
VERDICTS : Visual Exploratory Requirements Discovery
and Injection for Comprehension and Testing of Software

 Kanat Bolazar (kanat2@yahoo.com), James W. Fawcett (jfawcett@twcny.rr.com)
Department of Electrical Engineering and Computer Science,

Syracuse University, Syracuse, NY 13244, USA

Abstract - We introduce a methodology and its prototype
implementation for visual exploratory software analysis.
VERDICTS combines exploratory testing, tracing,
visualization, dynamic discovery and injection of requirements
specifications into a live quick-feedback cycle, without
recompilation or restart of the system under test. This supports
discovery and verification of software dynamic behavior,
software comprehension, testing, and locating the defect
origin. Our prototype implementation uses aspect-oriented
method call interception, functional specification of
requirements using dynamically injected Design by Contract,
statistical analysis and various forms of visualization. We
report on our personal experience.

Keywords: software testing, program comprehension,
software visualization, design by contract, requirements
discovery.

1 Introduction

The internal state space of a typical program is significantly
larger and more complex than the state space of its user
interface. This often manifests itself in a delay between the
event that causes internal state corruption and the consequent
defective behavior becoming visible to the user. Due to its
process (rather than implementation) orientation and relative
simplicity, the user interface is a good place to start
understanding the conceptual structure and dynamic behavior
of a program.

The ideal tool for locating the origin of a defect would add
no overhead in execution time or resources, allow normal
interaction with the software system under test, and help the
analyst discover the origin(s) of the defect starting with
outwardly manifested defective behavior, testing various
hypotheses, going backwards in time through causal links (by
execution tree and shared resources), comparing what is
observed against what is expected of the software.

Going backwards in time and having access to the full
internal state of the program requires significant overhead in
memory and disk space as every instruction and every event
has to be traced and logged (see [Boothe 2000, Lewis 2003,
Ko 2008], and section 4.2). On a single-CPU system, it is not
possible to observe and track the internal state of a program
without changing its timing, and this can significantly change
the occurrence of defects that are due to race conditions.

There are a number of other innovative approaches to
debugging (Algorithmic Debugging [Shapiro 1982], Delta
Debugging [Zeller 2002], Query-Based Debugging

[Lencevicius 1997, Lencevicius 1999]) that we borrow ideas
and techniques from, and our approach is aligned with
Exploratory Testing [Kaner 2004] and hypothesis testing that
is central to all the software comprehension models surveyed
in [Mayrhauser 1995].

In section 4 we review related work in some detail.

2 VERDICTS

VERDICTS (Visual Exploratory Requirements Discovery
and Injection for Comprehension and Testing of Software) is a
live, visual, and automated approach to software
comprehension, testing and validation.

In a single run, new requirements can repeatedly be
discovered, captured with an injected contract, cross-verified
(checked against the behavior of the program), and modified
without recompilation or restarting the software under test.

Visualization is used to aid comprehension by providing
abundant information in a form that makes it relatively easy to
detect common patterns. Executable requirement specifications
(contract assertions) are used to automate erroneous behavior
detection during normal operation.

We implemented our prototype VERDICTS system in Java
using AspectJ method call interceptions and Beanshell Java
interpretation to add dynamic Design by Contract (DBC)
assertions as well as other variables ("observables") to the
system under test. We use programmatic DBC to specify
requirements using method precondition and postcondition
assertions. Our high-level visualization is a simple
chronological execution trace of methods of interest. This is
enriched by highlighting failed contracts and a number of other
types of visualizations (see section 2.2).

2.1 Contributions of Our Approach

Quick feedback: The target program can be retested with
multiple contracts without the need for recompilation. As we
focus on method calls, our approach is not as CPU-intensive as
instruction-level tracing and logging approaches mentioned
above; VERDICTS prototype is quite usable interactively (see
section 4.2).

Visualization of aggregate behavior: A simple execution
trace visualization can be used to detect patterns of method
calls over time. We also have various visualizations for general
functional/behavioral patterns of one method across multiple
calls, through statistics and X-Y plots of parameters, user-
defined variables and contract assertions.

