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Abstract  -  We  introduce  a  methodology  and  its  prototype  
implementation  for  visual  exploratory  software  analysis.  
VERDICTS  combines  exploratory  testing,  tracing,  
visualization, dynamic discovery and injection of requirements  
specifications  into  a  live  quick-feedback  cycle,  without  
recompilation or restart of the system under test. This supports  
discovery  and  verification  of  software  dynamic  behavior,  
software  comprehension,  testing,  and  locating  the  defect  
origin.  Our  prototype  implementation  uses  aspect-oriented  
method  call  interception,  functional  specification  of  
requirements using dynamically injected Design by Contract,  
statistical  analysis  and  various  forms  of  visualization.  We  
report on our personal experience.
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1 Introduction

The internal state space of a typical program is significantly 
larger  and  more  complex  than  the  state  space  of  its  user 
interface.  This often manifests  itself  in  a  delay between the 
event that causes internal state corruption and the consequent 
defective  behavior  becoming  visible  to  the  user.  Due  to  its 
process  (rather  than implementation)  orientation and relative 
simplicity,  the  user  interface  is  a  good  place  to  start 
understanding the conceptual structure and dynamic behavior 
of a program.

The ideal tool for locating the origin of a defect would add 
no  overhead  in  execution  time  or  resources,  allow  normal 
interaction with the software system under test, and help the 
analyst  discover  the  origin(s)  of  the  defect  starting  with 
outwardly  manifested  defective  behavior,  testing  various 
hypotheses, going backwards in time through causal links (by 
execution  tree  and  shared  resources),  comparing  what  is 
observed against what is expected of the software.

Going  backwards  in  time  and  having  access  to  the  full 
internal state of the program requires significant overhead in 
memory and disk space as every instruction and every event 
has to be traced and logged (see [Boothe 2000, Lewis 2003, 
Ko 2008], and section 4.2). On a single-CPU system, it is not 
possible to observe and track the internal  state of a program 
without changing its timing, and this can significantly change 
the occurrence of defects that are due to race conditions.

There  are  a  number  of  other  innovative  approaches  to 
debugging  (Algorithmic  Debugging  [Shapiro  1982],  Delta 
Debugging  [Zeller  2002],  Query-Based  Debugging 

[Lencevicius 1997, Lencevicius 1999]) that we borrow ideas 
and  techniques  from,  and  our  approach  is  aligned  with 
Exploratory Testing [Kaner 2004] and hypothesis testing that 
is central to all the software comprehension models surveyed 
in [Mayrhauser 1995].

In section 4 we review related work in some detail.

2 VERDICTS

VERDICTS (Visual  Exploratory  Requirements  Discovery 
and Injection for Comprehension and Testing of Software) is a 
live,  visual,  and  automated  approach  to  software 
comprehension, testing and validation.

In  a  single  run,  new  requirements  can  repeatedly  be 
discovered, captured with an injected contract,  cross-verified 
(checked against the behavior of the program), and modified 
without recompilation or restarting the software under test.

Visualization  is  used  to  aid  comprehension  by providing 
abundant information in a form that makes it relatively easy to 
detect common patterns. Executable requirement specifications 
(contract assertions) are used to automate erroneous behavior 
detection during normal operation.

We implemented our prototype VERDICTS system in Java 
using  AspectJ  method call  interceptions  and  Beanshell  Java 
interpretation  to  add  dynamic  Design  by  Contract  (DBC) 
assertions  as  well  as  other  variables  ("observables")  to  the 
system  under  test.  We  use  programmatic  DBC  to  specify 
requirements  using  method  precondition  and  postcondition 
assertions.  Our  high-level  visualization  is  a  simple 
chronological  execution trace of methods of interest.  This is 
enriched by highlighting failed contracts and a number of other 
types of visualizations (see section 2.2).

2.1 Contributions of Our Approach

Quick feedback:  The target program can be retested with 
multiple contracts without the need for recompilation. As we 
focus on method calls, our approach is not as CPU-intensive as 
instruction-level  tracing  and  logging  approaches  mentioned 
above; VERDICTS prototype is quite usable interactively (see 
section 4.2).

