
 
 

Abstract—A novel approach for analyzing the relationship 
between code metrics and change count histories is presented.  
Specifically, neural networks are employed to determine a 
mapping between metrics and change count.  While these 
neural networks can be trained to a high degree of accuracy, 
their internal workings remain opaque to the user.  As such, a 
fuzzy modeling approach is additionally employed to generate 
the rules governing the neural computation.  These rules are 
linguistic in nature and are thus more easily interpreted by 
software project managers.  Application of this method to 
Mozilla change data reveals the importance of fan-out, total 
lines of code and maximum cyclomatic complexity metrics in 
predicting amount of change per file. 

I. INTRODUCTION 
This paper studies relationships between code metrics and 

change count histories for a large project.  The analysis is 
file based.  That is, we compute a variety of metrics for each 
source code file in several large libraries from the open-
source Mozilla project, and relate them to the number of 
cumulative changes for each of those files in several builds.  
We use files because changes are recorded for files in the 
data we examined; and because files are the units of 
configuration management in large software projects. 

Others, German [1] and [2], Huntley [3], have examined 
open-source project data but we have found no modeling of 
the reliability of metrics to measure potential for change, as 
reported here.  Graves, et. al. [4] analyzed relationships 
between change metrics and predicted faults, using data 
from a telephone switching system.  Our focus is on 
modeling change history using code metrics. 

We chose Mozilla because it is large1, accessible, and has 
provided a wealth of change data in its source code 
repository (CVS) database.  The data presented here is 
drawn from the Windows build of Mozilla [5], for release 
1.4.1. 

The analysis uses a converging series of Neural Nets [6] 
[7] to model production of changes as functions of the 
metrics set, described below.  Change data was extracted 
from the Mozilla CVS repositories and divided into training 
and testing sets.  After building networks using the training 
data, the results were evaluated by comparing predictions of 
change made by the nets, using various metrics as inputs 
with actual change counts recorded in the Mozilla repository 
as outputs.  In all analyses, some networks found significant 
relationships between a subset of the metrics used and 
change history, achieving accuracies above 90 percent, 
detecting files with high propensity for change, on the 
 

1 There are 6193 source code files in the Windows build for version 1.4.1 

testing data sets.  The results show that propensity for 
change is related to the chosen metrics and is dominated by 
two of them, fan-out and total lines of code. 

The results are similar to those of a previous paper that 
used Multiple-Linear Regression as the analysis tool.  We 
followed with this work to see if the nonlinear modeling 
properties of a three-layer neural network could provide 
improved accuracy, and found that that was indeed the case, 
although the basic conclusions regarding the significant 
metrics are the same.  Finally, we produce a linguistic model 
of the network predictions, based on fuzzy rule sets [8] [9].  
The linguistic model may be a more natural way for 
developers and managers to interpret results of analyses like 
this. 

II. INCREMENTAL NEURAL MODEL 
Three-layer (single hidden layer) feed-forward neural 

networks with hidden layer sigmoidal transfer functions are 
universal approximators; they are capable of approximating 
any continuous multivariate function, to any desired degree 
of accuracy, given a sufficient number of hidden layer nodes 
[10] [11]. 

Weights are usually initialized to random small values, 
and back-propagation training is a highly nonlinear 
deterministic process that causes neural networks that have 
similar weights to diverge during training.  Similar to brain 
development, this training can be seen as organic growth, 
with hidden layer nodes (neurons) taking on responsibilities 
to detect certain recurrent patterns in data that correlate with 
output.  This organic differentiation of the hidden layer 
nodes often does not have a single solution, even if we count 
all possible rearrangements of the hidden nodes as the same 
solution. 

Two neural networks trained separately may have hidden 
layer nodes that detect different important patterns in input.  
Building a neural network incrementally takes advantage of 
the possibility that two separately trained neural networks 
may be able to compensate for and complement each other. 

Building a neural network incrementally consists of four 
steps summarized below then expanded: 

• Read and prepare the data: quantize, normalize, 
separate into training and testing sets. 

• Train small (m × 2 × 1)2 neural networks on 
remaining delta (output) that is not yet accounted for. 

 
2 The network has m input neurons serving a fan-out function, 2 hidden 

neurons employing a non-linear transfer function, and one output neuron 
employing a linear transfer function. 
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• Combine these small networks into a larger network, 
but only select those that improve the predictive 
ability as evidenced by production of good results on 
the test set. 

• Perform a final pruning of the overall network. 