Hypothetical contracts: We can explore requirements and
behavior through contract assertions that do not all come from
requirements, as shown in table 1. In this table, predicates Ri
come from requirements, and Pj come from the program
(actual implementation behavior). R states what is required
whereas P states how the program actualy runs. A defect
causes a program behavior to contradict a requirement; ∃i,j : Pj
⇒ ¬Ri (equivalently, ∃i,j : Ri ⇒ ¬Pj).

In table 1, comprehension refers to how well we understand
the current, possibly faulty, implementation. Understanding a
faulty implementation also entails understanding its
mechanism of failure.

2.2 Features of VERDICTS

Exploration: VERDICTS users need not consider
requirements to be perfectly accurate, complete and fully
satisfied by the software. Similar to Exploratory Testing
[Kaner 2004], our approach attempts to challenge the tester to
use critical thinking and experimentation with immediate
feedback rather than follow a scripted set of steps.

Observables: Method call parameters, return value and this
object (in non-static methods) are the primary observables
(traced variables). Any other primitive value or object that is
reachable during a method call, including private fields, can
be declared as observables, with a user-defined variable and a
corresponding Java expression. After a tracing session, we can
examine the aggregate behavior of the observable (across
multiple calls to the method) in isolation as well as in pairs and
groups, using statistical analysis and X-Y plots.

Requirements Discovery and Injection: In exploratory
testing, the tester's ongoing evolving hypotheses about origins
and mechanisms of defects in software are not explicitly
recorded. Our approach allows exploration and evolution of
hypotheses while requiring explicit, recorded, executable
specifications in the form of method contracts.

Software Comprehension and Testing: Both
comprehension and testing require comparison (cross-
verification) of developer's/tester's mental models of the
program against the actual implementation of the program.
When there is a mismatch, comprehension presumes mental
models inaccurate while testing presumes implementation

inaccurate. For most industrial-scale software, a developer may
never have a complete mental model of the whole program. In
debugging, there is often an exploration that combines
comprehension and testing.

Hypotheses:: There are a number of competing models for
how program comprehension works, but in most existing
models (see section 4.4) a cycle of forming, testing, changing
and discarding hypotheses is central to software
comprehension (actually, to any learning task). Most
hypotheses require some additional source code for testing,
and traditionally, recompilation would be required, which
would delay feedback.

Other than reducing overall efficiency, such delay is
detrimental to the process of promptly discarding faulty
hypotheses. Untested faulty hypotheses often are the causal
precursors to more faulty hypotheses and even to some faulty
convictions. Our approach allows hypotheses to be stated and
cross-verified against the program efficiently and without
delay, within a matter of minutes, and sometimes, seconds.

3 Sample Cases

In this section we analyze how VERDICTS has helped us
discover failure mechanisms behind three actual defects in
non-vital components of our VERDICTS prototype.

3.1 Advantage of Visualization: Correct Results,
Inefficient Implementation

There are cases where a program runs correctly as per the
functional specifications, but runs quite unexpectedly in terms
of how it achieves the end result. One case was accidentally
discovered in a search method that used simple sets of
heuristics to discover the location of Java source code file
(X.java) when the location of corresponding compiled
bytecode file is known (X.class). The heuristics would allow
the search method to start from the closest commonly
associated directory locations, and try wider searches up to a
selected limit until the source code is found.

In our tests, the method could easily and quickly find the
source code. Nevertheless, visualization revealed that the
program ran quite differently from what was intended. Instead

Table 1. Types of contracts for comprehension and testing

Contract Type Predicates Example for sortAscending(int[] ar) Failure Marks

functional requirements R = R1 ∧ R2 ∧ R3 ∧ . . .
(note: there may be

multiple decompositions
of R, with different Ri)

R1: array ar is sorted afterwards:
i in 1..n-1 : ar[i-1] ≤ ar[i], n = |ar|
R2: ar contains the same elements

