
Chapter 4 – Abstract Data Types

Jim Fawcett

Copyright © 1997-2016

CSE687 – Object Oriented Design Class Notes

Chapter 4 - Abstract Data Types 2

 C++ provides strong support for data abstraction:

 designers create new types using classes

– classes have both data members and member functions

– these are divided into a public interface and private or
protected implementation

 objects (instances of a class) are essentially active data.
Public members provide safe and simple access to data
which may have complex internal and private management

 objects are declared and destroyed in exactly the same
way that variables of the basic C language types are.

– user defined constructors build class objects when they
are declared

– user defined destructors remove the objects when they go
out of scope

 Operators can be overloaded to have meanings unique to
each class

– overloading, which applies to all functions, not just
operators, is accomplished by using the function’s
signature (name and types of formal parameters) as its
identifier. Thus two functions with the same name but
different argument types represent unique functions.

Data Abstraction

Chapter 4 - Abstract Data Types 3

 C++ supports data abstraction by enabling a designer to
develop new data types

– classes provide facilities for user defined types

– an object of a class can be provided with virtually all of
the capabilities of the built in types, e.g., int, char, float,
etc.

– C++ provides syntax for user defined classes which
looks just like that used for built in types

 C++ operators new and delete directly support the run-
time creation of objects

 Unlike packages, class declarations may be used to
create many objects, determined either at compile time
or run time.

 Essentially a class is like a fine-grained package with a
public interface, and private implementation, but with the
additional features:

– many instances, that is objects, can be declared

– new instances can be created at run time

– the language provides special syntax for classes to
mimic that of the built in types

Support for Data Abstraction

Chapter 4 - Abstract Data Types 4

 A class establishes the operations and “look and feel” for the
objects it creates.

 We normally expect a class to provide the following operations
for its objects:

– construction:
allocate any required resources for the object and provide a syntax
for the client to invoke

– destruction:
deallocate resources and perform any needed cleanup

– arrays:
provide for the construction of arrays of valid initialized objects

– passing to functions:
support passing objects to functions and the return of objects from
functions by value, pointer, or reference

– observing and modifying object state:
provide accessor and mutator functions which disclose and make
valid modifications of an object’s internal state

– assignment of objects:
assign the value (state) of one object to another existing object

– coercion of objects:
provide for promotion of some foreign objects to objects of this
class, provide cast operators (only) to the built in types

– operator symbolism:
often we want the vocabulary provided by the class’s public
interface to include operator symbols like ‘+’, ‘-’, ...

 While providing these operations we expect the class to protect
and hide its internal implementation.

Classes

Chapter 4 - Abstract Data Types 5

class declarations

class X {

public:

// promotion constructor

X(T t);

// void ctor for arrays

X();

// destructor

~X();

// copy ctor

X(const X& x);

// accessor

T showState();

// mutator

void changeState(T t);

// assignment

X& operator=(const X&)

// cast operator

operator T ()

private: ...

};

code using class objects

// promote type T to type X

X xobj = tobj;

// declare array of n elems

X xobj[n];

// destruction calls are

// usually implicit

// pass object by value

funct(X xobj);

// access state

T t = xobj.showstate();

// change state

xobj.changeState(t);

// assign

xobj2 = xobj1;

// explicit cast

T t = T(xobj) or (T)xobj;

or static_cast<T>(xobj);

// implicit cast

T t = xobj;

Class and Object Syntax

Chapter 4 - Abstract Data Types 6

 An object is a protected region of memory, containing
internal state (its data), and operated on by a family of
functions (its class’s member functions) which provide access
to and modify its state:

– some control the object’s external behavior, e.g., its
public interface.

– others manage its data, e.g. its private implementation.

 The only client access to the object’s state is through calls to
its public interface functions.

 A class is a pattern which determines the nature of the
object. As each object is declared, the class pattern is used
to stamp out a region of memory to hold state data for that
object.

 The object’s state is distinct from the state of every other
object of that class, and is managed by class functions and
by client calls to its public interface.

 In a sense, a class is a sophisticated memory manager,
which can set up islands of functionality and state, one for
each declaration of an object.

 An object is a set of active data which can perform
transformations on itself directed by client requests.

What is an Object?

Chapter 4 - Abstract Data Types 7

STR Class

 In the next few pages we examine an
implementation of an abstract data type
representing strings.