A. Step 1 
We analyzed all the files of one Mozilla module, using the 

following metrics for each file3: 
 
 
Fan-in and fan-out require a dependency graph to first be 

produced.  A dependency graph is a directed graph with files 
as the nodes and their dependencies as the edges.  Fan-in is 
the number of incoming edges to a node, while fan-out is the 
number of outgoing edges from a node.  (These are inter-file 
metrics.) 

The other metrics are intra-file metrics discovered by 
static analysis of code. 

Most central files used in Mozilla have been in Mozilla 
for many years.  The eleven metrics constitute the inputs to 
our neural network.  The neural output is change count (cc).  
This is the change count over the whole life of a file, and it 
is extracted from the change log in the repository. 

We quantize this change count by separating those files 
that have 25 or more changes over their whole life, and those 
files that have fewer than 25 changes.  The goal is for the 
team leader and project manager to discover problem files in 
the system.  Once trained, this neural network should be able 
to predict which files need many changes and may need 
special attention. 

With the eleven inputs metrics, and quantized change 
count as the output, we create a set of input-output vectors.  
80% of this data set is used in training; the remaining 20% is 
the test set (to be used later to improve the generalizing 
ability of the neural network). 

B. Step 2 
Using the training data set, we train an 11 × 2 × 1 feed-

forward neural network, consisting of two hidden nodes 
 

3 These metrics were chosen because they were computable from the 
stored information in the Mozilla source code repository. 

employing a sigmoidal transfer functions, and a single 
output node employing a linear transfer function. 

Even after training (via back-propagation in this case), the 
output of this small neural network will quite probably not 
match the expected output completely.  If the mean squared 
error between the difference replaced the output training 
vector and a new 11 × 2 × 1 neural network with sigmoidal 
hidden layer nodes and a linear output node is created and 
trained. 

This process repeats until the mean-squared error falls 
below a predetermined threshold. 

C. Step 3 
At the completion of step 2, N small neural networks have 

been created.  These networks are combined into a single 
larger network. 

Since every small neural network has the same input set, 
and each has only a single output neuron employing a linear 
transfer function, combining two (or more) of these 
networks into a larger network is a straightforward process.  
Specifically, the hidden neurons of the second network are 
moved into the first network.  These new hidden neurons are 
then connected to the input nodes and output neuron using 
the corresponding weight values found in the second 
network.  Given any input vector I, presenting I to the first 
and second small networks and adding their outputs will 
result in exactly the same value as presenting I to the larger 
network derived from combining the two small neural 
networks. 

This process repeats with the combined network from the 
previous step becoming the first small network, and the 
second small network is the next 11 × 2 × 1 neural network 
derived in step 2. 

As a point of optimization, if the resulting neural network 
derived from combining two smaller networks does not 
demonstrate improved predictive ability (as measured by the 
performance on the test set), the newly derived network is 
rejected and processing continues with the previously 
derived network and the next small network.  For example, 
if twenty 11 × 2 × 1 neural networks are created but only 
four of these networks improve results on the test set, the 
combined network is an 11 × 8 × 1 network with hidden 
layer nodes copied from the four 11 × 2 × 1 neural networks, 
and a linear output node (derived as a linear combination of 
the four output nodes from the 11 × 2 × 1 neural networks). 

D. Step 4 
As a last greedy step, each hidden layer neuron is 

removed in turn and the accuracy of the overall network is 
reassessed on the test data.  If the modified network’s 
performance is unacceptable, the hidden neuron is 
reinserted; otherwise, the hidden neuron is left off.  In either 
case, processing continues with the next hidden neuron. 

III. SENSITIVITY ANALYSIS 

TABLE I 
EMPLOYED METRICS 

METRIC DESCRIPTION 

     fi fan-in (number of dependent files) 
     fo fan-out (number of files depended upon) 

     mcc maximum CC (cyclomatic complexity) 
     tcc total CC 
     acc average CC 
     mfs maximum function size 
     afs average function size 
     fc function count 
     scs strong component size (mutual dependency set size) 
     godc global object declaration count 
     tloc total lines of code 

Software metrics employed in this analysis. 
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In order to reduce the number of inputs used to train the 
neural network, sensitivity analysis has been conducted on 
the original 11 inputs.  Sensitivity analysis is performed in 
the following manner: 

 
• Given a dataset, the base accuracy of the neural 

network is established. 
• Next data associated with a given input is randomized 
• This new dataset is presented to the neural network 
• The output accuracy of the neural network is 

compared against the base accuracy (and a running 
total is maintained) 

• Steps 2 through 4 are repeated for the same input 
until the running total (of that input) stabilizes 

• The entire process repeats for all inputs 
 
The data associated with an input having no effect on the 

neural network’s output can be completely randomized 
without effecting accuracy.  Likewise, the data associated 
with inputs having little effect on the neural network’s 
output can also be randomized with little effect on neural 
network accuracy.  Multiple neural networks are trained on 
the data and sensitivity analysis is performed on each.  The 
following table shows the results of marginalizing each input 
in turn for each of 10 trained neural networks. 

