	PRIVATE
CSE 681 - Software Modeling and Analysis
	 Fall 2010

Project #5 – Continuous Integration Testbed (CIT)
Preliminary Architectural Concept

version 1.0
Jim Fawcett
20 October 2010
Motivation
As we’ve discussed in class, it is not unusual for professional software projects to require more than 100 developers, producing perhaps a few thousand packages. Projects of this size require organization, planning, and a significant amount of process to coordinate all the activities of the project teams. Part of what a process describes are the phases of development, e.g., initial customer specification, concept development, software specification, design, test, qualification, and deployment. There are several process models in current use:

1. The Waterfall model is an essentially linear walk through these phases in a single pass. There are, of course, always some iteration between phases as the team learns more about how things must be structured.

2. The Spiral model explicitly acknowledges this iteration by planning a series of releases which progressively accumulate features required of the final product. Each release uses something close to the Waterfall model to get to the release point.
3. Extreme programming adds to that several ideas like pair programming and test first development, that is, to define tests first, then build code to make the tests pass.

Most large projects are decomposed into subsystems with a separate team devoted to the development of each of these subsystem parts. It is common for these teams to work in isolation until they reach, perhaps after a few months of development, operational status. At that time the teams begin integrating their work with other teams to create the complete system
. Coarse integration of team’s products, like this, exposes a lot of latent errors, misconceptions, performance, and robustness issues when parts finally start to be joined. Coarse-grained integration is a frustrating, complex process that is initially not very productive.
This project intends to improve on that process by supporting continuous, fine-grained integration. Instead of waiting for several months to begin integration, we want to support integration on a continuous package-by-package basis.

Purpose of the Project:
The Continuous Integration Testbed (CIT) is designed to support continuous testing and integration of code throughout the lifetime of large software development projects. That is, every new or newly modified package is tested in the context of the current baseline, e.g., embedded in the entire system constructed up to the time of test. CIT encourages making these embedded tests every time a package is added to the baseline and every time an existing package is modified (so that a new version is checked into the baseline). This means much more than simply adding new code to a project and building and running the project. For example, every time a package is modified, we test the package and every package that depends, either directly, or indirectly, on the new addition, e.g., there will be at least one test at every level of the dependency chain.
Contrast this process with the conventional way of building large software projects. A team usually works for months getting to the point they are ready to integrate with the code from other teams. That means there may be a lot of latent problems that will need to be addressed at integration time. Anyone who has worked through one of these integration sessions can testify that they are initially not very productive. Problems with interfaces and incomplete or erroneous assumptions by a team about the behavior of software they depend on causes a lot of rework and often results in fairly ugly and hard to maintain code modifications. Also, there may be surprises concerning the performance or robustness of the integrated product that were not apparent before integration.
CIT plans to avoid most of this by detecting, immediately, problems with interfaces and assumptions about behavior and performance by testing quickly and continuously
 instead of waiting for scheduled integrations. The question is, how is this to be accomplished when project sizes are large, with hundreds of developers and thousands of packages? CIT answers this with a structure that provides Code Repository and Test Harness servers that are set up to run automated tests on properly configured software, and a test process that produces code suitably structured for these tests with a toolset to support the process.
Test Process

One of the things that distinguishes software from other technical constructs is the degree of interdependency between its parts.

Hardware abounds with repetitions of common parts, e.g., processors, memory chips, and so forth. In software, when we detect similar functionality in separate parts, we pull together the common code and make the other parts use it, e.g., become dependent on our extracted code. Dependency is good – it allows us to create hierarchal structures that can be reasonably well understood, even though they contain many lines of code. However, any time we change a part of that software, the depending parts may break and so we are obligated to test all of the dependent code. So what! Well, it is a big deal if there are millions of lines of code that depend on the part we just changed. Our goal is to order testing of software packages so that we start testing only those packages that have no dependencies within our base line. Then we test those packages that just depend on what we’ve already tested, and repeat until done.
Consider the hypothetical package dependency graph shown in Figure 1. Because of the mutual dependencies between packages 1, 3, 7, and 8, we are unable to find a package order that satisfies the criterion of the last paragraph. The best we can do is to treat each set of mutually dependent packages – a strong component in the language of graphs - as a unit. Then we can perform a topological sorting of the components so that at each level of testing we test only those packages that depend only on already tested code, but when we test a strong component we must test them together, and for each change, retest the whole strong component. We’ll refer to this as an optimal testing order.
The CIT test process consists of maintaining an optimal test order as new packages are added to the baseline, and testing those and any packages that may now depend on the new packages, at the time of check in. When an existing package is modified, we must retest all of the packages that depend on it. That means that we need to invert the dependency order found with DepAnal you developed in Project #2, so we have, for each file, all the files that depend upon it (instead, as with DepAnal, all the files on which it depends). You will need to show that you can invert the dependency relationships defined by DepAnal in order n time where n is the number of files analyzed.