Visualization of aggregate behavior: A simple execution 
trace  visualization can be used to detect  patterns  of  method 
calls over time. We also have various visualizations for general 
functional/behavioral  patterns  of one method across multiple 
calls,  through  statistics  and  X-Y  plots  of  parameters,  user-
defined variables and contract assertions.



Hypothetical contracts: We can explore requirements and 
behavior through contract assertions that do not all come from 
requirements, as shown in table 1. In this table, predicates Ri 
come  from  requirements,  and  Pj  come  from  the  program 
(actual  implementation  behavior).  R  states  what  is  required 
whereas  P  states  how  the  program  actualy  runs.  A  defect 
causes a program behavior to contradict a requirement; ∃i,j : Pj 
⇒ ¬Ri (equivalently, ∃i,j : Ri ⇒ ¬Pj).

In table 1, comprehension refers to how well we understand 
the current, possibly faulty, implementation. Understanding a 
faulty  implementation  also  entails  understanding  its 
mechanism of failure.

2.2 Features of VERDICTS 

Exploration:  VERDICTS  users  need  not  consider 
requirements  to  be  perfectly  accurate,  complete  and  fully 
satisfied  by  the  software.  Similar  to  Exploratory  Testing 
[Kaner 2004], our approach attempts to challenge the tester to 
use  critical  thinking  and  experimentation  with  immediate 
feedback rather than follow a scripted set of steps.

Observables: Method call parameters, return value and this 
object  (in  non-static  methods)  are  the  primary  observables 
(traced variables). Any other primitive value or object that is 
reachable during a method call, including private fields,  can 
be declared as observables, with a user-defined variable and a 
corresponding Java expression. After a tracing session, we can 
examine  the  aggregate  behavior  of  the  observable  (across 
multiple calls to the method) in isolation as well as in pairs and 
groups, using statistical analysis and X-Y plots.

Requirements  Discovery  and  Injection:  In  exploratory 
testing, the tester's ongoing evolving hypotheses about origins 
and  mechanisms  of  defects  in  software  are  not  explicitly 
recorded.  Our  approach  allows exploration and evolution of 
hypotheses  while  requiring  explicit,  recorded,  executable 
specifications in the form of method contracts.

Software  Comprehension  and  Testing:  Both 
comprehension  and  testing  require  comparison  (cross-
verification)  of  developer's/tester's  mental  models  of  the 
program  against  the  actual  implementation  of  the  program. 
When there  is  a  mismatch,  comprehension presumes  mental 
models  inaccurate  while  testing  presumes  implementation 

inaccurate. For most industrial-scale software, a developer may 
never have a complete mental model of the whole program. In 
debugging,  there  is  often  an  exploration  that  combines 
comprehension and testing.

Hypotheses:: There are a number of competing models for 
how  program  comprehension  works,  but  in  most  existing 
models (see section 4.4) a cycle of forming, testing, changing 
and   discarding  hypotheses  is  central  to  software 
comprehension  (actually,  to  any  learning  task).  Most 
hypotheses  require  some  additional  source  code  for  testing, 
and  traditionally,  recompilation  would  be  required,  which 
would delay feedback.

Other  than  reducing  overall  efficiency,  such  delay  is 
detrimental  to  the  process  of  promptly  discarding  faulty 
hypotheses.  Untested  faulty  hypotheses  often  are  the  causal 
precursors to more faulty hypotheses and even to some faulty 
convictions. Our approach allows hypotheses to be stated and 
cross-verified  against  the  program  efficiently  and  without 
delay, within a matter of minutes, and sometimes, seconds.

3 Sample Cases

In this section we analyze how VERDICTS has helped us 
discover  failure  mechanisms  behind  three  actual  defects  in 
non-vital components of our VERDICTS prototype.

3.1 Advantage of Visualization: Correct Results, 
Inefficient Implementation

There are cases where a program runs correctly as per the 
functional specifications, but runs quite unexpectedly in terms 
of how it achieves the end result. One case was accidentally 
discovered  in  a  search  method  that  used  simple  sets  of 
heuristics  to  discover  the  location  of  Java  source  code  file 
(X.java)  when  the  location  of  corresponding  compiled 
bytecode file is known (X.class). The heuristics would allow 
the  search  method  to  start  from  the  closest  commonly 
associated directory locations, and try wider searches up to a 
selected limit until the source code is found.