 Each of the most important member functions
are dissected. We discuss their:

– declaration: how you declare member functions in
the class declaration (part of STR module’s header
file).

– Definition: how you define the function’s behavior
in its function body.

– Invocation: how you invoke this member of the
STR class.

 While this class makes a good vehicle for
instruction, you should prefer the string class
provided by the standard C++ library and
documented in class texts.

Chapter 4 - Abstract Data Types 8

STR Manual Page

Maintenance Page

Chapter 4 - Abstract Data Types 9

Class Declaration

Chapter 4 - Abstract Data Types 10

Len is current
char count. Max
is the size of
allocated storage

Chapter 4 - Abstract Data Types 11

 The pointer, _array, points to the first character in an
allocated memory array acquired by the string’s constructor
from the heap.

 Each string object holds its own string length and _array, and
its own allocated array of characters on the heap. A “this”
pointer is passed to each member function to tell it where to
find the invoking object.

code space:

str(s) { ... }
:

str& operator=(const str& s) { ... }
:

this

Data space:

myStr { _next, _max, _array }

[a s t r i n g \0]

Layout in Memory

Every str
object has
the same size

Sizeof(str) is
independent of size
of allocated storage,
so we can build
arrays of strs

Chapter 4 - Abstract Data Types 12

Implementation Prologue

///

// str.cpp - implementation file for string class //

// ver 1.4 //

// //

// Language: Visual C++, ver 6.0 //

// Platform: Micron Dual Pentium Pro 200, Win NT 4.0 //

// Application: ECS500 Example //

// Author: Jim Fawcett, ECS500 Instructor //

// Syracuse University, CST 2-187 //

// fawcett@ecs.syr.edu, (315) 443-3948 //

///

#include <iostream>

#include <cstring>

#include "str.h"

using namespace std;

 The prologue briefly describes the file, providing information about
the file’s version and the environment in which it was developed.

 Immediately below the prologue you place preprocessor include
statements to include declarations for any server modules and this
module’s own declarations.

 Note that you should always place needed includes in the
implementation file except for server declarations of constants and
types needed by the module’s own declarations. These includes
must be placed in the module’s header file. For this str module the
class declaration needs declarations of ostream for
operator<<(std::ostream &out, const str &s). So the header file
str.h includes the iostream declarations.

Chapter 4 - Abstract Data Types 13

STR Void (default) Constructor

 Purpose:

– to build a default object (or array of default objects)

– if, and only if, no constructors are defined by the class, the
compiler will generate a void constructor which does void
construction of class members

 Declaration (part of class declaration in header file):

str(int n=10); // can be used for void con-

// struction with default arg

 Definition (part of implementation file):

//----< sized constructor >------------------------------

str::str(int n) : array(new char[n]), max(n), len(0)

{

array[0] = ‘\0’;

}

 Invocation (part of test stub or client application code):

str s; // define null object

str s[5]; // initialize array

str* sptr = new str; // initialize object on heap

 Note that constructors and the destructor have no return values, not even
void.

new throws an exception
if allocation fails.

Note:

Chapter 4 - Abstract Data Types 14

 Purpose:

– to build object which is a logical copy of another

– used when objects are passed or returned by value

– if no copy constructor is defined by the class the compiler
will generate one if needed which does member-wise copies.

 Declaration (in class declaration in header file):

str(const str& s);

 Definition (in implementation file):

//----< copy constructor >----------------------------

str::str(const str& s)

: array(new char[s.max]), max(s.max), len(s.len)

{

for(int i=0; i<=len; i++)

array[i] = s.array[i];

};

 Invocation (in test stub or client application code)

str s2 = s1; // copy construction!

str s2(s1); // same as above

str s[2] = { s1, s2 }; // copy state into array

str *sptr = new str(s1); // copy state onto heap

void myFun(str s); // pass by value

str yourFun(); // return by value

STR Copy Constructor

No assignment here.
Just the single copy
operation

Chapter 4 - Abstract Data Types 15

 Purpose:

– to build object stealing the resources of a temporary

– used when moveable objects are returned by value

– if no move constructor is defined by the class will fallback to
copy.

