
Chapter 6 - Hierarchy 1

Chapter 6 - Hierarchy

Jim Fawcett
CSE687 – Object Oriented Design

Spring 2015

CSE687 – Object Oriented Design Class Notes

Chapter 6 - Hierarchy 3

Compositions are special associations which model a “part-of” or
“contained” semantic relationship.

Class X {

// public declarations here

private:

Y y;

Z z;

};

In this diagram class X contains objects of classes Y and Z.
Classes Y and Z are part-of class X.

Composition is transitive. That is, if class A contains B and class
B contains C, then A also contains C.

class X class Y

class Z

Composition

Chapter 6 - Hierarchy 4

Aggregationss are special associations which model a weak
“part-of” or “contained” semantic relationship.

Class X {

// public declarations here

private:

Y* pY; // created in member function

Z* pZ; // with new only if needed.

};

In this diagram class X holds references to objects of classes Y
and Z. Those instances may be part-of class X.

class X class Y

class Z

Aggregation

Chapter 6 - Hierarchy 5

 An object of one class may be used as a data element of another.

 This is called composition. Member objects are used to implement a
“part of” relationship.

 The containing class has no special access to contained object’s
private data unless it is made a friend. But an object of the
containing class can pass initialization data to the contained object
during construction.

public interface functions

private functions

private dataprivate data

private functions

Hierarchy via Composition

Chapter 6 - Hierarchy 8

Inheritance models an “is-a” semantic relationship. Here classes
Y and Z inherit from class X.

class Y : public X { … }

class Z : public X { … }

That means that class Y “is-a” class X and the same must be true
for class Z. The “is-a” relationship is always a specialization.
That is, both classes Y and Z must have all attributes and
behaviors of class X, but may also extend the attributes and
extend and modify the behaviors of class X.

class X

class Y class Z

Inheritance

Chapter 6 - Hierarchy 9

 Inheritance enables the derivation of a new class
with almost all the existing methods and data
members of its base class.

 Derived class functions have access to protected
data and functions of the base class.

 The derived class “is a” base class object with addi-
tional capabilities, creating a new specialized object.

protected data
protected functions

public interface functions

protected data

base class

derived class

Hierarchy via Inheritance

Chapter 6 - Hierarchy 10

public

members

protected

members

private

members

public

derivation

models is-a
relationship

client sees all base and
derived class behaviors

public members
of base class
become public
members of
derived class

 (stay the same)

protected mem-
bers of base class
become protected
members of
derived class

 (stay the same)

private members
of base class are
not accessible to
derived class

protected

derivation

models uses
relationship

client sees only derived
behaviors

public members
of base class
become
protected
members of
derived class

protected mem-
bers of base class
become protected
members of
derived class

 (stay the same)

private members
of base class are
not accessible to
derived class

private

derivation

models uses
relationship

client sees only derived
behaviors

public members
of base class
become private
members of
derived class

protected
members of base
class become
private members
of derived lass

private members
of base class are
not accessible to
derived class

Derived Class Access Privileges

Chapter 6 - Hierarchy 12

graphics

object

line circle polygon

display

list

Graphics Editor Classes

Chapter 6 - Hierarchy 13

 Syntax: class derived : public base { ... };

 Public derivation makes all of the base class function-
ality available to derived class objects. This has two very
important consequences:

– clients interpret the derived object as a base class object with either
specialized, or new capabilities, or both.

– a derived class object, since it is a base class object, can be used
anywhere a base class object can be used. For example, a function
typed to accept a base class pointer, or reference, will accept a
derived class pointer, or reference in its place.

 New capabilities occur when the derived class adds new
member functions or new state members which give the
derived object richer state and functional behaviors.

 Specialized capabilities occur when the derived class
modifies a base class virtual function.

– The base class object and derived class object respond to the same
message, but in somewhat different ways, determined by the
implementations of the virtual function in each class.

– Because the modified function is qualified in the base class by the
keyword virtual, which function is called is determined by the type of
object invoking it.

Public Inheritance – “is-a”

Chapter 6 - Hierarchy 18

 Consider the display list example from the next page. Objects
on the list may be any of the types derived from graphicsObject.
The display list is said to contain a heterogeneous collection of
objects since any one of the graphicsObject types can occur on
the list in any order.

 The list manager needs to be able to apply one of several
specific operations, like draw() or hide(), to every member of
the list. However, draw() and hide() processing will be different
for each object.

 Languages which support object oriented design provide a
mechanism called polymorphism to handle this situation. Each
object determines for itself how to process draw() or hide()
messages.

 This powerful mechanism is implemented in C++ using virtual
functions. Each derived class redefines the base class virtual
draw() and hide() member functions in ways appropriate for its
class, using exactly the same signature as in the base class.

 We say that the graphicsObject base class provides a protocol
for its derived classes by specifying names and signatures of the
polymorphic (virtual function) operations.