(permuted; no element is lost)

faulty implementation
or faulty requirement

actual implementation P = P1 ∧ P2 ∧ P3 ∧ . . .
(similarly, Pj may vary

without changing P)

can be very specific (Pi: one test case),
very general (P1: ar is sorted after call),

or inbetween (P1: |ar| < 4 ⇒ ar gets sorted)

wrong comprehension
(of implementation)

failure mechanism (pro) Pj (where ∃i : Pj ⇒ ¬Ri) ar[0] = 0 after call (bug; contradicts R1, R2) wrong comprehension

failure mechanism (con);
a partial requirement

Ri (where ∃j : Pj ⇒ ¬Ri) ar[0] ≤ ar[1] (hypothesis: ar[0] is not
sorted, so this contract will sometimes fail)

correct comprehension,
and a case of failure

general pattern ; fuzzy S (where S "often" holds) ar[0] > 0 (observed usage pattern) exception to the pattern

of trying the closest few directories first, due to inverted stack,
it actually started with the many farthest directory locations,
finding the close files only after unnecessary exhaustive search
of many unrelated directories. Figure 1 shows the
unexpectedly crowded trace visualization where we had
expected to see only a few calls to the two getDirs methods.

The operating system (Mac OS X, 10.5) efficiently
executed the many calls to search directories and files, and the
outputs were correct, even though implementation had a
defect. This case demonstrates the power of visualization: It
can make problems obvious even where none is being sought,
because it can succinctly present much information.

The next two cases, in sections 3.2 and 3.3, are structured as
seen in table 2 below.

Table 2. Organization of sections 3.2 and 3.3

Functionality Functional requirements

Symptoms Observed failure

Implementation Overview of classes, methods, calls

Exploration:
Set-up
Hypotheses
Tests

Our set-up, hypotheses and tests:
User-defined observables, assertions
Our guess for mechanisms of failure
VERDICTS tests, what we learned

Conclusions Discovered mechanism of failure

Solution Defect origin, corrected implementation

Evaluation Evaluation of VERDICTS

Note that VERDICTS focuses on method contracts, not
individual instructions. After mechanism of failure is
discovered, we still need to examine the source code to locate
defect origin, the faulty instructions.

3.2 Memory Usage Predictor: Error in Library

Components in a library are rarely specified with formal
contracts. Our memory usage predictor class depends on the
standard Java library function Runtime.freeMemory(). For
Java 1.5 on Linux Ubuntu 8.04, this library function behaved
quite unexpectedly; standard Java documentation gave no
hints that suggested what we discovered.
 Functionality: MemoryUsagePredictor predicts memory
usage in loops to allow loops to terminate without running out
of memory.

Consider a loop which creates new objects of type C, where
loop iteration i creates xi more objects and uses mi more bytes
of memory. Our MemoryUsagePredictor uses a linear
regression model between xi and mi, so that the loop can be
safely terminated if the next iteration may run out of memory.
MemoryUsagePredictor.check(xi) must be called and
consulted after discovering xi at iteration i, and before creating
xi objects of type C. Since this thread may be swapped out
mid-iteration, there will be outliers in data (too much or too
little compared to predicted range). Such outliers, often caused
by other threads, have to be ignored.

Symptoms: There was a bug in MemoryUsagePredictor
that caused it to not predict any values or predict unexpectedly
wrong values of memory usage.

Implementation: We'll focus on two classes and four of
their methods:

 MemoryUsagePredictor:
getCurrentMem(): Returns used/max memory ratio
check(xi): Returns true iff creating xi more objects won't

exhaust memory. Adds data points to linear regression
model and uses the model for prediction.

 SimpleLinearRegression:
addPoint(xi, mi): Called by check() to add a sample
getNumSamples(): Returns number of points added

Exploration Using VERDICTS: We started VERDICTS.
In our first test, we just collected execution trace data without
user-defined observables. Figure 3 shows an execution trace
screenshot, with full method signatures. We added thick red
lines to show links to individual method call details (these pop
up when the linked box is clicked on) and to show the pattern
of missing calls. We observed that addPoint() almost never
gets called, even though check() is called many times. We had
expected most calls to check() to call addPoint() as seen in
figure 2.

In this case, we check the memory usage many times but
only add a single point to our linear regression model. Our
sample size remains one, so our MemoryUsagePredictor can't
predict any memory usage.