In our tests, the method could easily and quickly find the 
source  code.  Nevertheless,  visualization  revealed  that  the 
program ran quite differently from what was intended. Instead 

Table 1. Types of contracts for comprehension and testing

Contract Type Predicates Example for   sortAscending(int[] ar) Failure Marks

functional requirements R = R1 ∧ R2 ∧ R3 ∧ . . .
(note: there may be 

multiple decompositions 
of R, with different Ri)

R1: array ar is sorted afterwards:
i in 1..n-1 : ar[i-1] ≤ ar[i], n = |ar|
R2: ar contains the same elements

(permuted; no element is lost)

faulty implementation
or faulty requirement

actual implementation P = P1 ∧ P2 ∧ P3 ∧ . . .
(similarly, Pj may vary

without changing P)

can be very specific (Pi: one test case),
very general (P1: ar is sorted after call),

or inbetween (P1: |ar| < 4 ⇒ ar gets sorted)

wrong comprehension
(of implementation)

failure mechanism (pro) Pj (where ∃i : Pj ⇒ ¬Ri) ar[0] = 0 after call (bug; contradicts R1, R2) wrong comprehension

failure mechanism (con);
a partial requirement

Ri (where ∃j : Pj ⇒ ¬Ri) ar[0] ≤ ar[1]    (hypothesis: ar[0] is not
sorted, so this contract will sometimes fail)

correct comprehension,
and a case of failure

general pattern ; fuzzy  S (where S "often" holds) ar[0] > 0    (observed usage pattern) exception to the pattern



of trying the closest few directories first, due to inverted stack, 
it  actually started with the many farthest  directory locations, 
finding the close files only after unnecessary exhaustive search 
of  many  unrelated  directories.  Figure  1  shows  the 
unexpectedly  crowded  trace  visualization  where  we  had 
expected to see only a few calls to the two getDirs methods.

The  operating  system  (Mac  OS  X,  10.5)  efficiently 
executed the many calls to search directories and files, and the 
outputs  were  correct,  even  though  implementation  had  a 
defect.  This case demonstrates the power of visualization: It 
can make problems obvious even where none is being sought, 
because it can succinctly present much information.

The next two cases, in sections 3.2 and 3.3, are structured as 
seen in table 2 below.

Table 2. Organization of sections 3.2 and 3.3

Functionality Functional requirements

Symptoms Observed failure

Implementation Overview of classes, methods, calls

Exploration:
Set-up
Hypotheses
Tests

Our set-up, hypotheses and tests:
User-defined observables, assertions
Our guess for mechanisms of failure
VERDICTS tests, what we learned

Conclusions Discovered mechanism of failure

Solution Defect origin, corrected implementation

Evaluation Evaluation of VERDICTS

Note  that  VERDICTS  focuses  on  method  contracts,  not 
individual  instructions.  After  mechanism  of  failure  is 
discovered, we still need to examine the source code to locate 
defect origin, the faulty instructions.

3.2 Memory Usage Predictor: Error in Library

Components  in  a  library  are  rarely specified  with formal 
contracts.  Our memory usage predictor class depends on the 
standard  Java  library  function  Runtime.freeMemory().  For 
Java 1.5 on Linux Ubuntu 8.04, this library function behaved 
quite  unexpectedly;   standard  Java  documentation  gave  no 
hints that suggested what we discovered.
  Functionality:  MemoryUsagePredictor  predicts  memory 
usage in loops to allow loops to terminate without running out 
of memory.

Consider a loop which creates new objects of type C, where 
loop iteration i creates xi more objects and uses mi more bytes 
of  memory.  Our  MemoryUsagePredictor  uses  a  linear 
regression model between  xi and mi, so that the loop can be 
safely terminated if the next iteration may run out of memory. 
MemoryUsagePredictor.check(xi) must  be  called  and 
consulted after discovering xi at iteration i, and before creating 
xi objects of type C. Since this thread may be swapped out 
mid-iteration, there will be outliers in data (too much or too 
little compared to predicted range). Such outliers, often caused 
by other threads, have to be ignored.

Symptoms:  There was  a  bug  in  MemoryUsagePredictor 
that caused it to not predict any values or predict unexpectedly 
wrong values of memory usage.