There is one final thing to consider. Many of the packages may depend on shared data in a database and on shared environment provided by the platform. It may not be realistic to identify all those relationships so we should periodically test the entire baseline (perhaps over the weekend). We can do that top-down, starting with each root (executive) node in the dependency graph and work downward, using a depth first search. An equally viable alternative would be to test bottom-up, starting with the leaf nodes in the dependency graph and then testing parents. One good scheme for bottom-up testing would be to do a depth first testing on the inverted dependency graph. Why might you consider this better than top-down testing?
We might consider, for each package in the baseline, creating two test packages (see Project #4 statement for a definition), one that executes a fairly high level regression style test, and one that explores in a deeper way the operation of its tested code, perhaps close to unit test level. Each test driver is implemented as a callable set of processing that is incorporated into the baseline’s execution image(s). Top-Down or Bottom-Up testing consists of a depth first walk through the dependency graph, or inverted dependency graph, calling each high level test in turn. If any of these tests fail, we retest the failed package and continue with all its child packages, recursively, using the near unit-level test processing. Imagine that the test code provides an assert facility that, instead of aborting execution, throws an exception, which it catches at its highest level. It then turns on detailed logging and continues testing.

[image: image1.wmf]6

2

5

7

3

1

4

Package Dependency Graph

8

9

10

11

12

10

11

9

4

8

3

7

1

5

2

6

12

Topological Sorting of Dependencies

Test from bottom up to minimize retesting

when changes are required

Mutually dependent

packages in this level

(

strong component

).

Change any one of

these and you must

retest all of them

!

At each level

packages depend

only on packages in

a lower level

,

with the

exception of levels of

mutual dependency

.

Not mutually

dependent

,

so if you

change any one you

need not test the

others in this level

.

Figure 1. Ordering Packages for Testing

Note that test drivers will need to provide a means to compare correct operation with current operation. It is essential that the test driver design develop test inputs and predict the resulting output to compare with actual test outputs. The test succeeds only if predicted and actual outputs match. It is good practice to provide a test description and test procedure in comments at the beginning of the test driver code. That helps us think critically about required testing, and makes subsequent code easier to write and to understand.

A variant of Design By Contract (DBC) may be useful here. DBC works by establishing pre-conditions that each function caller must satisfy to expect correct operation, and post-conditions, that must be satisfied if the function is to be judged correct, given that the pre-conditions all pass. It is a formalism that attempts to raise the debugging developer’s use of asserts to a more rigorous and effective level. My personal opinion is that it often is very hard to define sensible pre and post conditions, but that testing should attempt to approximate that as widely as practical.

This predict and test against a written procedure requires a lot of work, perhaps doubling the time it takes to construct a package, since we are constructing both the package of production code and its test driver package. However, we expect to reap dramatic rewards in reduction of the time we spend debugging and modifying code at integration time.

Automated Testing

Evidently CIT will require a lot of testing – so much that it is impractical to do that manually, even if every developer participates. We need an automated process for testing, e.g., we need a Test Harness like that you implemented in Project #4. Our test process will mandate that every package, when being checked in, must be accompanied by a test driver package with a build process that results in a test library, as described in the requirements for Project #4.

We exclude Graphical User Interfaces (GUIs) as they are very hard to test in any kind of sensible automated process. For this reason, our CIT coding standards will demand that the only functionality a GUI provides is the acquisition and validation of user and platform data, and the display of results. All other functionality will be provided by packages the GUIs depend upon. Thus a quick visual test will be sufficient for CIT tests of the project GUIs.
Code Repository

So far we have mentioned check in several times, but have been vague about what that means. Just what are we checking code into? In order to support automated testing of a large and complex baseline we need a code repository that stores and safeguards individual packages. It must:
1. Uniquely identify each package by version and date.

2. Provide all required information about dependencies and inverse dependencies.

3. Support creation of test suites. Test suites are dated and versioned, and record the dates and versions of the test drivers and tested code managed by the suite.

4. Present to the test harness a sequence of suites that provide an optimal testing sequence, as described in the Test Process section. For top-down or bottom-up testing, each suite is likely to consist of all the files in each level of an optimal test sequence (see Figure 1.).

5. Support correlating with each test suite the mechanics (files, message prototypes, …) needed by the Test Harness’s test vector generator. This correlation should be versioned and dated.

6. Support correlating with each test suite a versioned and dated result set, e.g., test results summary, and any logs that were generated during its execution.

In order to provide this support it is clear that packages will have to be uniquely identified with versions and dates and that there needs to be some reliable means to determine if the package contents have been altered since the definition of its version. The repository will need metadata to capture dependency relationships - think of a dependency graph where the nodes are XML files that identify a source package and a test package including generators, and a results package.

Continuous Integration Testbed Configuration

The CIT configuration will consist of: a Code Repository, Test Harness, Clients, baseline and test state stored in the Repository, a set of tools to support CIT operations, and a set of Core Services that make all this work. Figure 2. shows this configuration.

The Tool Set will include:

1. DepAnal – source code dependency analyzer

2. DepInverter – dependency inverter

3. MetaData manager – provides XML manifest management (creation, editing, analysis), a graph facility to support identifying sets of mutually dependent files (strong components).

4. TestQuery – tool for asking interesting questions about the test results across time, teams, and packages.

5. Visualizer – tool with multiple views to show dependency structure, optimal test sequences, and test results. Visualizer will be used by TestQuery to present its results.