Polymorphism

Chapter 6 - Hierarchy 19

 When a virtual function is redefined in a derived class there are multiple
definitions for the same signature, one for each derived class
redefinition and often one for the base class as well. Which is called?

 Suppose that a base class member function, say

virtual void graphicsObj::draw() {...}

is redefined by each of the derived graphics objects. If myLine is an
instance of the line class, an invocation

myLine.draw()

will invoke the version defined by the line class.

 If, however, a display list object has a list of pointers to base class
graphicsObjects, the list can point to any derived object, line, circle, ...
and an invocation:

listPtr[i] draw();

will call the draw function of the object pointed to, e.g. line, circle, ... ,
polygon.

graphicsObject

line circle polygon

display list

Polymorphism (cont)

Chapter 6 - Hierarchy 22

 A base class like graphicsObject should probably never be
instantiated.

 This can be prevented by making graphicsObject an abstract
base class. We do that by defining at least one pure virtual
function in the class, e.g.:

class graphicsObject {

public:

virtual void draw() = 0;

- - -

};

 The draw() = 0 syntax tells the compiler that draw may not be
called by a client of this class. This in turn means that no
instance of the class can be created. It isn’t widely known that
a body may be defined for a pure virtual function, although we
usually don’t need to do that.

graphicsObject

line circle polygon

display list

Abstract Base Class

Chapter 6 - Hierarchy 23

 No instance of an abstract class can be created. To
attempt to do so is a compile time error.

 If a derived class does not redefine all pure virtual
functions in its base class it also is an abstract class.

 If all pure virtual functions are properly redefined in
the derived class, that is, with exactly the same
signatures as in the base class excluding the “= 0”
part, then instances of the derived class can be
created.

 Abstract base classes are called protocol classes
because they provide a protocol or communication
standard by which all derived classes must abide.

Abstract Base Class (cont)

Chapter 6 - Hierarchy 24

This example simulates an elevator which visits only two floors.
When on the first floor the elevator is stationary until the up
button is pressed. It then travels toward the second floor. The
arrival event brings the elevator to the second floor. It remains
stationary on the second floor until the down button is pressed.
It then travels toward the first floor. An arrival event brings the
elevator back to the first floor.

This event sequence is described by the state transition diagram
shown on the next page. The elevator simulation consists of
implementing the state mechanism with one derived class for
each state and a global event processing loop.

The base class defines, as member functions, each of the events
the system must respond. The base class members all return
pointers to themselves without taking any other action. This
essentially defines null events.

Derived classes override any event which will cause a transition
out of that state by returning a pointer to the next state. So, for
example, StateOnFirstFloor over-rides upButton to return a
pointer to StateGoingUp. Here again, we see polymorphic
operation allowing each state object to determine how it
responds to the protocol established by the ElevState base class.

Finite State Machine Example

Chapter 6 - Hierarchy 25

Elevator States:

Event Loop:

Class Hierarchy:

OnFirstFloor GoingUp

OnSecondFloorGoingDown

UpButton

DownButton

ArrivedArrived

GetEvent

ProcessEvent

ElevState

StateOnFirstFloor

StateGoingUp

StateOnSecondFloor

StateGoingDown

UpButton()

DownButton()

Arrival()

FSM Elevator Example

Chapter 6 - Hierarchy 26

 When a class is publicly derived from a base class most
of the base class member functions are inherited along
with all the base class data attributes. However, there
are a few members which are not inherited:

– Constructors must be defined for derived class. They
automatically call a base class constructor as their first operation.
Derived constructors initialize the new data attributes defined by
the derived class and pass initializing values to the base class
constructors (see example code demInherit3.cpp).

– Destructor must also be defined for the derived class. It should
release resources allocated by the derived class. All base class
resources are released by the base class destructor which is
automatically called by the derived destructor as its last operation.

– Assignment operator must be defined for the derived class. An
assignment operator should explicitly invoke its base class
assignment operator to assign base class data attributes and then
assign any derived class data attributes.

 Under private inheritance none of the base class
operations are accessible (to a client) by default.
However, one or more member functions can be made
accessible by including in the derived class declaration
the expression:

base : baseMemberFunction

base is the name of the base class and
baseMemberFunction is the name of the base class
member function to be made accessible.

Members not Inherited

Chapter 6 - Hierarchy 27

 Since derived classes do not inherit constructors, the
destructor, or assignment operator, these members are
created by the compiler if needed.

– if no constructors are declared by a class, the compiler will
define void constructor which is used to build arrays of
objects of that class. It does member-wise void
constructions. If any other constructor is declared for the
class a void constructor will not be defined by the compiler.
In this case, declaring an array of objects is a compile time
error.

– if no copy constructor is declared by a class the compiler will
define one which does member-wise assignment of data
attributes from the copied object to the constructed object.
This is used for all call and return by value operations.

– if no destructor is declared the compiler will define one
which performs member-wise destruction of each of the
class data attributes.

