 Predicted Cumulative Change Until 1.4.1

Cumulative Change Until 1.4.1

FanIn, FanOut, AvgCC, SC, GObjDeclCount, TotalLOC, 

Lifetime Until 10/10/03, Instability, Cumulative Change Until - 1.4.1

Table 5 – Results of Multiple Linear Regression 

Windows Build of Mozilla, Release 1.4.1 

 
SUMMARY OUTPUT Predicted and Actual Changes for Windows Build of Mozilla 

Release 1.4.1, 10 October 2003

Regression Statistics

Multiple R 0.901019564

R Square 0.811836255

Adjusted R Square 0.811388379

Standard Error 17.03564781

Observations 3370

ANOVA

df SS MS F Significance F

Regression 8 4208412.589 526051.5737 1812.637741 0

Residual 3361 975406.8887 290.2132962

Total 3369 5183819.478

Coefficients Standard Error t Stat P-value

Intercept -0.890092 2.180555 -0.408195 0.683156

FanIn 0.000173 0.007200 0.024007 0.980849

FanOut 1.371579 0.026634 51.496815 0.000000

AvgCC -0.873727 0.090125 -9.694663 0.000000

SCSize -0.002014 0.000218 -9.240209 0.000000

GObjDeclCount -0.264539 0.034726 -7.617985 0.000000

TotalLOC 0.018727 0.000542 34.543551 0.000000

LifeOn_2003_10_10 0.003227 0.001258 2.565292 0.010352

Instability -5.578067 0.946077 -5.895994 0.000000

 
Table 6 – Correlation Matrix for MLR Model 

    Windows Build of Mozilla, Release 1.4.1 

 
Predicted and Actual Changes for Windows Build of Mozilla 

Release 1.4.1, 10 October 2003

FanIn FanOut AvgCC SCSize GObjDeclCount TotalLOC LifeOn_2003_10_10 Instability Cumulative Change Until 1.4.1

FanIn 1

FanOut 0.036412 1

AvgCC -0.00219 0.260892 1

SCSize 0.056421 0.34662 0.212668 1

GObjDeclCount 0.016996 0.12169 0.088853 0.077633 1

TotalLOC 0.08118 0.721062 0.406104 0.249548 0.188281 1

LifeOn_2003_10_10 0.125683 0.035249 0.134067 0.11667 0.046017 0.152023 1

Instability -0.198229 0.402716 0.22057 0.184166 0.020203 0.184365 -0.157599 1

Cumulative Change Until 1.4.10.064236 0.850391 0.218924 0.216204 0.082584 0.795019 0.090537 0.240712 1

 

Note that Cumulative change correlates most strongly 

with Fan-out, then GblObjDec and TLOC. 

 

In Table 7, we show the significant metrics for each 

library and the entire Windows build, along with their 

Adjusted R-Square statistic for the fit to each library. 

Note that the significant metrics were not the same for 

each library.  Only Fan-Out and TLOC are significant for 

all analyses. 

 



 

Table 7 – Summary of MLR Statistics 

 
Comparison of Multiple Linear Regression Analysis Results

Library Adj R-Sq Fan-In Fan-Out Avg CC SC Size GblObjDec TLOC Lifetime Instability

Gkgfx 0.65353 significant significant significant significant

MozFindDll 0.7325 significant significant significant

RdflDll 0.69269 significant significant significant

XmlExtrasDll 0.70157 significant significant significant significant significant

All Mozilla Win Bld0.80665 significant significant significant significant significant

Note: Blank entries indicate that metric had no significant affect on predicted change

 
4. DENSITY METRICS 

 
The results above seem to indicate that, while Fan-out and 

TLOC dominate the predicted changes, Average 

Cyclomatic Complexity, Global Object Declarations, and 

Instability also contribute significantly to the modeled 

results. 

 

Because of the correlations of Fan-out with TLOC, we 

decided to look further by attempting to normalize out the 

effects of size as measured by TLOC.  To do this we used 

the metrics Fan-out/TLOC, AvgCC, GblObjDec/TLOC, 

Lifetime, and Instability to predict Cumulative 

Change/TLOC.  The results were illuminating.  We found 

that the density model [12] does a very poor job of 

predicting cumulative change. 

 

The resulting Adjusted R Square statistic was 0.1567, 

indicating that the density metric set is a very poor 

predictor of cumulative change density.  We interpret this 

to mean that Fan-out and TLOC metrics are the only 

effective predictors of cumulative change, and because 

they are relatively correlated, the density Fan-out/TLOC 

is not a very strong predictor either. 

 

To see which is stronger, we built MLR models for the 

Windows Build of Mozilla, using Fan-out alone and 

TLOC alone and found that Fan-out describes the change 

data better with an Adjusted R Square statistic of 0.72308, 

while TLOC had an Adjusted R Square of 0.63194.  So, 

Fan-out is the stronger predictor of the two. 