Implementation:  We'll  focus on two classes  and four of 
their methods:

   MemoryUsagePredictor:
getCurrentMem(): Returns used/max memory ratio
check(xi): Returns true iff creating xi more objects won't 

exhaust memory. Adds data points to linear regression 
model and uses the model for prediction.

   SimpleLinearRegression:
addPoint(xi, mi): Called by check() to add a sample
getNumSamples(): Returns number of points added

Exploration Using VERDICTS:  We started VERDICTS. 
In our first test, we just collected execution trace data without 
user-defined observables.  Figure  3 shows an execution trace 
screenshot,  with full method signatures.  We added thick red 
lines to show links to individual method call details (these pop 
up when the linked box is clicked on) and to show the pattern 
of missing calls.  We observed that  addPoint() almost never 
gets called, even though check() is called many times. We had 
expected most calls to  check() to call  addPoint() as seen in 
figure 2.

In this case, we check the memory usage many times but 
only add a single point  to our  linear  regression  model.  Our 
sample size remains one, so our MemoryUsagePredictor can't 
predict any memory usage.

Our hypothesis: Many calls to check are falsely detected 
as outliers and ignored.

We  added  some  contract  variables  (user-defined 
“observables”) to the check() method, to observe the change in 
memory  usage  over  time.  Our  observables  depend  on  the 
methods listed above and one field,  currentMem, where the 
check() method  caches  the  value  returned  from  the 

Figure 1. Correct results, incorrect behavior, in execution trace visualization. X axis is time; Y axis lists methods.



getCurrentMem()  method  (memory  usage  as  a  fraction  of 
maximum). Before a call to  check(), this field holds the old 
value from previous call  to  check().  Our observables  below 
were defined to be evaluated before the  check() method call, 
so they were precondition contract variables (see figure 4):

mem: Holds current memory usage

memDiff: Holds delta difference of memory usage.

lastX: Holds the last xi value (linear regression independent 
variable; number of elements allocated).

lastPredicted:  Holds  the  last  predicted  memory  usage 
corresponding to lastX. Prediction is by linear regression.
Using  VERDICTS,  we  defined  the  contracts  and 

reexamined  the  defective  behavior  without  recompiling  or 
restarting the program, to discover the picture seen in figure 5 
(again,  with thick red lines added to show associations with 
method call details). Three method call instances are displayed 
on top. Note that memDiff was 0 in the second and third calls, 
which  was  the  reason  why  addPoint() was  not  called.  The 
same held true for all other missing calls to addPoint().

The  error  was  not  due  to  multithreaded  evaluation  and 
outliers. Memory usage must have changed with new objects 
created; this was not reported back to us (hence memDiff is 0).

Conclusions: The standard Java library call to find current 
memory usage returns a value that is not updated in real-time. 
There  is  a  coarse-grain  update  rather  than  a  fine-grain  one. 
Reported free  memory does  not  change with every memory 
allocation. This was not implied in any way by the library API 
documentation, and was completely unexpected.

Solution: We changed our linear regression model usage to 

allow for delayed feedback by aggregating memory usage and 
number of elements while memDiff remains 0.

Evaluation:  Our  approach  allowed  us  to  notice  an 
unexpected  pattern,  zoom in to  problematic  methods,  create 
general observables and discover problems in a single session 
where we could inject code, repeat the problematic interaction, 
and trace the program a second time without ever stopping the 
program. Note that in a debugger where method-call aggregate 
behavior and method-to-method call patterns are not obvious, 
it would be much harder to notice that many calls to  check() 
do not cause a call to addPoint(), especially when the first few 
calls do. It took us only minutes to test our hypothesis, which 
we promptly discovered to be wrong.

3.3 Dual GUI Control of Single Model Variable: 
Potential For Infinite Loop

Functionality:  We allow different visualizations related to 
thread state and executed method call. All method calls on one 
thread can be viewed together against time, in a "TimeLine" 
visualization. In a separate window, thread state can be viewed 
for a selected time (waiting, sleeping, active, blocked, ...). This 
time can be selected in one of two ways:

• by clicking on a method call on the TimeLine
• by using a slider on the thread state window

Symptoms:  We should be able to select time by adjusting 
the slider, but a bug in the implementation caused the time to 
never change, regardless of the slider value.

