
 1

STL Containers – Supplementary Notes

Jim Fawcett

CSE 687 - Spring 2002

1. Every container allocates and manages its own storage.

2. Type definitions common to all containers:

 C::value_type type of values held in container

 C::reference value_type&

 C::const_reference

 C::iterator

 C::const_iterator

 C::reverse_iterator

 C::const_reverse_iterator

 C::difference_type difference between iterators

 C::size_type size of container

 2

3. Member functions common to all containers:

 C() default constructor

 C(c), C c2(c1) copy constructor

 ~C() destructor

 c.begin() returns an iterator to first element

 c.end() returns an iterator after last element

 c.rbegin() returns a reverse iterator to last elem.

 c.rend() returns a reverse iterator before first elem.

 c1 == c2 equality comparison for same type cont.

 c1 != c2 “

 c.size() returns number of elements. in cont.

 c.max_size() returns size() of largest number of elements.

 c.empty() returns true if cont. is empty

 c1 < c2 lexicographic comparison

 c1 > c2 “

 c1 <= c2 “

 c1 >= c2 “

 c1 = c2 assignment operation

 c1.swap(c2) swaps two containers

 3

4. Sequence containers

 vector simulates an expandable array, occupying contiguous memory

 list based on doubly linked list

 deque a double ended queue, which uses a directory managing blocks of

 contiguousmemory

5. Member functions common to all sequence containers:

 C(n,t) constructs a sequence of n copies of t

 C(iter1,iter2) constructs a sequence equal to the range [iter1,iter2)

 c.insert(iter,t) inserts a copy of t before iter. Returns an iter to t.

 c.insert(iter,n,t) inserts n copies of t before iter.

 c.insert(iter1,iter2,iter3) inserts the sequence [iter2,iter3) before iter1

 c.erase(iter) erases the element pointed to by iter

 c.erase(iter1,iter2) erases elements in range [iter1,iter2)

6. Invalidation of iterators

 Invalidation of iterators into vectors:

 insertion in a vector invalidates iterators from the point of insertion to the end of the vector.

 if insertion causes reallocation to provide more memory then all iterators become invalid.

 erase invalidates all iterators at and past the point of erasure.

 a safe strategy is to assume that any iterator into a vector becomes invalid after either insertion or erasure.

 Invalidation of iterators into deques:

 insertion and erasure in the interior invalidates all iterators.

 Invalidation of iterators into lists:

 list insertions never invalidate iterators and erase invalidates only iterators pointing to the erased items.

 Use of invalid iterators:
 The only safe things you can do with an invalid iterator is to reinitialize it by assigning a new iterator value

to it or destroy it.

 4

7. Sorted associative containers (all are based on balanced red-black tree):

 set set of elements sorted by value with no duplicates

 multi-set set of elements sorted by value with duplicates

 map set of <key,value> pairs sorted on key with no duplicates

 multi-map set of <key,value> pairs sorted on key with duplicates

8. Types common to all sorted associative containers:

 C::key_type type of keys used to instantiate C

 C::key_compare type of the comparison type used to instantiate C

 C::value_compare type for comparing objects of C::value_type

9. Invalidation of iterators with associative containers:

 insertion does not invalidate any iterators referring to container elements.

 erasure invalidates only iterators pointing to erased elements.

 5

10. Member functions common to all sorted associative containers:

 C() void constructor

 C(comp) constructs empty container using comp for comparisons

 C(iter1,iter21) constructs empty container and inserts elements from [iter1,iter2) into it.

 C(iter1,iter2,comp) same as above except that comp is used for comparisons.

 c.key_comp() returns c’s key comparison object

 c.value_comp() returns c’s value comparison object

 c.insert(t) for sets and maps inserts t if and only if there is no equivalent key

 stored, returns pair<iterator,bool>. The bool indicates if insertion

 succeeded and iterator points to the element equivalent to t.

 for multi-sets and multi-maps inserts t and returns an iterator pointing

 to the inserted t

 c.insert(iter,t) same as above except that iter is a hint about where to start search

 c.insert(iter1,iter2) inserts elements from the sequence [iter1,iter2)

 c.erase(k1) erases all elements in the container with key equal to k1. Returns the

 number of elements erased.

 c.erase(iter) erases the element pointed to.

 c.erase(iter1,iter2) erases all elements in the range [iter1,iter2).

 c.find(k1) returns an iterator pointing to an element with key equal to k1 or to

 c.end() if no such element is found.

 c.count(k1) returns the number of elements with key equivalent to k1

 c.lower_bound(k1) returns an iterator pointing to first element with key not less than k1.

 c.upper_bound(k1) returns an iterator pointing to first element with key greater than k1.

 c.equal_range(k1) returns a pair of iterators with first lower_bound and second

 upper_bound

 6

STL Iterators

11. Iterators extend the functionality of native pointers.

 Any container, c, defines valid iterators pointing to the first element, returned by c.begin() and

one past the last element, returned by c.end().

 an iterator range is a pair of iterators that serve as the beginning and end markers of some

operation on container values. Range [iter1, iter2) includes the values pointed to by iter1

through the value pointed to by the predecessor of iter2.

 iterators can be dereferenced, e.g., if iter is an iterator for some container c, *iter returns

value_type whenever it is in the range [c.begin(), c.end())

 if iter is in the range [c.begin(), c.end()) then either iter++ stays in the range or is equivalent to

c.end().

 iterators can be mutable or constant depending on whether the result of operator* acts like a

reference or a reference to a const.