 
5. CONTRIBUTIONS 

 
There has been other recent work that focuses on 

dependency analysis, investigation of open-source 

projects, and analysis of change histories.  Godfrey and 

Lee [8] examine calling relationships between subsystems 

of Mozilla and VIM text editor.  Tzerpos, in an early 

paper [9] develops source code file dependency structure 

based on include relationships.  Huntley [3] builds models 

of the benefits of learning in an open-source environment.  

The work of German et. al. [1] and [2] examines changes 

using non-code based measures.  Graves, et. al. [4] study 

the fault potential of modules (groups of files) for a 

telephone switching system, based on the number of their 

changes.  De Lucia et. al. [10] study the relationship 

between effort and non-dependency code metrics for 

work packages undergoing Y2K conversions.  Gill and 

Kemerer [12] investigate the relationship between 

cyclomatic complexity and maintenance productivity in 

applied hours for a small system. 

 

The contribution of this paper is to relate propensity for 

changes to files based on metrics derived from both their 

dependency graph – Fan In, Fan Out, Strong Component 

sizes, and a file-based instability metric – and from 

attributes of the file’s code – size, average cyclomatic 

complexity, and global declaration counts.  We developed 

tools that evaluate dependency structure that are robust 

and efficient enough to successfully analyze thousands of 

files.  All of our results were derived based on code from 

the open-source Mozilla project.  The methods of this 

paper use Multiple Linear Regression analysis to model 

the predictive power of several metrics that depend of 

either dependency structure between files or local 

properties of the code.  We have discovered that Fan-Out 

is the strongest single predictor of change for the Mozilla 

project, even stronger than file size.  This is, we believe, a 

new result. 

 

6. CONCLUSIONS 

 
Only Fan-out and Total Lines Of Code (TLOC) are strong 

predictors of cumulative change for the Mozilla Windows 

1.4.1 build code base.  Surprisingly, Average Cyclomatic 

Complexity (AvgCC), the number of Global Object 

Declarations (GblObjDec), and size of Strong 

Components (SCSize) have virtually no modeling power 

for cumulative change in that code base. 

 

The Mozilla data provides no measure of effort expended 

to make changes.  It would be very interesting to examine 

a code base for which such data was available.  It is 

possible that complexity, use of global data, and large 

mutual couplings may be more highly correlated with 

effort than we found for change.  

 

7. REFERENCES 
 
[1] Daniel M. German, Abram Hindle and Norman 

Jordan, “Visualizing the evolution of software using 

softChange,” Proceedings of the 16th International 

Conference on Software Engineering and Knowledge 

Engineering (SEKE), pp. 336-341, 2004. 

 

[2] Daniel German, Audris Mockus, “Automating the 

Measurement of Open source Projects,” ICSE 2003, 3rd 

Workshop on Open Source Software Engineering. 

 

[3] Christopher L. Huntley, “Organizational Learning in 

Open-Source Software Projects: An Analysis of 

Debugging Data,” IEEE Trans. Engineering Management, 

vol. 50, no. 4, pp. 485-493, 2003. 



 

 

[4] Todd L. Graves, Alan F. Karr, J. S. Marron, Harvey 

Siy, “Predicting Fault Incidence Using Software Change 

History,” IEEE Trans on SE, vol. 26, no. 7, pp 653-661, 

July 2000. 

 

[5] Mozilla on Microsoft Windows 32-bit Platforms, 

www.mozilla.org/build/win32.html 

 

[6] Larry Stephens, Advanced Statistics Demystified, 

McGraw Hill Inc., May 2004. 

 

[7] Schuyler W. Huck, Reading Statistics and Research, 

Addison Wesley Longman, 2000. 

 

[8] Michael W. Godfrey, Eric H. S. Lee, “Secrets from 

the Monster: Extracting Mozilla’s Software Architecture,” 

Proc. of the Second Intl. Symposium on Constructing 

Software Engineering Tools (CoSET-00), Limerick, 

Ireland, June 2000. 

 

[9] Vassilios Tzerpos, “Automatic Source - File 

Dependency Structure Extraction for C Programs,” Proc. 

of the 1994 Conf. of the Centre for Advanced Studies on 

Collaborative research, pp. 68-75, 1994. 

 

[10] Andrea De Lucia, Massimiliano Di Penta, Silvio 

Stefanucci, Gabriele Venturi, “Early Effort Estimation of 

Massive Maintenance Processes,” IEEE Proc. of the Int. 

Conf. on Software Maintenance, pp. 234-237, 2002. 

 

[11] Robert Martin, Agile Software Development, 

Prentice Hall, 2003. 
 

[12] Geoffrey K. Gill and Chris F. Kemerer, “Cyclomatic 

Complexity Density and Software Maintenance 

Productivity,” IEEE Trans on SE, vol. 17, no. 12, pp. 

1284-1288, Dec 1991. 

 

 


