

Abstract—A novel approach for analyzing the relationship
between code metrics and change count histories is presented.
Specifically, neural networks are employed to determine a
mapping between metrics and change count. While these
neural networks can be trained to a high degree of accuracy,
their internal workings remain opaque to the user. As such, a
fuzzy modeling approach is additionally employed to generate
the rules governing the neural computation. These rules are
linguistic in nature and are thus more easily interpreted by
software project managers. Application of this method to
Mozilla change data reveals the importance of fan-out, total
lines of code and maximum cyclomatic complexity metrics in
predicting amount of change per file.

I. INTRODUCTION
This paper studies relationships between code metrics and

change count histories for a large project. The analysis is
file based. That is, we compute a variety of metrics for each
source code file in several large libraries from the open-
source Mozilla project, and relate them to the number of
cumulative changes for each of those files in several builds.
We use files because changes are recorded for files in the
data we examined; and because files are the units of
configuration management in large software projects.

Others, German [1] and [2], Huntley [3], have examined
open-source project data but we have found no modeling of
the reliability of metrics to measure potential for change, as
reported here. Graves, et. al. [4] analyzed relationships
between change metrics and predicted faults, using data
from a telephone switching system. Our focus is on
modeling change history using code metrics.

We chose Mozilla because it is large1, accessible, and has
provided a wealth of change data in its source code
repository (CVS) database. The data presented here is
drawn from the Windows build of Mozilla [5], for release
1.4.1.

The analysis uses a converging series of Neural Nets [6]
[7] to model production of changes as functions of the
metrics set, described below. Change data was extracted
from the Mozilla CVS repositories and divided into training
and testing sets. After building networks using the training
data, the results were evaluated by comparing predictions of
change made by the nets, using various metrics as inputs
with actual change counts recorded in the Mozilla repository
as outputs. In all analyses, some networks found significant
relationships between a subset of the metrics used and
change history, achieving accuracies above 90 percent,
detecting files with high propensity for change, on the

1 There are 6193 source code files in the Windows build for version 1.4.1

testing data sets. The results show that propensity for
change is related to the chosen metrics and is dominated by
two of them, fan-out and total lines of code.

The results are similar to those of a previous paper that
used Multiple-Linear Regression as the analysis tool. We
followed with this work to see if the nonlinear modeling
properties of a three-layer neural network could provide
improved accuracy, and found that that was indeed the case,
although the basic conclusions regarding the significant
metrics are the same. Finally, we produce a linguistic model
of the network predictions, based on fuzzy rule sets [8] [9].
The linguistic model may be a more natural way for
developers and managers to interpret results of analyses like
this.

II. INCREMENTAL NEURAL MODEL
Three-layer (single hidden layer) feed-forward neural

networks with hidden layer sigmoidal transfer functions are
universal approximators; they are capable of approximating
any continuous multivariate function, to any desired degree
of accuracy, given a sufficient number of hidden layer nodes
[10] [11].

Weights are usually initialized to random small values,
and back-propagation training is a highly nonlinear
deterministic process that causes neural networks that have
similar weights to diverge during training. Similar to brain
development, this training can be seen as organic growth,
with hidden layer nodes (neurons) taking on responsibilities
to detect certain recurrent patterns in data that correlate with
output. This organic differentiation of the hidden layer
nodes often does not have a single solution, even if we count
all possible rearrangements of the hidden nodes as the same
solution.

Two neural networks trained separately may have hidden
layer nodes that detect different important patterns in input.
Building a neural network incrementally takes advantage of
the possibility that two separately trained neural networks
may be able to compensate for and complement each other.

Building a neural network incrementally consists of four
steps summarized below then expanded:

• Read and prepare the data: quantize, normalize,
separate into training and testing sets.

• Train small (m × 2 × 1)2 neural networks on
remaining delta (output) that is not yet accounted for.

2 The network has m input neurons serving a fan-out function, 2 hidden

neurons employing a non-linear transfer function, and one output neuron
employing a linear transfer function.