 
From table II, the “strong component size” input is the 

least important of the inputs (accuracy is effected the least).  
As such, it was eliminated, and the training process rerun.  
Proceeding in this fashion, the process of sensitivity 

analysis/retraining continues until the networks can no 
longer reliably train.  The final results of input elimination 
by sensitivity analysis are shown below. 

 
 
Eliminating “maximum cyclomatic complexity” results in 

a data set that is extremely difficult to train on.  Therefore, 
after sensitivity analysis is complete, the set of training 

inputs consists of: 
 

IV. FUZZY MODEL 
The principal objective of neural networks is to model 

functional mappings describing the relationship between 
inputs and outputs within data sets.  While neural networks 
often train on these mappings successfully, they nevertheless 
remain black boxes.  The desire to generate linguistically 
interpretable rule sets from black box models has led to a 
unique fuzzy model extraction technique. 

The methods that extract fuzzy system from neural 
networks, presented in the literature, may be divided into 
two categories: pedagogical – extracting global relationships 
from the inputs and outputs of the network directly, and 
decompositional – analyzing individual neurons within the 
network.  In this paper, a decompositional modeling 
approach for extracting fuzzy systems from neural networks 
is employed.  The approach may be summarized as follows: 

 
• Individual fuzzy systems are extracted from each 

neuron in the network’s hidden layer. 
• Since the results of pedagogical methods are typically 

more interpretable than decompositional methods 
(one rule set as opposed to many), a method for 

TABLE IV 
EMPLOYED METRICS 

METRIC DESCRIPTION 

     fo fan-out (number of files depended upon) 
     mcc maximum CC (cyclomatic complexity) 
     tloc total lines of code 

Software metrics employed after sensitivity analysis. 

TABLE III 
SENSITIVE INPUTS 

NN BASE 
ACCURACY FO MCC TLOC 

81 0.9888 0.3123 0.9466 0.2056 
82 0.9333 0.3041 0.3726 0.3748 
83 0.9666 0.3694 0.6021 0.2766 
84 0.9444 0.3208 0.2501 0.2920 
85 0.9111 0.3437 0.8774 0.3261 
86 0.9444 0.3076 0.5931 0.2732 
87 0.9444 0.3591 0.8900 0.3872 
88 0.9333 0.3396 0.7525 0.4544 
89 0.9666 0.3614 0.6025 0.2710 
90 0.9444 0.3152 0.2452 0.2950 
 Average: 0.3333 0.6132 0.3156 

Most sensitive inputs for neural networks 81 through 90. 

TABLE II 
SENSITIVITY ANALYSIS 

NN BASE 
ACCURACY FI FO MCC TCC ACC 

1 0.9444 0.8737 0.2961 0.3287 0.9121 0.6243 
2 0.9222 0.8616 0.3288 0.5208 0.3631 0.8808 
3 0.9222 0.8612 0.3037 0.2148 0.2137 0.3970 
4 0.9222 0.8198 0.2647 0.3036 0.2561 0.7252 
5 0.9333 0.8854 0.2668 0.3014 0.2260 0.8956 
6 0.9666 0.6640 0.3076 0.3524 0.3921 0.3965 
7 0.9222 0.9177 0.3638 0.3262 0.6707 0.8885 
8 0.9333 0.6235 0.2986 0.2020 0.4966 0.8548 
9 0.8666 0.8105 0.3216 0.2677 0.7394 0.8370 

10 0.9000 0.8764 0.3155 0.5230 0.2448 0.8393 
 Average: 

 
0.8194 0.3067 0.3341 0.4514 0.7339 

 MFS AFS FC SCS GODC TLOC 
1 0.9034 0.9153 0.4964 0.9153 0.8883 0.2708 
2 0.8911 0.6230 0.9057 0.9025 0.9166 0.4721 
3 0.8720 0.5422 0.8937 0.9016 0.8666 0.2414 
4 0.8964 0.6777 0.8896 0.8740 0.9004 0.9213 
5 0.9054 0.5012 0.8974 0.8993 0.8376 0.9122 
6 0.2317 0.4371 0.3371 0.7775 0.5160 0.4344 
7 0.3273 0.8887 0.8433 0.9002 0.6572 0.2485 
8 0.9233 0.5465 0.3275 0.9064 0.6257 0.5787 
9 0.8194 0.5632 0.8510 0.8644 0.4653 0.7091 

10 0.5341 0.5841 0.8482 0.8753 0.8431 0.5445 
Av: 0.7304 0.6279 0.7290 0.8816 0.7517 0.5333 

Results of sensitivity analysis for neural networks 1 through 10. 
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combining the individual fuzzy systems is applied. 
• In the final step, the number of rules is reduced and 

the antecedents of any remaining rules are shortened 
(provided that the output of the fuzzy system is not 
adversely affected). 