Exploration  Using  VERDICTS:  We  added  some 
observables to stateChanged method to compare "sliderValue" 

Figure 4. User-defined observables        Figure 5. Traced method calls, observable values, unexpected memDiff == 0.0 cases

Figure 2. Expected pattern                Figure 3. Traced method calls, their parameter values. X axis is time, Y axis is methods



that represents the view state against  the "timeValue" which 
represents the model state:

sliderValue: Expected current slider value

timeValue: Expected current time value

oldSliderValue: Recorded (actual) previous slider value

oldTime: Recorded (actual) previous time value

sliderValueChanged: Assertion: Slider value has changed.
Note  that  these  four  "precondition"  variables  and  one 

assertion are evaluated before the method call, so the recorded 
slider and time values hold the previous values.

The user interface does not react to slider adjustment, and 
time  appears  to  never  change.  Our  contract  for  expected 
behavior states the opposite; sliderValueChanged asserts that 
slider value changes with each call to "stateChanged" method.

Our  Hypothesis:  Slider  GUI  ought  to  change  the 
sliderValue.  As  a  general  (but  not  universal)  rule,  
sliderValueChanged  ought  to  pass  most  of  the  time  during 
correct  operation.  But  we  suspect  that  the  slider  GUI  is  
disconnected and the back-end does not receive its value. So  
we expect sliderValueChanged assertion to always fail.

After  running  the  program  with  these  observables  and 
contractual assertion, we viewed statistics (figure 6) and plots 
of  these  observables.  Here,  we  highlighted  two  unexpected 
patterns using a green box (expected relationship), a red box 
and  underline  (unexpected  relationship  and  statistics).  We 
would expect a similar correlation between the expected value 
pairs (sliderValue,  timeValue)  and the actual  recorded  value 
pairs (oldSliderValue, oldTime), but instead we see oldTime to 
be constant (std. dev. = 0; min = max = 130.6) and completely 
uncorrelated with oldSliderValue (or any other variable).

Figure 6: Statistics for our observables (contract variables) 
across many calls to the method. Unexpected pattern is marked 

in red, expected pattern, in green.

Clicking on the boxes in the correlation matrix, we can see 
X-Y plots of these relationships. Figure 7 shows two of these 
plots, for expected and actual value pairs mentioned above. In 

this  figure,  the  large-font  legends  and  “expected”/“actual” 
boxes are added to these plots to make the window title and 
observed pattern more visible and obvious.

Figure 7: Slider value vs. time value plots showing 
expected and actual recorded relationship.

Next,  let's  take  a  look  at  the  method calls  over  time.  In 
figure 8, the red boxes represent failed contract. Surprisingly, 
we  see  that  the  slider  value  almost  always  changes,  in 
accordance with our assertion, and only fails to change in the 
first and the last calls to the stateChanged() method.

Figure 8: Traced method calls, showing recursion and 
surprisingly few failed calls as per our contract – our 
hypothesis about mechanism of failure was wrong.

More significantly, we see patterns of recursion. If method 
calls X and Y are in the same thread and X is subsumed by Y, 
then X is directly or indirectly called by Y. We see that three 
methods,  “setFocus(double),  stateChanged(...)  and 
updateSliderValue() are mutually recursive. Specifically, going 
from largest to smallest method call, we have:

stateChanged(...) → setFocus(double) → updateSliderValue()

→stateChanged(...)→setFocus(double)→updateSliderValue()

We were lucky to not have an infinite recursion; it appears 
that we came quite close to it. Both stateChanged and setFocus 
went  beyond  depth  2  in  mutual  recursion,  but 
updateSliderValue, for some yet  unknown reason, decided to 
terminate mutual recursion at depth 2.

In figure 9, either the old value or the new value is always 
22;  (x,  22)  and  (22,  y)  are  the  only choices.  Together  with 
depth 2 mutual recursion and observed behavior of time never 
appearing to change, it now appears that we repeatedly set the 
slider  value to  what  the user  desires  (the (22,  y)  case),  and 



then, in a recursive call, reset it back to its old value (the (x, 
22)  case),  always  coming  back  to  the  initial  and  minimum 
value of the slider, 22.