6. Message builder with serialization to and from XML strings. Object form is a simple class with properties for each XML element, e.g., source, destination, command, data, …. Using that avoids doing a lot of string copying. Only need to pass strings through the communication channels.

7. Wiki – Provides public documentation of test results and completion status.

8. Miscellaneous – source comparison and difference checking, …

Core Services are facilities that users don’t interact with directly but which provide necessary operations for CIT to work. These services include:
1. Communication

2. Package management with integrity infrastructure

3. Versioning

4. backup

5. Repository traversal

6. Web applications (for Wiki and other documentation)
7. Notification

You may think of some others.

[image: image2.wmf]Code Repository

Test Harness

Client

Communication

Link

Communication

Link

Tool Suite

Communication

Link

Communication

Link

Figure 2. Continuous Integration Testbed Configuration

Requirements:

Your CIT Architecture document:

1. shall be prepared as a Microsoft Office Word file, using embedded Visio diagrams.
2. shall discuss the CIT test process as part of the initial CIT concept. Explore questions like “How do we test every level of a large system without creating a huge number of execution images, at least one for each level of testing?” “How long is that expected to take?”, etc.
3. shall partition CIT processing into subsystems. You should partition at a more detailed level for critical subsystems.

4. shall explore and describe the user interface(s) you will provide and interfaces between each of the subsystems.

5. shall describe the uses/responsibilities, activities, events, and interactions of each of the partitions in your architecture.
6. shall use both text and diagrams for the descriptions in 4, above.
7. Shall provide conclusions and recommendations concerning the feasibility, and critical issues for, continuous integration and test using your CIT architecture.
8. shall prepare at least one software prototype to help you explore the CIT architecture and its issues. Please document prototype code you develop in an Appendix. Note that prototype code should effectively support your conclusions and recommendations concerning the Continuous Integration Testbed System. Prototypes will be judged by the effectiveness of their design and implementation, the usefulness of its output to convey information about CIT, and the strength of the conclusions you draw, based on the prototype(s).

Prototypes (listed in order of increasing difficulty):

Below find some suggested prototypes. Some of these are fairly simple to implement, some are quite challenging
.
1. Code Repository Metadata management
a. Creation and editing of metadata, traversal of metadata-based package network, based on its dependency links.

b. Timing analysis to find any upper limits to the practical size of the package network, e.g., the time it takes to traverse the repository.
c. Metadata Browsing capability.

2. Cache management for dependency analysis.
a. The only time we need to use DepAnal is when we submit many new packages in a single check in. We then run DepAnal on the newly entering packages to identify metadata changes needed in the repository.

3. TestQuery
a. Efficiently traverse the metadata network to execute queries. This prototype will need a query language developed that is tuned to its function.
4. WPF-based Visualizer for TestQuery results
Concluding Comments:
This project statement has provided an initial structuring of the CIT system. You are asked to review this structure and make any revisions that seem appropriate. Then you are to explore the structure and activities of each of the services defined above, and consider any additional services that would improve the usability and effectiveness of the system.

The initial concept is virtually silent about:

1. Suitable user interfaces.

2. The mechanics of file transfer and caching.

3. Details of the communication system.

4. Services provided by Message Handler, Query Handler, and how and when notifications are required.
5. Performance issues associated with analysis and testing.

6. Performance issues associated with contention between concurrent clients accessing the repository.
There are more questions about these services and about the other services which will be left for you to enumerate and explore.
References:

1. Algorithm for finding strong components:

http://www.cs.cmu.edu/afs/cs/academic/class/15451-s06/www/lectures/DFS-strong-components.pdf
2. C# High Resolution Timer, based on performance counters:
 http://www.ecs.syr.edu/faculty/fawcett/handouts/CSE681/code/HiResTimerInterop/

� The Spiral Model decomposes in Project schedule time. Subsystem teams decompose in Project product space.

� Projects that are organized to support evolutionary programming processes, e.g., the Extreme Programming or the SCRUM processes, have the same objectives. They are just fairly silent about how they will actually accomplish continuous testing. Note that evolutionary programming has been used primarily for small projects where the mechanics of how continuous testing and integration occur are not terribly important, e.g., if there are perhaps half a dozen developers on the project. It is much harder to accomplish this when projects are large, with hundreds of developers.

� The more challenging prototypes would make excellent Master’s Projects for CE students.

PAGE
8 | Page

_1348222430.vsd
State

Drag the side handles to change the width of the text block.

8

9

10

11

12

6

2

5

7

3

1

4

10

11

9

4

5

2

8

3

Package Dependency Graph

7

1

6

12

Topological Sorting of Dependencies
Test from bottom up to minimize retesting when changes are required

Mutually dependent packages in this level
(strong component).
Change any one of these and you must retest all of them!

At each level packages depend only on packages in a lower level, with the exception of levels of mutual dependency.

Not mutually dependent, so if you change any one you need not test the others in this level.

_1348232822.vsd
Code Repository

Test Harness

Client

Communication
Link

Communication
Link

Tool Suite

Communication
Link

Communication
Link