– compiler will generate only if no potentially implicit
operations are explicitly declared, i.e., copy ctor, …

 Declaration (in class declaration in header file):

str(str&& s);

 Definition (in implementation file):

//----< copy constructor >----------------------------

str::str(str&& s)

: array(s.array), max(s.max), len(s.len)

{

s.array = nullptr;

};

 Invocation (in test stub or client application code)

str testFunction()
{

str s(“string created in testFunction”);
return s;

}

……

str sTest = testFunction();

STR Move Constructor

sTest gets temporary
s’s array

Chapter 4 - Abstract Data Types 16

 Purpose:

– to coerce an object of another class to one of this class

– in this case we coerce a “C string” to become a str object

– compiler will not generate promotion ctor

 Declaration (in class declaration):

explicit str(const char* s);

 Definition (in implementation file)

//----< promotion constructor >-----------------------

str::str(const char* s)

: len(static_cast<int>(strlen(s)))

{

max = len+1;

array = new char[len+1];

for(int i=0; i<=len; i++)

array[i] = s[i];

}

 Invocations (in test stub or client application code):

str s = str(“this is a string”);

str sa[2] =

{ str(“first string”) , str(“second string”) };

str *sptr = new str(“defined on heap”);

void myFun(const str &s); myFun(str(“a string”));

Promotion Constructor

Every
constructor that
takes a single
argument of a
type different
than the class
type is a
promotion
constructor.
They’re used
for conversions
and can be
called implicitly
if not qualified
as explicit.

Chapter 4 - Abstract Data Types 17

 Purpose:

– to return system resources when object goes out of
scope

– if no destructor is defined by the class the compiler will
generate one which calls each member’s destructor if
one is defined

 Declaration (in class declaration in header file):

~str(void);

 Definition (in implementation file):

//----< destructor >----------------------------

str::~str() {

delete [] array;

max = len = 0;

array = nullptr;

}

 Invocation (in test stub or client application code):

– Destructors are called implicitly whenever an object
goes out of scope.

– When you allocate an object using the “new” operator
a constructor of the object is called to initialize the
object.

str *sptr = new str;

– When you delete the pointer to an allocated object its
destructor is called automatically.

delete sptr;

Destructor

You must delete
with [] if you
new with []!

Chapter 4 - Abstract Data Types 18

 Purpose:

– to assign the state values of one existing object to another

– if no copy assignment operator is defined by the class the
compiler will generate one which does member-wise copy
assignments

 Declarations (in class declaration in header file):

str& operator=(const str& s);

 Definitions (in implementation file):

str& str::operator=(const str& s) {

if(this == &s) return *this; // don’t assign to self

if(max >= s.len+1) { // don’t allocate new

len = s.len; // storage if enough

int i; // exists already

for(i=0; i<=len; i++)

array[i] = s.array[i];

return *this;

}

delete [] array; // allocate new storage

array = new char[max = s.max];

len = s.len;

for(int i=0; i<=len; i++)

array[i] = s.array[i];

return *this;

}

 Invocation (in test stub or client application code):

s2 = s1; // algebraic notation

s2.operator=(s1); // equivalent operator notation

Copy Assignment Operator

Note i<=len because
we want to copy
terminal ‘\0’

Chapter 4 - Abstract Data Types 19

 Purpose:

– to assign the state values of a temporary object to another by
moving, e.g., by passing ownership of the state values.

– if no other potentially implicit operation is defined, the compiler
will generate a move assignment which does member-wise
move assignments if defined

 Declarations (in class declaration in header file):

str& operator=(str&& s);

 Definitions (in implementation file):

str& str::operator=(str&& s) {

if(this == &s) return *this; // don’t assign to self

max = s.max;

len = s.len;

delete [] array;

array = s.array;

s.array = nullptr;

return *this;

}

 Invocation (in test stub or client application code):

s1 = s2 + s3; // s1 assigned from temporary

S2 = std::move(s3); // s3 no longer owns internal chars

// we normally would not do this

Move Assignment Operator

Chapter 4 - Abstract Data Types 20

 Purpose:

– read or write one character from the string

 Declaration (in class declaration in header file):

char& str::operator[](int n);

 Definition (in implementation file):

char& str::operator[](int n) {

if(n < 0 || len <= n)

throw invalid_argument(“index out of bounds”);

return array[n];

}

 Invocation (in test stub or client application code):

The function returns a reference to the nth character so

client code can either read or write to the result, e.g.:

char ch = s[3] = ‘z’;

This statement is equivalent to:

s.operator[](3) = ‘z’;

Index Operator

Standard exception type

Note

Note: We are
assigning to a
function! How does
that work?