Steven B. Morphet, James Fawcett, Kanat Bolazar, and Murat Gungor

Neural Net Analysis of the Propensity for Change in Large Software
Systems

0-7803-9490-9/06/$20.00/©2006 IEEE

2006 International Joint Conference on Neural Networks
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

2606

• Combine these small networks into a larger network,
but only select those that improve the predictive
ability as evidenced by production of good results on
the test set.

• Perform a final pruning of the overall network.

A. Step 1
We analyzed all the files of one Mozilla module, using the

following metrics for each file3:

Fan-in and fan-out require a dependency graph to first be

produced. A dependency graph is a directed graph with files
as the nodes and their dependencies as the edges. Fan-in is
the number of incoming edges to a node, while fan-out is the
number of outgoing edges from a node. (These are inter-file
metrics.)

The other metrics are intra-file metrics discovered by
static analysis of code.

Most central files used in Mozilla have been in Mozilla
for many years. The eleven metrics constitute the inputs to
our neural network. The neural output is change count (cc).
This is the change count over the whole life of a file, and it
is extracted from the change log in the repository.

We quantize this change count by separating those files
that have 25 or more changes over their whole life, and those
files that have fewer than 25 changes. The goal is for the
team leader and project manager to discover problem files in
the system. Once trained, this neural network should be able
to predict which files need many changes and may need
special attention.

With the eleven inputs metrics, and quantized change
count as the output, we create a set of input-output vectors.
80% of this data set is used in training; the remaining 20% is
the test set (to be used later to improve the generalizing
ability of the neural network).

B. Step 2
Using the training data set, we train an 11 × 2 × 1 feed-

forward neural network, consisting of two hidden nodes

3 These metrics were chosen because they were computable from the
stored information in the Mozilla source code repository.

employing a sigmoidal transfer functions, and a single
output node employing a linear transfer function.

Even after training (via back-propagation in this case), the
output of this small neural network will quite probably not
match the expected output completely. If the mean squared
error between the difference replaced the output training
vector and a new 11 × 2 × 1 neural network with sigmoidal
hidden layer nodes and a linear output node is created and
trained.

This process repeats until the mean-squared error falls
below a predetermined threshold.

C. Step 3
At the completion of step 2, N small neural networks have

been created. These networks are combined into a single
larger network.

Since every small neural network has the same input set,
and each has only a single output neuron employing a linear
transfer function, combining two (or more) of these
networks into a larger network is a straightforward process.
Specifically, the hidden neurons of the second network are
moved into the first network. These new hidden neurons are
then connected to the input nodes and output neuron using
the corresponding weight values found in the second
network. Given any input vector I, presenting I to the first
and second small networks and adding their outputs will
result in exactly the same value as presenting I to the larger
network derived from combining the two small neural
networks.

This process repeats with the combined network from the
previous step becoming the first small network, and the
second small network is the next 11 × 2 × 1 neural network
derived in step 2.

As a point of optimization, if the resulting neural network
derived from combining two smaller networks does not
demonstrate improved predictive ability (as measured by the
performance on the test set), the newly derived network is
rejected and processing continues with the previously
derived network and the next small network. For example,
if twenty 11 × 2 × 1 neural networks are created but only
four of these networks improve results on the test set, the
combined network is an 11 × 8 × 1 network with hidden
layer nodes copied from the four 11 × 2 × 1 neural networks,
and a linear output node (derived as a linear combination of
the four output nodes from the 11 × 2 × 1 neural networks).

D. Step 4
As a last greedy step, each hidden layer neuron is

removed in turn and the accuracy of the overall network is
reassessed on the test data. If the modified network’s
performance is unacceptable, the hidden neuron is
reinserted; otherwise, the hidden neuron is left off. In either
case, processing continues with the next hidden neuron.