Our hypothesis: Many calls to check are falsely detected
as outliers and ignored.

We added some contract variables (user-defined
“observables”) to the check() method, to observe the change in
memory usage over time. Our observables depend on the
methods listed above and one field, currentMem, where the
check() method caches the value returned from the

Figure 1. Correct results, incorrect behavior, in execution trace visualization. X axis is time; Y axis lists methods.

getCurrentMem() method (memory usage as a fraction of
maximum). Before a call to check(), this field holds the old
value from previous call to check(). Our observables below
were defined to be evaluated before the check() method call,
so they were precondition contract variables (see figure 4):

mem: Holds current memory usage

memDiff: Holds delta difference of memory usage.

lastX: Holds the last xi value (linear regression independent
variable; number of elements allocated).

lastPredicted: Holds the last predicted memory usage
corresponding to lastX. Prediction is by linear regression.
Using VERDICTS, we defined the contracts and

reexamined the defective behavior without recompiling or
restarting the program, to discover the picture seen in figure 5
(again, with thick red lines added to show associations with
method call details). Three method call instances are displayed
on top. Note that memDiff was 0 in the second and third calls,
which was the reason why addPoint() was not called. The
same held true for all other missing calls to addPoint().

The error was not due to multithreaded evaluation and
outliers. Memory usage must have changed with new objects
created; this was not reported back to us (hence memDiff is 0).

Conclusions: The standard Java library call to find current
memory usage returns a value that is not updated in real-time.
There is a coarse-grain update rather than a fine-grain one.
Reported free memory does not change with every memory
allocation. This was not implied in any way by the library API
documentation, and was completely unexpected.

Solution: We changed our linear regression model usage to

allow for delayed feedback by aggregating memory usage and
number of elements while memDiff remains 0.

Evaluation: Our approach allowed us to notice an
unexpected pattern, zoom in to problematic methods, create
general observables and discover problems in a single session
where we could inject code, repeat the problematic interaction,
and trace the program a second time without ever stopping the
program. Note that in a debugger where method-call aggregate
behavior and method-to-method call patterns are not obvious,
it would be much harder to notice that many calls to check()
do not cause a call to addPoint(), especially when the first few
calls do. It took us only minutes to test our hypothesis, which
we promptly discovered to be wrong.

3.3 Dual GUI Control of Single Model Variable:
Potential For Infinite Loop

Functionality: We allow different visualizations related to
thread state and executed method call. All method calls on one
thread can be viewed together against time, in a "TimeLine"
visualization. In a separate window, thread state can be viewed
for a selected time (waiting, sleeping, active, blocked, ...). This
time can be selected in one of two ways:

• by clicking on a method call on the TimeLine
• by using a slider on the thread state window

Symptoms: We should be able to select time by adjusting
the slider, but a bug in the implementation caused the time to
never change, regardless of the slider value.

Exploration Using VERDICTS: We added some
observables to stateChanged method to compare "sliderValue"

Figure 4. User-defined observables Figure 5. Traced method calls, observable values, unexpected memDiff == 0.0 cases

Figure 2. Expected pattern Figure 3. Traced method calls, their parameter values. X axis is time, Y axis is methods

that represents the view state against the "timeValue" which
represents the model state:

sliderValue: Expected current slider value

timeValue: Expected current time value

oldSliderValue: Recorded (actual) previous slider value

oldTime: Recorded (actual) previous time value

sliderValueChanged: Assertion: Slider value has changed.
Note that these four "precondition" variables and one

assertion are evaluated before the method call, so the recorded
slider and time values hold the previous values.

The user interface does not react to slider adjustment, and
time appears to never change. Our contract for expected
behavior states the opposite; sliderValueChanged asserts that
slider value changes with each call to "stateChanged" method.

Our Hypothesis: Slider GUI ought to change the
sliderValue. As a general (but not universal) rule,
sliderValueChanged ought to pass most of the time during
correct operation. But we suspect that the slider GUI is
disconnected and the back-end does not receive its value. So
we expect sliderValueChanged assertion to always fail.