Chapter 4 - Abstract Data Types 21

 Purpose:

– read one character from const str object

 Declaration (in class declaration in header file):

char str::operator[](int n) const;

 Definition (in implementation file):

char str::operator[](int n) const {

if(n < 0 || len <= n)

throw invalid_argument(“index out of bounds”);

return array[n];

}

 Invocation (in test stub or client application code):

The function returns a copy of the nth character so

client code can only read the result, e.g.:

char ch = s[3];

Index Operator for const STR

Note

Note
Note

Chapter 4 - Abstract Data Types 22

 Purpose:
– add one character to the end of string

 Declaration (in class declaration in header file):

void str::operator+=(char ch);

 Definition (in implementation file):

void str::operator+=(char ch) {

if(len < max-1) { // enough room

array[len] = ch; // so just append

array[len+1] = '\0';

len++;

}

else { // not enough room

max *= 2; // multiply by 2 // so resize array

char *temp = new char[max]; // before appending

for(int i=0; i<len; i++)

temp[i] = array[i];

temp[len] = ch;

temp[len+1] = '\0';

len++;

delete [] array;

array = temp;

}

}

 Invocation (in test stub or client application code):

s += ‘a’;

Append a Character

Increase size in binary
steps, so fewer memory
allocations if we guess
wrong.

Chapter 4 - Abstract Data Types 23

 Purpose:

– add one string to the end of another string

 Declaration (in class declaration in header file):

void str::operator+=(const str& s);

 Definition (in implementation file):

void str::operator+=(const str& s) {

if(len < max-s.size()) {

for(int i=0; i<=s.len; i++)

array[len+i] = s[i];

len += s.size();

}

else {

max += max + s.size();

char *temp = new char[max];

for(int i=0; i<len; i++)

temp[i] = array[i];

for(int i=0; i<s.size(); i++)

temp[len+i] = s[i];

temp[len+s.size()] = ‘\0’;

len += s.size();

delete [] array;

array = temp;

}

}

 Invocation (in test stub or client application code):

s += “ another string”;

Append Another String

Chapter 4 - Abstract Data Types 24

 Purpose:

– add two strings to create a new string result

 Declaration (in class declaration in header file):

str str::operator+(const str& s);

 Definition (in implementation file):

str str::operator+(const str& s) {

str temp = *this;

temp += s;

return temp;

}

 Invocation (in test stub or client application code):

s = str(“first, ”) + str(“second”);

Calls operator+(const str&) then operator=(str&&)

Addition Operator

Chapter 4 - Abstract Data Types 25

 Purpose:

– to coerce object of class to an object of another class

– here we cast a str object to a pointer to a const char array

 Declaration (in class declaration in header file):

str::operator const char*();

 Definition (inline in header file):

inline str::operator const char*() {

return array;

}

 The const says that the character array values can’t be changed.

 Note that the cast operator is the only operator which has, by definition,
no return value (not even void).

 Invocations (in test stub or client application code):

const char* ptr = s; // implicit invocation

const char* ptr = static_cast<const char*>(s)

const char* ptr = char*(s); // newer cast notation

const char* ptr = (char*)s; // classic cast notation

Cast Operator

Chapter 4 - Abstract Data Types 26

 Purpose:

– send string to output stream

 Declaration (in header file):

ostream& operator<<(std::ostream& out, const str& s);

 Definition (in implementation file):

Note that this function is not a member of the str class nor
is it a friend.

//----< insertion operator >---------------------------

ostream& operator<<(ostream& out, const str& s) {

for(int i=0; i<s.size(); i++)

out << s[i];

return out;

}

 Invocation (in test stub or client application code):

cout << s;

Insertion Operator

Chapter 4 - Abstract Data Types 27

 Purpose:

– accept a string from input stream

 Declaration (in header file):

istream& operator>>(std::istream &in, str &s);

 Definition (in implementation file):

Note that this function is not a member of the str class nor is
it a friend.

//----< extraction operator >--------------------------

istream& operator>>(istream& in, str& s) {

char ch;

s.flush();

in >> ch;

while((ch != '\n') && in.good()) {

s += ch;

in.get(ch);

}

return in;

}

 Invocation (in test stub or client application code):

cin >> s;

Extraction Operator

str memory management
means this function is
simple!