III. SENSITIVITY ANALYSIS

TABLE I
EMPLOYED METRICS

METRIC DESCRIPTION

 fi fan-in (number of dependent files)
 fo fan-out (number of files depended upon)

 mcc maximum CC (cyclomatic complexity)
 tcc total CC
 acc average CC
 mfs maximum function size
 afs average function size
 fc function count
 scs strong component size (mutual dependency set size)
 godc global object declaration count
 tloc total lines of code

Software metrics employed in this analysis.

2607

In order to reduce the number of inputs used to train the
neural network, sensitivity analysis has been conducted on
the original 11 inputs. Sensitivity analysis is performed in
the following manner:

• Given a dataset, the base accuracy of the neural

network is established.
• Next data associated with a given input is randomized
• This new dataset is presented to the neural network
• The output accuracy of the neural network is

compared against the base accuracy (and a running
total is maintained)

• Steps 2 through 4 are repeated for the same input
until the running total (of that input) stabilizes

• The entire process repeats for all inputs

The data associated with an input having no effect on the

neural network’s output can be completely randomized
without effecting accuracy. Likewise, the data associated
with inputs having little effect on the neural network’s
output can also be randomized with little effect on neural
network accuracy. Multiple neural networks are trained on
the data and sensitivity analysis is performed on each. The
following table shows the results of marginalizing each input
in turn for each of 10 trained neural networks.

From table II, the “strong component size” input is the

least important of the inputs (accuracy is effected the least).
As such, it was eliminated, and the training process rerun.
Proceeding in this fashion, the process of sensitivity

analysis/retraining continues until the networks can no
longer reliably train. The final results of input elimination
by sensitivity analysis are shown below.

Eliminating “maximum cyclomatic complexity” results in

a data set that is extremely difficult to train on. Therefore,
after sensitivity analysis is complete, the set of training

inputs consists of:

IV. FUZZY MODEL
The principal objective of neural networks is to model

functional mappings describing the relationship between
inputs and outputs within data sets. While neural networks
often train on these mappings successfully, they nevertheless
remain black boxes. The desire to generate linguistically
interpretable rule sets from black box models has led to a
unique fuzzy model extraction technique.

The methods that extract fuzzy system from neural
networks, presented in the literature, may be divided into
two categories: pedagogical – extracting global relationships
from the inputs and outputs of the network directly, and
decompositional – analyzing individual neurons within the
network. In this paper, a decompositional modeling
approach for extracting fuzzy systems from neural networks
is employed. The approach may be summarized as follows:

• Individual fuzzy systems are extracted from each

neuron in the network’s hidden layer.
• Since the results of pedagogical methods are typically

more interpretable than decompositional methods
(one rule set as opposed to many), a method for

TABLE IV
EMPLOYED METRICS

METRIC DESCRIPTION

 fo fan-out (number of files depended upon)
 mcc maximum CC (cyclomatic complexity)
 tloc total lines of code

Software metrics employed after sensitivity analysis.

TABLE III
SENSITIVE INPUTS

NN BASE
ACCURACY FO MCC TLOC

81 0.9888 0.3123 0.9466 0.2056
82 0.9333 0.3041 0.3726 0.3748
83 0.9666 0.3694 0.6021 0.2766
84 0.9444 0.3208 0.2501 0.2920
85 0.9111 0.3437 0.8774 0.3261
86 0.9444 0.3076 0.5931 0.2732
87 0.9444 0.3591 0.8900 0.3872
88 0.9333 0.3396 0.7525 0.4544
89 0.9666 0.3614 0.6025 0.2710
90 0.9444 0.3152 0.2452 0.2950
 Average: 0.3333 0.6132 0.3156

Most sensitive inputs for neural networks 81 through 90.