After running the program with these observables and
contractual assertion, we viewed statistics (figure 6) and plots
of these observables. Here, we highlighted two unexpected
patterns using a green box (expected relationship), a red box
and underline (unexpected relationship and statistics). We
would expect a similar correlation between the expected value
pairs (sliderValue, timeValue) and the actual recorded value
pairs (oldSliderValue, oldTime), but instead we see oldTime to
be constant (std. dev. = 0; min = max = 130.6) and completely
uncorrelated with oldSliderValue (or any other variable).

Figure 6: Statistics for our observables (contract variables)
across many calls to the method. Unexpected pattern is marked

in red, expected pattern, in green.

Clicking on the boxes in the correlation matrix, we can see
X-Y plots of these relationships. Figure 7 shows two of these
plots, for expected and actual value pairs mentioned above. In

this figure, the large-font legends and “expected”/“actual”
boxes are added to these plots to make the window title and
observed pattern more visible and obvious.

Figure 7: Slider value vs. time value plots showing
expected and actual recorded relationship.

Next, let's take a look at the method calls over time. In
figure 8, the red boxes represent failed contract. Surprisingly,
we see that the slider value almost always changes, in
accordance with our assertion, and only fails to change in the
first and the last calls to the stateChanged() method.

Figure 8: Traced method calls, showing recursion and
surprisingly few failed calls as per our contract – our
hypothesis about mechanism of failure was wrong.

More significantly, we see patterns of recursion. If method
calls X and Y are in the same thread and X is subsumed by Y,
then X is directly or indirectly called by Y. We see that three
methods, “setFocus(double), stateChanged(...) and
updateSliderValue() are mutually recursive. Specifically, going
from largest to smallest method call, we have:

stateChanged(...) → setFocus(double) → updateSliderValue()

→stateChanged(...)→setFocus(double)→updateSliderValue()

We were lucky to not have an infinite recursion; it appears
that we came quite close to it. Both stateChanged and setFocus
went beyond depth 2 in mutual recursion, but
updateSliderValue, for some yet unknown reason, decided to
terminate mutual recursion at depth 2.

In figure 9, either the old value or the new value is always
22; (x, 22) and (22, y) are the only choices. Together with
depth 2 mutual recursion and observed behavior of time never
appearing to change, it now appears that we repeatedly set the
slider value to what the user desires (the (22, y) case), and

then, in a recursive call, reset it back to its old value (the (x,
22) case), always coming back to the initial and minimum
value of the slider, 22.

Figure 9. Changes in slider value show a strange pattern.

Conclusions: Upon focused source code examination, the
origin of the problem first appears to be an inverted condition
for returning false from a helper method, setTimeIfNeeded(),
which should be called from setFocus(int).

But this is not the actual bug. As can be seen (by its
absence) in the trace visualization in figure 7,
setTimeIfNeeded() itself is never called. The only condition
that could cause this was “entryComp” field being null. In fact,
entryComp remained uninitialized, null, because in the method
that should have initialized entryComp, the field was
shadowed by a same-named local variable entryComp. This
defect was caused by faulty manual refactoring.

Solution: After fixing these two relatively simple bugs, the
program ran correctly.

Evaluation: In this case, we also added an assertion, a
contract for expected behavior. This was a contract for a
requirement that ought to be satisfied “most of the time” rather
than at all times. Specifically, it stated that the internal state
should change with each call to one method. Our hypothesis
about mechanism of failure suggested that this assertion will
actually fail at all times. To our surprise, with few exceptions,
the assertion was satisfied. Our hypothesis about mechanism of
failure was wrong. Such quick negative feedback is extremely
useful as it allows us to stop expanding on deductions based on
faulty assumptions about mechanisms of failure.

4 Related Work

4.1 Software Testing

Testing is often conceived as starting with a known set of
requirements, going to a known set of tests to be conducted,
which are then applied. This does not provide for the
opportunity to learn from results of tests to modify, evolve,
and discard a test or prioritize the set of tests. One exception is
exploratory testing [Kaner 2004]. Our approach works well
with the exploratory (context-driven) testing paradigm, and
allows it to be dynamic and automated (through injected
specifications), with the additional aid of visualizations.