Figure 9. Changes in slider value show a strange pattern.

Conclusions:  Upon focused source code examination, the 
origin of the problem first appears to be an inverted condition 
for returning false from a helper method, setTimeIfNeeded(), 
which should be called from setFocus(int).

But  this  is  not  the  actual  bug.  As  can  be  seen  (by  its 
absence)  in  the  trace  visualization  in  figure  7, 
setTimeIfNeeded()  itself  is  never  called.  The only condition 
that could cause this was “entryComp” field being null. In fact, 
entryComp remained uninitialized, null, because in the method 
that  should  have  initialized  entryComp,  the  field  was 
shadowed by a same-named local  variable  entryComp.  This 
defect was caused by faulty manual refactoring.

Solution: After fixing these two relatively simple bugs, the 
program ran correctly.

Evaluation:  In  this  case,  we  also  added  an  assertion,  a 
contract  for  expected  behavior.  This  was  a  contract  for  a 
requirement that ought to be satisfied “most of the time” rather 
than at all  times. Specifically,  it stated that the internal state 
should change with each call to one method. Our hypothesis 
about mechanism of failure suggested that this assertion will 
actually fail at all times. To our surprise, with few exceptions, 
the assertion was satisfied. Our hypothesis about mechanism of 
failure was wrong. Such quick negative feedback is extremely 
useful as it allows us to stop expanding on deductions based on 
faulty assumptions about mechanisms of failure.

4 Related Work

4.1 Software Testing

Testing is often conceived as starting with a known set of 
requirements, going to a known set of tests to be conducted, 
which  are  then  applied.  This  does  not  provide  for  the 
opportunity to learn from results  of tests to modify,  evolve, 
and discard a test or prioritize the set of tests. One exception is 
exploratory  testing  [Kaner  2004].  Our  approach  works  well 
with  the  exploratory  (context-driven)  testing  paradigm,  and 
allows  it  to  be  dynamic  and  automated  (through  injected 
specifications), with the additional aid of visualizations.

4.2 Instruction Tracing: Reversible / Omniscient 
Debugging, and Whyline for Java

During debugging, developer is often lost in space (source 
code) and time (execution), and is taking tiny steps for fear of 
losing program internal state. With reversible debugging, the 
developer  can  debug  the  program  in  reverse.  Two  main 
approaches are:

Post-mortem analysis: Much event data is collected and 
can be efficiently searched and queried, jumping to 
any  point  in  execution  forward  or  backward. 
Variable values, state and program behavior cannot 
be  changed.  Examples:  Omniscient  debugging 
[Lewis 2003], Whyline for Java [Ko 2008]. Allows 
bidirectional debugging after execution completes.

Live  bidirectional  execution: Execution  can  move 
forward  or  backward,  variable  values  can  be 
changed, and forward execution paths will change to 
reflect this change. [Boothe 2000].

These approaches are costly. Full state information must be 
saved. Usually,  this is done at regular intervals and is called 
checkpointing. Checkpointing takes a very significant amount 
of disk space, and takes time, and may not always be feasible, 
due to  external  side effects  of  the program.  For  example,  a 
program can delete a file with a simple OS call, but there may 
be no easy way to undelete such a file to recover its contents. 
In  a  distributed  program  that  uses  the  network,  the  whole 
distributed state, possibly spanning many machines and OSes, 
would have to be checkpointed and reverted to.

Also, the tester remains steeped in the details of execution 
in live bidirectional debugging, and can not change program 
state at all in post-mortem analysis.

Whyline for Java [Ko 2008] is a recent post-mortem causal-
link  analysis  tool.  Whyline  follows  causal  links  from  user 
interface  to  implementation  by  tracing  events  such  as  field 
value change. At execution time t, the question "Why is field 
xyz 0?" can be answered with the source code that caused the 
last change to field xyz before time t.

These  approaches  are  powerful,  but  may not be practical 
due to their overhead. Unlike instruction-level approaches, the 
overhead  in  VERDICTS  does  not  depend  on  total  program 
size;  it  depends  on  number  of  calls  to  a  preselected  set  of 
methods, number of observables and contracts [Bolazar 2006].