TABLE II
SENSITIVITY ANALYSIS

NN BASE
ACCURACY FI FO MCC TCC ACC

1 0.9444 0.8737 0.2961 0.3287 0.9121 0.6243
2 0.9222 0.8616 0.3288 0.5208 0.3631 0.8808
3 0.9222 0.8612 0.3037 0.2148 0.2137 0.3970
4 0.9222 0.8198 0.2647 0.3036 0.2561 0.7252
5 0.9333 0.8854 0.2668 0.3014 0.2260 0.8956
6 0.9666 0.6640 0.3076 0.3524 0.3921 0.3965
7 0.9222 0.9177 0.3638 0.3262 0.6707 0.8885
8 0.9333 0.6235 0.2986 0.2020 0.4966 0.8548
9 0.8666 0.8105 0.3216 0.2677 0.7394 0.8370

10 0.9000 0.8764 0.3155 0.5230 0.2448 0.8393
 Average:

0.8194 0.3067 0.3341 0.4514 0.7339

 MFS AFS FC SCS GODC TLOC
1 0.9034 0.9153 0.4964 0.9153 0.8883 0.2708
2 0.8911 0.6230 0.9057 0.9025 0.9166 0.4721
3 0.8720 0.5422 0.8937 0.9016 0.8666 0.2414
4 0.8964 0.6777 0.8896 0.8740 0.9004 0.9213
5 0.9054 0.5012 0.8974 0.8993 0.8376 0.9122
6 0.2317 0.4371 0.3371 0.7775 0.5160 0.4344
7 0.3273 0.8887 0.8433 0.9002 0.6572 0.2485
8 0.9233 0.5465 0.3275 0.9064 0.6257 0.5787
9 0.8194 0.5632 0.8510 0.8644 0.4653 0.7091

10 0.5341 0.5841 0.8482 0.8753 0.8431 0.5445
Av: 0.7304 0.6279 0.7290 0.8816 0.7517 0.5333

Results of sensitivity analysis for neural networks 1 through 10.

2608

combining the individual fuzzy systems is applied.
• In the final step, the number of rules is reduced and

the antecedents of any remaining rules are shortened
(provided that the output of the fuzzy system is not
adversely affected).

Since a decompositional approach is used to model each

hidden neuron and later combined into an overall solution,
the resultant fuzzy system is more truly representational of
the inner functioning of the neural network than standard
pedagogical methods.

In the development of fuzzy systems, one of the most
critical issues in the evaluation process is defuzzification.
The YAD defuzzifier employs an iterative process to
determine the crisp value. Algorithmically, YAD repeatedly
splits the fuzzy set, computing the running total of
differences in mean degrees of membership of these split
sets. YAD is linear in nature; that is, it is defined in terms of
the addition of fuzzy set values. As such, it possesses the
additive property, which means that adding the results of
two defuzzified fuzzy sets equivalent to adding the fuzzy
sets then defuzzifying. The additive property facilitates the
combining of these fuzzy systems into a single system that
models the behavior of the entire network.

Each hidden layer neuron in the neural network is
modeled via a single input/single output (SISO) fuzzy
decision tree (FDT). A SISO FDT has the topology of a
decision tree, but each branch of the SISO FDT fires to a
greater or lesser extent based on the degree of membership
of the corresponding branch expressions. (That is, each
branch has an associated expression of the form “input is
membership function,” which, when evaluated in fuzzy
terms, produces a degree of membership associated with the
branch.) Combining the branches’ degrees of membership
along the path from the root to the leaf node of interest
provides an overall weighting factor for the SISO rule set
associated with the leaf node.

To determine the output of a SISO FDT, evaluation
proceeds from the root to each terminal node. Each leaf is
treated as a special case of a multiple input/single output
(MISO) system – special in the sense that each rule has only
one input. As per MISO evaluation, the degrees of
membership of each rule’s antecedent subterms are
computed and weighted, and then fuzzy conjunction is
applied. The leaf weighting is then factored in. The
remainder of the evaluation proceeds in much the same
fashion as MISO evaluation.

Viewing a neural network at the level of the neuron,
modeling proceeds as follows:

• Consider a hidden neuron and its input weights to

comprise the black box to be modeled.
• Determine the number and shape of all input and

output membership functions. The number and shape
of all input membership functions across SISO
systems are identical.

• Determine the weights associated with rules of the
SISO FDT.

Replacing each hidden layer neuron in the neural network

with the SISO FDT generated in the above steps yields a
network of SISO FDTs.