4.2 Instruction Tracing: Reversible / Omniscient
Debugging, and Whyline for Java

During debugging, developer is often lost in space (source
code) and time (execution), and is taking tiny steps for fear of
losing program internal state. With reversible debugging, the
developer can debug the program in reverse. Two main
approaches are:

Post-mortem analysis: Much event data is collected and
can be efficiently searched and queried, jumping to
any point in execution forward or backward.
Variable values, state and program behavior cannot
be changed. Examples: Omniscient debugging
[Lewis 2003], Whyline for Java [Ko 2008]. Allows
bidirectional debugging after execution completes.

Live bidirectional execution: Execution can move
forward or backward, variable values can be
changed, and forward execution paths will change to
reflect this change. [Boothe 2000].

These approaches are costly. Full state information must be
saved. Usually, this is done at regular intervals and is called
checkpointing. Checkpointing takes a very significant amount
of disk space, and takes time, and may not always be feasible,
due to external side effects of the program. For example, a
program can delete a file with a simple OS call, but there may
be no easy way to undelete such a file to recover its contents.
In a distributed program that uses the network, the whole
distributed state, possibly spanning many machines and OSes,
would have to be checkpointed and reverted to.

Also, the tester remains steeped in the details of execution
in live bidirectional debugging, and can not change program
state at all in post-mortem analysis.

Whyline for Java [Ko 2008] is a recent post-mortem causal-
link analysis tool. Whyline follows causal links from user
interface to implementation by tracing events such as field
value change. At execution time t, the question "Why is field
xyz 0?" can be answered with the source code that caused the
last change to field xyz before time t.

These approaches are powerful, but may not be practical
due to their overhead. Unlike instruction-level approaches, the
overhead in VERDICTS does not depend on total program
size; it depends on number of calls to a preselected set of
methods, number of observables and contracts [Bolazar 2006].

Whyline for Java [Ko 2008] reports overhead factors of 4.1
– 14.3 compared to normal program execution. In early tests of
our own prototype, we observed an overhead factor of 0.19 -
0.35 (19% - 35%) [Bolazar 2006], which is about 20 to 40
times less than Whyline (this is not a general claim; we had not
used the same target programs for our tests). Many interactive
programs with real-time behavior (such as a GUI component
with task timeout for user interactivity) cannot be traced
accurately if the software slows down by a factor of 10.

4.3 Other Innovative Approaches to Debugging

Algorithmic debugging [Shapiro 1982] repeatedly asks the
developer questions about whether inputs and outputs of each
function appears correct. Starting from top-level function and
going down in the function call tree, one branch is implicated

as faulty at each step, until the function with faulty
implementation is discovered. Making inputs and outputs of
method calls visible helps not only in debugging, but also in
comprehension of software dynamic behavior.

Delta Debugging [Zeller 2002] requires software input and
control automation to find minimal change in input that causes
failure to appear. Our interception mechanisms would work
well with delta debugging by making any subcomponent of the
program automatically testable.

Software visualization, especially when combined with
testing and verification methods can aid in comprehension and
fault origin discovery. One example, Tarantula [Jones 2001],
uses unit test results overlayed on a view of the source code,
and shows one way to relate static structure to dynamic
behavior.

Query-based debugging [Lencevicius 1997, Lencevicius
1999] appears very similar to our approach, but requires that
the developer already understand the internal state variables
responsible for failure. The recommended approach of
checking queries whenever any field value changes would not
work with most contracts that depend on multiple field values:
At some point during the execution, one field value would
have been updated without the other one conforming to their
contract yet. We instead focus on inter-method communication
and state.

4.4 Software Comprehension Models

There are many competing models of software
comprehension. Hypothesis/Conjecture-testing is central to all
software comprehension models surveyed in [Mayrhauser
1995]. The developer who is trying to understand a program
generates hypotheses, tests/checks them out, and learns from
the results of these experiments and static code analysis to
improve the set of hypotheses by generating new ones,
modifying and at times discarding old ones. In the face of
contradictory evidence, expert developers discard their own
faulty hypothesis more quickly than novice developers.
VERDICTS combines contracts with quick visual feedback for
efficient testing of hypotheses.