Whyline for Java [Ko 2008] reports overhead factors of 4.1 
– 14.3 compared to normal program execution. In early tests of 
our own prototype, we observed an overhead factor of 0.19 - 
0.35 (19% -  35%) [Bolazar  2006],  which is  about 20 to 40 
times less than Whyline (this is not a general claim; we had not 
used the same target programs for our tests). Many interactive 
programs with real-time behavior (such as a GUI component 
with  task  timeout  for  user  interactivity)  cannot  be  traced 
accurately if the software slows down by a factor of 10.

4.3 Other Innovative Approaches to Debugging

Algorithmic debugging [Shapiro 1982] repeatedly asks the 
developer questions about whether inputs and outputs of each 
function appears correct. Starting from top-level function and 
going down in the function call tree, one branch is implicated 



as  faulty  at  each  step,  until  the  function  with  faulty 
implementation is  discovered.  Making inputs and outputs of 
method calls visible helps not only in debugging, but also in 
comprehension of software dynamic behavior.

Delta Debugging [Zeller 2002] requires software input and 
control automation to find minimal change in input that causes 
failure  to  appear.  Our  interception  mechanisms  would work 
well with delta debugging by making any subcomponent of the 
program automatically testable.

Software  visualization,  especially  when  combined  with 
testing and verification methods can aid in comprehension and 
fault origin discovery.  One example, Tarantula [Jones 2001], 
uses unit test results overlayed on a view of the source code, 
and  shows  one  way  to  relate  static  structure  to  dynamic 
behavior.

Query-based  debugging  [Lencevicius  1997,  Lencevicius 
1999] appears very similar to our approach, but requires that 
the developer  already  understand the  internal  state  variables 
responsible  for  failure.  The  recommended  approach  of 
checking queries whenever any field value changes would not 
work with most contracts that depend on multiple field values: 
At  some point  during  the  execution,  one  field  value  would 
have been updated without the other one conforming to their 
contract yet. We instead focus on inter-method communication 
and state.

4.4 Software Comprehension Models

There  are  many  competing  models  of  software 
comprehension. Hypothesis/Conjecture-testing is central to all 
software  comprehension  models  surveyed  in  [Mayrhauser 
1995]. The developer who is trying to understand a program 
generates hypotheses,  tests/checks them out, and learns from 
the  results  of  these  experiments  and  static  code  analysis  to 
improve  the  set  of  hypotheses  by  generating  new  ones, 
modifying  and  at  times  discarding  old  ones.  In  the  face  of 
contradictory  evidence,  expert  developers  discard  their  own 
faulty  hypothesis  more  quickly  than  novice  developers. 
VERDICTS combines contracts with quick visual feedback for 
efficient testing of hypotheses.

5 Conclusions

5.1 Observations

We  collect,  statistically  analyze,  and  visually  present, 
aggregate  method  call  information,  which  aids  in  program 
comprehension,  together  with our  high-level  execution trace 
visualization. In our experience, this is significantly better than 
single-point-in-time single-place-in-code debugging.

Ability to modify method contracts and test them on-the-
fly,  without having to stop and restart  the system under test 
(SUT)  greatly  reduces  the  delay  in  feedback  and  helps  the 
developer quickly eliminate wrong paths. This quick feedback 
cycle  also  allows  the  developer  to  test  some  ideas  without 
having  to  commit  to  these  method contracts.  As  mentioned 
before,  expert  programmers  are  flexible,  and  are  quick  to 
discard faulty hypotheses. We believe our tool is well suited 
for flexible exploration of the specification and behavior space 

of a program.
Our experience shows that an execution trace visualizer can 

make high-level patterns of faulty behavior obvious. Using our 
approach, we can run tests without restarting the SUT, access a 
wealth of information about its internal state, and use arbitrary 
Java code to define observables and DBC contracts to specify 
the expected behavior of the SUT.

5.2 Ongoing and Future Work

We  are  currently  testing  various  other  forms  of 
visualizations that we have implemented and integrated in the 
VERDICTS prototype, and exploring fuzzy (need not always 
pass) and temporal contracts, and their visualizations. We are 
also  working  on  an  approach  to  quantify  the  quality  of 
contracts, so that we may objectively compare VERDICTS to 
other approaches. 
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