 7

12. Input iterator requirements:

 I(i) copy constructor

 i == j returns true if iterator i is equivalent to iterator j

 i != j returns true if and only if i == j returns false

 *i returns value_type if dereferenceable. If i == j then it must be true that

 *i == *j. Note: don’t attempt to write to *i as it may not be an l-value.

 i->m equivalent to (*i).m

 ++i returns an iterator pointing to the successor element to *i or to c.end();

 i++ ` returns i then points to the successor of *i or to c.end()

 Algorithms that use input iterators should be single-pass.

13. Output iterator requirements:

 I(i) copy constructor

 *i = t t is assigned through the iterator.

 ++i returns an iterator pointing to the successor element to *i or to c.end()

 i++ returns i then points to the successor of *i or to c.end()

 The only valid use of *i is on the left of an assignement. Algorithms that use output iterators

should be single-pass.

 8

14. Forward iterator requirements:

 I() void constructor, result may be a singular value

 I(i) result must satisfy i == I(i);

 i == j true if i is equivalent to j

 i != j true if i==j is false

 i = j result must satisfy i == j

 *i returns value_type if dereferenceable. If i == j then *i == *j must be true.

 If i is mutable then *i = t is valid.

 i -> m equivalent to (*i).m

 ++i returns an iterator pointing to the successor element to *i or to c.end()

 i == j and i dereferenceable implies that ++i == ++ j.

 i++ returns i then points to the successor of *i or to c.end()

15. Bidirectional iterator requirements:

 meets all requirements of Forward iterators.

 - - i Assume that there is a j such that ++j = i. Then - - i refers to the same element

 as j. It must be true that --(++i) = i and if - -i == --j then i == j.

 i- - returns i then points to the predecessor of i

 9

16. Random access iterator requirements:

 meets the requirements for a bidirectional iterator.

 i += n the result must be equivalent to incrementing i n times.

 i + n returns an iterator equivalent to i += n.

 i -= n the result must be equivalent to decrementing i n times.

 i – n returns an iterator equivalent to i -= n.

 i – j returns a value of type distance. If i + n = j then j – 1 == n

 i[n] equivalent to *(i + n)

 i < j must be a total order relationship returning bool

 i > j must be a total order relationship returning true whenever i < j || i == j is

 false

 i <= j must be a total order relationship equivalent to !(i > j)

 i >= j must be a total order relationship equivalent to !(i < j)

 10

17. Algorithms – Non modifying (Prata, C++ Primer Plus, Third Edition, Waite Group)

for_each Applies a non-modifying function object to each element in a range

find Finds the first occurrence of a value in a range

find_if finds the first value satisfying a predicate test criterion in a range

find_end finds the last occurrence of a subsequence whose values match the values of

a second sequence. Matching may be by equality or by applying a binary

predicate.

find_first_of Finds the first occurrence of any element of a second sequence that matches

a value in the first sequence. Matching may be by equality or be evaluated

with a binary predicate.

adjacent_find Finds the first element that matches the element immediately following it.

Matching may be by equality or evaluated with a binary predicate.

count Returns the number of times a given value occurs in a range.

count_if Returns the number of times a given value matches values in a range, with a

match determined by using a binary predicate.

mismatch Finds the first element in one range that does not match the corresponding

element in a second range and returns iterators to both. Matching may be by

equality or be evaluated with a binary predicate.

Equal Returns true if each element in one range matches the corresponding

element in a second range. Matching may be by equality or evaluated with a

binary predicate.

search Finds the first occurrence of a subsequence whose values match the values of

a second sequence. Matching may be by equality or by applying a binary

predicate.

search_n Finds the first subsequence of n elements that each match a given value.

Matching may be by equality or applying a binary predicate.

 11

Example:

template <class T>

class Sum

{

 Sum() : sum_(0) {}

 void operator()(T& t) { sum_ += t; }

 result() { return sum_; }

 private: T sum_;

}

std::list<int> li;

// push on some elements

// foreach is the only algorithm that returns its operation, e.g., Sum()

int sum = foreach(li.begin(),li.end(),Sum()).result();

 12

18. Algorithms – Modifying (Prata, C++ Primer Plus, Third Edition, Waite Group)

copy Copies elements from a range to a location identified by an iterator.

copy_backward Copies elements from a range to a location identified by an iterator.