– if no copy assignment operator is declared by a class the
compiler will define one, if needed, which does member-wise
assignment of the class’s data attributes.

 Note that these default operations may not be what is
needed by the class. For example, if a class contains a
pointer data element, default copying or assignment will
result in copying the pointer, not what is pointed to. This
is termed a shallow copy. Usually what is wanted is a
deep copy. That is, allocating new memory for the
pointed to object, copying the object into new memory,
and assigning the address of the new object to the
pointer data element.

Default Members

Default Moves

 If no copy constructor, copy assignment, and
destructor are declared, then move constructor
and move assignment will be implemented by
the class.

 The defaults do move operations on the class’s
bases and data members.

 As on the previous slide this may not be what
you want.

 The design of every class must decide whether
to accept the default members, or define those
members, or dis-allow them (with the =delete)
syntax.

Chapter 6 - Hierarchy 28

Chapter 6 - Hierarchy 29

A derived class may have more than one base class. In this case
we say that the design structure uses multiple inheritance.

The derived “is-a” base 1 and “is-a” base 2. Multiple inheritance
is appropriate when the two base classes are orthogonal, e.g.,
have no common attributes or behaviors, and the derived class is
logically the union of the two base classes.

The next page shows an example of multiple inheritance taken
from the iostream module. The class iostream uses multiple
inheritance to help provide its behaviors.

base class 1 base class 2

derived class

Multiple Inheritance

Chapter 6 - Hierarchy 30

ios

istream ostream

istream_with_assign istrstream ifstream ostream_with_assignostrstreamofstreamiostream

fstream strstream stdiostream

streambuf

stdiobuffilebuf strstreambuf

Stream Library

Class Relationships

iostream Hierarchy

Chapter 6 - Hierarchy 31

 A derived class D may inherit from more than one base class:

class D : public A, public B, ... { ... };

 A, B, ... is not an ordered list. It is a set. The class D
represents the union of the members of classes A, B, and C.

 If a member mf() of A has the same signature as a member
of B, then there is an ambiguity which the compiler will not
resolve. Sending an mf() message to a derived object will
result in compile time failure unless it is explicitly made
unambiguous:

d.A::mf();

 A constructor for D will automatically call constructors for
base objects, in the order cited in D’s declaration.

 D’s constructor may explicitly initialize data members of each
of the base classes by naming parameterized base
constructors in an initialization list:

D(Ta a, Tb b, Tc C) : A(a), B(b), C(c) {...}

Multiple Inheritance (cont)

Chapter 6 - Hierarchy 33

 Suppose we have the situation:

class B : public A { ... }; class C : public A {

... };

class D : public B, public C { ... };

 Since D contains the attributes of all its base classes, all
of the attributes of A are repeated twice in D.

A

B C

D

Dreaded Diamonds

Chapter 6 - Hierarchy 34

 Suppose we have the situation:

class B : public A { ... };

class C : public A { ... };

class D : public B, public C { ... };

 Since D contains the attributes of all its base
classes, all of the attributes of A are repeated twice
in D.

Dreaded Diamonds

A A

CB

D

Chapter 6 - Hierarchy 35

 Base class constructors are called implicitly by derived
class constructors. The B and C constructors are called
by D’s constructor.

 Who calls A’s constructor?

 B will call its A constructor. C will call its A constructor.

A A

CB

D

Construction Sequence

Chapter 6 - Hierarchy 36

 We can avoid duplication of A’s members by making it a
virtual base class:

class B : virtual public A { ... };

class C : virtual public A { ... };

class D : public B, public C { ... };

 Now an object of the D class contains only one set of
base class A’s attributes.

CB

D

A

Virtual Base Classes

Chapter 6 - Hierarchy 37

 We can avoid duplication of A’s members by making it a
virtual base class:

class B : virtual public A { ... };

class C : virtual public A { ... };

class D : public B, public C { ... };

 Who calls A’s constructor? The constructor for B? The
constructor for C? C++ resolves the ambiguity by
requiring the most derived class to invoke a virtual base
class’s constructor. So D’s constructor will construct B
and C and A. Note that that sequence is different than
for any derivation chain with non-virtual base.

CB

D

A

Construction Sequence

Chapter 6 - Hierarchy 38

 A constructor of a derived class may explicitly initialize its
base(s) with the syntax:

B(Ta a) : A(a) { ... }

 A virtual base class must be initialized by the most derived
constructor, so, for example:

class B : virtual public A { ... };

class C : virtual public A { ... };

class D : public B, public C { ... };

A will be initialized by:

D(Ta a, Tb b, Tc c) : A(a), B(b), C(c) { ... }

If A were not virtual B’s copy would be initialized by B and
C’s copy would be initialized by C.

 Note that changing a base class from non-virtual to virtual
can break correct code.

Initializing Virtual Base Classes

End of
Presentation