1I

2I

niI

1α

2α

nsfα

Σ

1 FDTSISO

2 FDTSISO

nsfFDTSISO

...

O

Fig. 1. The network of SISO FDTs used to model the Mozilla data set.

Given the properties of the defuzzifier, the alpha terms

may be pushed into the rule weights of the SISO FDTs,
resulting in a new network where all the links between the
SISO FDTs and the summation unit have a weight of 1.0.

Additionally, since the input and output membership
functions in the above SISO FDTs are identical, any two
SISO FDTs can be combined into a single SISO FDT in a
mathematically exact way. Applying this approach
iteratively, a single SISO FDT may be derived that is
mathematically equivalent to the network of SISO FDTs.
As such, both the behavioral accuracy of a decompositional
approach and the linguistic interpretability of a pedagogical
approach are achieved.

V. CASE STUDY
The above technique was applied twice to the three input

(fo, mcc, and tcc) neural network trained on the Mozilla
dataset. The first application specified two input and two
output membership functions for the linguistic model. A
typical rule set generated is:

• if fo low ∧ mcc low ∧ tloc high, cc high (2.2405)
• if fo low ∧ mcc high ∧ tloc high, cc high (1.5447)
• if fo high ∧ mcc high ∧ tloc high, cc high (1.3763)
• if fo high ∧ mcc high ∧ tloc low, cc high (1.3763)
• if fo high ∧ mcc low ∧ tloc high, cc high (1.2850)
• if fo low ∧ mcc low ∧ tloc low, cc low (1.1230)
• if fo low ∧ mcc low ∧ tloc low, cc high (0.9226)
• if fo low ∧ mcc high ∧ tloc low, cc low (0.4273)

In other words, if either the fan out or the total lines of

code is high, then the change count is high. Restated, if both
the fan out and total lines of code are low, then the change
count is low. This is an intuitively appealing result,
especially since maximum cyclomatic complexity is the least
sensitive of the three inputs (as per the above sensitivity
analysis). Retraining the neural network and reapplying this

2609

process resulted in similar rule sets. The second application
specified three input and two output membership functions
for the linguistic model. A typical rule set generated is:

• if fo low ∧ mcc low ∧ tloc low, cc low (2.0484)
• if fo low ∧ mcc high ∧ tloc high, cc high (1.9967)
• if fo low ∧ mcc med ∧ tloc high, cc high (1.8653)
• if fo high ∧ mcc low ∧ tloc high, cc high (1.7276)
• if fo med ∧ mcc low ∧ tloc high, cc high (1.5543)
• if fo low ∧ mcc low ∧ tloc med, cc high (1.5026)
• if fo med ∧ mcc high ∧ tloc med, cc high (1.4292)
• if fo med ∧ mcc med ∧ tloc low, cc high (1.3763)
• if fo high ∧ mcc med ∧ tloc low, cc high (1.3763)
• if fo high ∧ mcc high ∧ tloc low, cc high (1.3763)
• if fo med ∧ mcc med ∧ tloc high, cc high (1.3763)
• if fo high ∧ mcc med ∧ tloc high, cc high (1.3763)
• if fo high ∧ mcc high ∧ tloc high, cc high (1.3763)
• if fo med ∧ mcc med ∧ tloc med, cc high (1.3763)
• if fo high ∧ mcc med ∧ tloc med, cc high (1.3763)
• if fo high ∧ mcc high ∧ tloc med, cc high (1.3763)
• if fo high ∧ mcc low ∧ tloc low, cc high (1.3653)
• if fo med ∧ mcc high ∧ tloc high, cc high (1.3507)
• if fo low ∧ mcc low ∧ tloc high, cc high (1.3151)
• if fo med ∧ mcc high ∧ tloc low, cc high (1.1904)
• if fo med ∧ mcc low ∧ tloc low, cc high (1.0541)
• if fo med ∧ mcc low ∧ tloc med, cc high (1.0095)
• if fo high ∧ mcc low ∧ tloc med, cc high (0.6523)
• if fo low ∧ mcc med ∧ tloc low, cc low (0.5908)
• if fo low ∧ mcc med ∧ tloc med, cc high (0.3685)
• if fo low ∧ mcc high ∧ tloc med, cc high (0.0977)
• if fo low ∧ mcc high ∧ tloc low, cc high (0.0248)