5 Conclusions

5.1 Observations

We collect, statistically analyze, and visually present,
aggregate method call information, which aids in program
comprehension, together with our high-level execution trace
visualization. In our experience, this is significantly better than
single-point-in-time single-place-in-code debugging.

Ability to modify method contracts and test them on-the-
fly, without having to stop and restart the system under test
(SUT) greatly reduces the delay in feedback and helps the
developer quickly eliminate wrong paths. This quick feedback
cycle also allows the developer to test some ideas without
having to commit to these method contracts. As mentioned
before, expert programmers are flexible, and are quick to
discard faulty hypotheses. We believe our tool is well suited
for flexible exploration of the specification and behavior space

of a program.
Our experience shows that an execution trace visualizer can

make high-level patterns of faulty behavior obvious. Using our
approach, we can run tests without restarting the SUT, access a
wealth of information about its internal state, and use arbitrary
Java code to define observables and DBC contracts to specify
the expected behavior of the SUT.

5.2 Ongoing and Future Work

We are currently testing various other forms of
visualizations that we have implemented and integrated in the
VERDICTS prototype, and exploring fuzzy (need not always
pass) and temporal contracts, and their visualizations. We are
also working on an approach to quantify the quality of
contracts, so that we may objectively compare VERDICTS to
other approaches.

References

BOLAZAR, S. K., FAWCETT, J. W. 2006. Debugging with software
visualization and contract discovery. In Proc. Software
Engineering and Data Engineering (SEDE '06), 47-50.

BOOTHE, B. 2000. Efficient algorithms for bidirectional
debugging. In Proc. ACM SIGPLAN 2000 Conference on
Programming Language Design and Implementation (PLDI
'00), 299-310.

JONES, J. A., HARROLD, M. J., STASKO, J. 2001. Visualization for
fault localization. In Proc. Workshop on Software
Visualization, 23rd International Conference on Software
Engineering (ICSE '01), 467-477.

KANER, C., BACH, J., PETTICHORD, B. 2004. Lessons learned in
software testing: A context-driven approach. John Wiley &
Sons, New York, NY.

KO, A. J., MYERS, B. A. 2008. Debugging reinvented: Asking
and answering why and why not questions about program
behavior. In Proc. International Conference on Software
Engineering (ICSE 2008), 301-310.

LENCEVICIUS, R., HÖLZLE, U., SINGH, A. K. 1997. Query-based
debugging of object-oriented programs. In Proc. 12th ACM
SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA '97), 304-
317.

LENCEVICIUS, R., HÖLZLE, U., SINGH, A. K. 1999. Dynamic
query-based debugging. In 13th European Conference on
Object-Oriented Programming (ECOOP'99), published as
Lecture Notes in Computer Science 1628, 135-160.

LEWIS, B. 2003. Debugging backwards in time. In Proc. 5th
International Workshop on Automated Debugging
(AADEBUG 2003), 226-236.

MAYRHAUSER, A. V., VANS A. M. 1995. Program comprehension
during software maintenance and evolution. In IEEE
Computer August 1995, 44-55.

SHAPIRO, E. Y. 1982. Algorithmic program debugging. MIT
Press, Cambridge, MA.

ZELLER, A., HILDEBRANDT, R. 2002. Simplifying and isolating
failure-inducing input. In IEEE Transactions on Software
Engineering 28, 2, 183-200.

	1 Introduction
	2 VERDICTS
	2.1 Contributions of Our Approach
	2.2 Features of VERDICTS

	3 Sample Cases
	3.1 Advantage of Visualization: Correct Results, Inefficient Implementation
	3.2 Memory Usage Predictor: Error in Library
	3.3 Dual GUI Control of Single Model Variable: Potential For Infinite Loop

	4 Related Work
	4.1 Software Testing
	4.2 Instruction Tracing: Reversible / Omniscient Debugging, and Whyline for Java
	4.3 Other Innovative Approaches to Debugging
	4.4 Software Comprehension Models

	5 Conclusions
	5.1 Observations
	5.2 Ongoing and Future Work