Copying begins at the end of the range and proceeds backwards.

Swap Exchanges two values stored at locations specified by references.

Swap_ranges Exchanges corresponding values in two ranges.

iter_swap Exchanges two values stored at locations specified by iterators.

transform Applies a function object to each element in a range (or to each pair of

elements in a pair of ranges), copying the return value to the corresponding

location of another range.

replace Replaces each occurrence of a value in a range with another value.

replace_if Replaces each occurrence of a value in a range with another value if a

predicate function object applied to the original value returns true.

replace_copy Copies one range to another, replacing each value for which a predicate

function object is true with an indicated value.

fill Sets each value in a range to an indicated value.

fill_n Sets n consecutive elements to a value.

generate Sets each value in a range to the return value of a generator, which is a

function object that takes no arguments.

generate_n Sets the first n values in a range to the return value of a generator, which is a

function object that takes no arguments.

remove Removes all occurrences of a value from a range and returns a past-the-end

iterator for the resulting range.

remove_if Removes all occurrences of values for which a predicate object returns true

from a range and returns a past-the-end iterator for the resulting range.

 13

remove_copy Copies elements from one range to another, omitting elements that equal a

specified value.

remove_copy_if Copies elements from one range to another, omitting elements for which a

predicate function object returns true.

unique Reduces each sequence of two or more equivalent elements in a range to a

single element.

unique_copy Copies elements from one range to another, reducing each sequence of two

or more equivalent elements to one.

reverse Reverses the elements in a range.

reverse_copy Copies a range in reverse order to a second range.

Rotate Treats a range as a circular ordering and rotates the elements left.

Rotate_copy Copies one range to another in a rotated order.

Random_shuffle Randomly rearranges the elements in a range.

partition Places all the elements that satisfy a predicate function object before all

elements that don’t.

Stable_partition Places all the elements that satisfy a predicate function object before all

elements that don’t. The relative order of elements in each group is

preserved.

 14

19. Sorting & Related Operations (Prata, C++ Primer Plus, Third Edition, Waite Group)

sort Sorts a range.

stable_sort Sorts a range, preserving the relative order of equivalent elements.

partial_sort Partially sorts a range, providing the first n elements of a full sort.

partial_sort_copy Copies a partially sorted range to another range.

nth_element Given an iterator into a range, finds the element that would be there if

the range were sorted, and places that element there.

lower_bound Given a value, finds the first position in a sorted range before which the

value can be inserted while maintaining the ordering.

upper_bound Given a value, finds the last position in a sorted range before which the

value can be inserted while maintaining the ordering.

equal_range Given a value, finds the largest subrange of a sorted range such that the

vlue can be inserted before any element in the subrange without

violating the ordering.

binary_search Returns true if a sorted range contains a value equivalent to a given

value, and false otherwise.

merge Merges two sorted ranges into a third range.

in-place_merge Merges two consecutive sorted ranges in place.

includes Returns true if every element in one set also is found in another set.

set_union Constructs the union of two sets, which is a set containing all elements

present in either set.

set_intersection Constructs the intersection of two sets, which is a set containing only

those elements found in both sets.

set_difference Constructs the difference of two sets, which is a set containing only

those elements found in the first set but not the second.

 15

set_symmetric_difference Constructs a set consisting of elements found in one set or the other, but

not both.

make_heap Converts a range to heap.

push_heap Adds an element to a heap.

pop_heap Removes the largest element from a heap.

sort_heap Sorts a heap.

min Returns the lesser of two values.

max Returns the greater of two values.

min_element Finds the first occurrence of the smallest value in a range.

max_element Finds the first occurrence of the largest value in a range.

lexicographic_compare Compares two sequences lexicographically, returning true if the first

sequence is lexicographically less than the second, and false otherwise.

next_permutation Generates the next permutation in a sequence.

previous_permutation Generates the preceding permutation in a sequence.

 16

20. Predefined Function Objects (Josuttis, C++ Standard Library, Addison-Wesley)

Expression Effect

negate<T>() - param

plus<T>() param1 + param2

minus<T>() param1 – param2

multiplies<T>() param1 * param2

divides<T>() param1 / param2

modulus<T>() param1 % param2

equal_to<T>() param1 == param2

not_equal_to<T>() param1 != param2

less<T>() param1 < param2

greater<T>() param1 > param2

less_equal<T>() param1 <= param2

greater_equal<T>() param1 >= param2

logical_not<T>() ! param

logical_and<T>() param1 && param2

logical_or<T>() param1 || param2

Example:

std::list<int> li;

// push on some elements

std::list<int>::iterator itPos;

// find first positive element in list

itPos = find_if(li.begin(),li.end(),bind2nd(greater<int>(),0);