In other words, if the fan out is low and the maximum

cyclomatic complexity is not high and the total lines of code
is low, then the change count is low. This is also an
intuitively appealing result that further refines the result
discovered earlier. The addition of other membership
functions, such as “VERY LOW” and “VERY HIGH”
reveal that fan out is the most sensitive input of the three (a
verification of the sensitivity analysis hypothesis).

These linguistically interpretable rules clearly show what

the Mozilla project managers and team leaders should look
for while assessing and managing risk in a project. Ideally,
risk should be contained by proactive measures: Throughout
the development, both fan-out and total lines of code (and
possibly, also, maximum cyclomatic complexity) per file
should be measured, and neither metric should be allowed to
go above a limit, possibly by selectively refactoring high-
risk code.

VI. CONCLUSIONS AND FUTURE WORK
This paper presents a novel approach for analyzing the

relationship between code metrics and change count

histories. In order to capture the [potentially] non-linear
mapping between metrics and change count, a neural
network is utilized. Since neural networks function as black
boxes, a fuzzy modeling approach is employed to extract the
rule sets governing the neural computation. The Mozilla
dataset is used as a case study, and, as such, several software
metrics are gathered. Sensitivity analysis reveals that only
three of the measured metrics are necessary to a train neural
network to high accuracy. This is largely attributable to the
metrics selected (a function of the data available). A fuzzy
rule set is then generated for the neural network using a
novel decompositional approach. The interpretation of the
rule set is straightforward and intuitively appealing. While
the fidelity of the measured metrics is relatively low, the
potential of the model is demonstrated. Future work
includes running a similar test against a different base of
metrics (we are currently looking into different metrics
correlated with level of development effort).

REFERENCES
[1] German, D., Hindle A., and Jordan N. (2004). “Visualizing the

evolution of software using softChange,” Proceedings of the 16th
International Conference on Software Engineering and Knowledge
Engineering (SEKE), pp. 336-341.

[2] German, D. and Mockus A. (2003). “Automating the Measurement of
Open source Projects,” ICSE 2003, 3rd Workshop on Open Source
Software Engineering.

[3] Huntley, C. (2003). “Organizational Learning in Open-Source
Software Projects: An Analysis of Debugging Data,” IEEE
Transactions on Engineering Management, 50(4), pp. 485-493.

[4] Graves et al. (2000). “Predicting Fault Incidence Using Software
Change History,” IEEE Transactions on Software Engineering, 26(7),
pp. 653-661.

[5] Mozilla on Microsoft Windows 32-bit Platforms,
www.mozilla.org/build/win32.html.

[6] Stephens, L. (May 2004). “Advanced Statistics Demystified,”
McGraw Hill Incorporated.

[7] Huck, S. (2000). “Reading Statistics and Research,” Addison Wesley
Longman.

[8] Morphet, S.B. “Modeling Neural Networks via Linguistically
Interpretable Fuzzy Inference Systems.” Doctoral Dissertation,
Syracuse University, Computer Engineering Department. May 2004.

[9] Morphet, S.B., and L.B. Morphet. “Combining Single Input/Single
Output Fuzzy Decision Tree.” Submitted to the World Congress on
Computational Intelligence 2006.

[10] Cybenko, G. (1989). “Approximation by Superpositions of a
Sigmoidal Function,” Mathematics of Control, Signals and Systems,
2(4), 303-314. Correction appears in 5 (1995) p.455.

[11] Hornik, K., Stinchcombe, M., and White, H. (1989). “Multilayer
Feedforward Networks are Universal Approximators,” Neural
Networks, 2(5), pp. 359-366.

2610