 
Since a decompositional approach is used to model each 

hidden neuron and later combined into an overall solution, 
the resultant fuzzy system is more truly representational of 
the inner functioning of the neural network than standard 
pedagogical methods. 

In the development of fuzzy systems, one of the most 
critical issues in the evaluation process is defuzzification.  
The YAD defuzzifier employs an iterative process to 
determine the crisp value.  Algorithmically, YAD repeatedly 
splits the fuzzy set, computing the running total of 
differences in mean degrees of membership of these split 
sets.  YAD is linear in nature; that is, it is defined in terms of 
the addition of fuzzy set values.  As such, it possesses the 
additive property, which means that adding the results of 
two defuzzified fuzzy sets equivalent to adding the fuzzy 
sets then defuzzifying.  The additive property facilitates the 
combining of these fuzzy systems into a single system that 
models the behavior of the entire network. 

Each hidden layer neuron in the neural network is 
modeled via a single input/single output (SISO) fuzzy 
decision tree (FDT).  A SISO FDT has the topology of a 
decision tree, but each branch of the SISO FDT fires to a 
greater or lesser extent based on the degree of membership 
of the corresponding branch expressions.  (That is, each 
branch has an associated expression of the form “input is 
membership function,” which, when evaluated in fuzzy 
terms, produces a degree of membership associated with the 
branch.)  Combining the branches’ degrees of membership 
along the path from the root to the leaf node of interest 
provides an overall weighting factor for the SISO rule set 
associated with the leaf node. 

To determine the output of a SISO FDT, evaluation 
proceeds from the root to each terminal node.  Each leaf is 
treated as a special case of a multiple input/single output 
(MISO) system – special in the sense that each rule has only 
one input.  As per MISO evaluation, the degrees of 
membership of each rule’s antecedent subterms are 
computed and weighted, and then fuzzy conjunction is 
applied.  The leaf weighting is then factored in.  The 
remainder of the evaluation proceeds in much the same 
fashion as MISO evaluation. 

Viewing a neural network at the level of the neuron, 
modeling proceeds as follows: 

 
• Consider a hidden neuron and its input weights to 

comprise the black box to be modeled. 
• Determine the number and shape of all input and 

output membership functions.  The number and shape 
of all input membership functions across SISO 
systems are identical. 

• Determine the weights associated with rules of the 
SISO FDT. 

 
Replacing each hidden layer neuron in the neural network 

with the SISO FDT generated in the above steps yields a 
network of SISO FDTs. 
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Fig. 1.  The network of SISO FDTs used to model the Mozilla data set. 
 
Given the properties of the defuzzifier, the alpha terms 

may be pushed into the rule weights of the SISO FDTs, 
resulting in a new network where all the links between the 
SISO FDTs and the summation unit have a weight of 1.0. 

Additionally, since the input and output membership 
functions in the above SISO FDTs are identical, any two 
SISO FDTs can be combined into a single SISO FDT in a 
mathematically exact way.  Applying this approach 
iteratively, a single SISO FDT may be derived that is 
mathematically equivalent to the network of SISO FDTs.  
As such, both the behavioral accuracy of a decompositional 
approach and the linguistic interpretability of a pedagogical 
approach are achieved. 

V. CASE STUDY 
The above technique was applied twice to the three input 

(fo, mcc, and tcc) neural network trained on the Mozilla 
dataset.  The first application specified two input and two 
output membership functions for the linguistic model.  A 
typical rule set generated is: 

 
• if fo low ∧ mcc low ∧ tloc high, cc high (2.2405) 
• if fo low ∧ mcc high ∧ tloc high, cc high (1.5447) 
• if fo high ∧ mcc high ∧ tloc high, cc high (1.3763) 
• if fo high ∧ mcc high ∧ tloc low, cc high (1.3763) 
• if fo high ∧ mcc low ∧ tloc high, cc high (1.2850) 
• if fo low ∧ mcc low ∧ tloc low, cc low (1.1230) 
• if fo low ∧ mcc low ∧ tloc low, cc high (0.9226) 
• if fo low ∧ mcc high ∧ tloc low, cc low (0.4273) 
 