Chapter 4 - Abstract Data Types 28

 A C++ operator is really just a function. Assign-
ment, for example, may be written either way shown
below:

x = y;

or

x.operator=(y);

Here, the x object is invoking the assignment operator
on itself, using y for the assigned values.

 The left hand operand is always the invoking object
and the right hand operand is always passed to the
function as an argument.

 General form of the binary operator:

x@y x.operator@(y) - member function

x@y operator@(x,y) - global function

C++ Binary Operator Model

mailto:x@y
mailto:x.operator@(y
mailto:x@y
mailto:operator@(x,y

Chapter 4 - Abstract Data Types 29

 We often write code which contains type mismatches.
For example:

str s1 = “this is a string”;

The compiler scans this expression, notes the type
mismatch, and looks for means to resolve it.

It finds the promotion constructor which takes a
pointer to char and builds an str object. So the
compiler generates code to build the s1 str object.

 We write promotion constructors and cast operators so
just this kind of “silent” coercion can happen. It
makes programming much easier when sensible
conversions happen automatically.

string object pointer to char (literal string)

Coercions

Chapter 4 - Abstract Data Types 30

Overloading

 Function overloading occurs when two
functions have the same identifier but different
calling sequences, e.g., the sequences of types
passed as arguments.

– str(int n=10);

– str(const str& s);

Here str is a common identifier used for both
functions. The functions differ in their calling
sequences, e.g., int n vs. const str&.

 The compiler distinguishes overloaded
functions on their sequences, but not on return
values.

– char& operator[](int n);

– char operator[](int n) const;

are distinguished by const, not the return type.

Chapter 4 - Abstract Data Types 31

Constness

 What const implies is determined by where you
find it:

– str(const str& s);

is a contract that the argument s will not be
changed. The compiler attempts to enforce
the contract.

– char operator[](int n) const;

implies the state of the object on which the
operator is applied will not change. Again, the
compiler attempts to enforce the contract.
Thus:

– const str cs = “a constant string”;

– cs[3] = ‘a’;

will fail to compile because the compiler will
call the const version of operator[] on the
const string and will disallow changes to the
string.

Chapter 4 - Abstract Data Types 32

 When a C++ compiler evaluates an expression it performs
the following steps:

– evaluates all function invocations, replacing the call with its
return value

– scans the expression checking for type mismatches.

If any are found, the compiler looks for ways to resolve the
mismatches by implicitly calling a promotion constructor or
cast operator.

If there is exactly one way to resolve the mismatch the
compiler generates code to do so, and the expression
evaluation succeeds.

If there is more than one way to resolve the mismatch the
compiler declares an ambiguity and the compilation fails.

– All stack frames for any functions invoked by the expression
are guaranteed to be valid until the evaluation is complete.

This allows the return values of functions, which are
deposited in an output area of the stack frame to participate
in the expression just like the value of a cited variable. Any
value residing in a stack frame during evaluation is called a
temporary.

C++ Expression Model

Chapter 4 - Abstract Data Types 33

 A good abstraction is built around a model based
view of an object which describes the behavior
expected of the object by clients. Models are often
based on a metaphor which helps a client
understand and relate to an object’s behavior, e.g.
the window, matrix, dictionary, ...

 The model based view of an object is determined
by the names and actions of the class functions
which make up its public interface. These should
be carefully developed to be consistent with the
metaphor around which the object model is
developed.

 The str class has a good abstraction. It is simple;
client’s easily relate to its string metaphor, e.g., a
sequence of characters, and its model concentrates
on the character sequence, not management of the
character space - all that happens silently as users
append characters to their strings.

Abstraction

Abstraction emphasizes the client’s view of the
System while suppressing the implementation view

Chapter 4 - Abstract Data Types 34

 User defined data types can be endowed (by you) with
virtually all of the capabilities of built in types:

– declaration of multiple objects at either compile or run time

– declaration and initialization of arrays of objects

– objects can take care of themselves, e.g., acquire and
release system resources.

– objects can participate in mixed type expressions, implicitly
calling promotion constructors or cast operators as needed

– objects can be assigned and passed by value to functions

– objects can use the same operator symbolism as built in
types

 All of these things have syntax provided by the lang-
uage, but semantics provided by you.

 You can choose to provide as much or as little capability
as you deem appropriate for your class.

Conclusions - ADTs