In other words, if either the fan out or the total lines of 

code is high, then the change count is high.  Restated, if both 
the fan out and total lines of code are low, then the change 
count is low.  This is an intuitively appealing result, 
especially since maximum cyclomatic complexity is the least 
sensitive of the three inputs (as per the above sensitivity 
analysis).  Retraining the neural network and reapplying this 
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process resulted in similar rule sets.  The second application 
specified three input and two output membership functions 
for the linguistic model.  A typical rule set generated is: 

 
• if fo low ∧ mcc low ∧ tloc low, cc low (2.0484) 
• if fo low ∧ mcc high ∧ tloc high, cc high (1.9967) 
• if fo low ∧ mcc med ∧ tloc high, cc high (1.8653) 
• if fo high ∧ mcc low ∧ tloc high, cc high (1.7276) 
• if fo med ∧ mcc low ∧ tloc high, cc high (1.5543) 
• if fo low ∧ mcc low ∧ tloc med, cc high (1.5026) 
• if fo med ∧ mcc high ∧ tloc med, cc high (1.4292) 
• if fo med ∧ mcc med ∧ tloc low, cc high (1.3763) 
• if fo high ∧ mcc med ∧ tloc low, cc high (1.3763) 
• if fo high ∧ mcc high ∧ tloc low, cc high (1.3763) 
• if fo med ∧ mcc med ∧ tloc high, cc high (1.3763) 
• if fo high ∧ mcc med ∧ tloc high, cc high (1.3763) 
• if fo high ∧ mcc high ∧ tloc high, cc high (1.3763) 
• if fo med ∧ mcc med ∧ tloc med, cc high (1.3763) 
• if fo high ∧ mcc med ∧ tloc med, cc high (1.3763) 
• if fo high ∧ mcc high ∧ tloc med, cc high (1.3763) 
• if fo high ∧ mcc low ∧ tloc low, cc high (1.3653) 
• if fo med ∧ mcc high ∧ tloc high, cc high (1.3507) 
• if fo low ∧ mcc low ∧ tloc high, cc high (1.3151) 
• if fo med ∧ mcc high ∧ tloc low, cc high (1.1904) 
• if fo med ∧ mcc low ∧ tloc low, cc high (1.0541) 
• if fo med ∧ mcc low ∧ tloc med, cc high (1.0095) 
• if fo high ∧ mcc low ∧ tloc med, cc high (0.6523) 
• if fo low ∧ mcc med ∧ tloc low, cc low (0.5908) 
• if fo low ∧ mcc med ∧ tloc med, cc high (0.3685) 
• if fo low ∧ mcc high ∧ tloc med, cc high (0.0977) 
• if fo low ∧ mcc high ∧ tloc low, cc high (0.0248) 
 
In other words, if the fan out is low and the maximum 

cyclomatic complexity is not high and the total lines of code 
is low, then the change count is low.  This is also an 
intuitively appealing result that further refines the result 
discovered earlier.  The addition of other membership 
functions, such as “VERY LOW” and “VERY HIGH” 
reveal that fan out is the most sensitive input of the three (a 
verification of the sensitivity analysis hypothesis). 

 
These linguistically interpretable rules clearly show what 

the Mozilla project managers and team leaders should look 
for while assessing and managing risk in a project.  Ideally, 
risk should be contained by proactive measures: Throughout 
the development, both fan-out and total lines of code (and 
possibly, also, maximum cyclomatic complexity) per file 
should be measured, and neither metric should be allowed to 
go above a limit, possibly by selectively refactoring high-
risk code. 

VI. CONCLUSIONS AND FUTURE WORK 
This paper presents a novel approach for analyzing the 

relationship between code metrics and change count 

histories.  In order to capture the [potentially] non-linear 
mapping between metrics and change count, a neural 
network is utilized.  Since neural networks function as black 
boxes, a fuzzy modeling approach is employed to extract the 
rule sets governing the neural computation.  The Mozilla 
dataset is used as a case study, and, as such, several software 
metrics are gathered.  Sensitivity analysis reveals that only 
three of the measured metrics are necessary to a train neural 
network to high accuracy.  This is largely attributable to the 
metrics selected (a function of the data available).  A fuzzy 
rule set is then generated for the neural network using a 
novel decompositional approach.  The interpretation of the 
rule set is straightforward and intuitively appealing.  While 
the fidelity of the measured metrics is relatively low, the 
potential of the model is demonstrated.  Future work 
includes running a similar test against a different base of 
metrics (we are currently looking into different metrics 
correlated with level of development effort). 
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