
Threads and Locks

Jim Fawcett

CSE687-OnLine – Object Oriented Design

Summer 2017

Windows API

• Create, style, and manage windows

• Manage Files and Directories

• Create and manage processes, threads, and synchronizers

• Load and Unload Dynamic Link Libraries

• Create and manage timers

• Read and write to the registry

2

Windows Processes and Virtual Memory

• Windows Processes are containers for:
• Threads – one primary thread at process start

• File handles

• Other windows objects

• Allocated memory

• Process Diagram

• Windows uses a paged virtual memory system
• Virtual Memory Diagram

5

../../Presentations/process.pdf
../../Presentations/MemoryMapping.pdf

Windows Objects

• Windows supports internal objects and provides an API to access and
manage them through handles.

• Kernel Objects – named, secured, system-wide
• Devices, Files, Symbolic links, Registry keys, Threads and Processes, Events,

Mutexes, Semiphores, Memory-mapped files, Callbacks, pipes

• User Objects – GUI objects
• Window, Menu, Icon, Hook, …

• GDI Objects – Drawing objects
• Brush, Pen, DeviceContext, Bitmap, Metafile, …

6

Windows Objects and Handles

• A windows object is a data structure that represents a system
resource, e.g., file, thread, bitmap
• Windows objects are created and accessed using the Win32 API

• They reside in Kernel32.dll, User32.dll, or GDI32.dll

• An application accesses those resources through a handle, usually
returned from a Create function

• Each handle refers to an entry in an internal object table that contains
the address of a resource and means to identify the resource type.

7

Object API

• The Windows API provides functions which:
• Create an object, returning a handle

• Get an object handle using other information

• Get and set information about an object

• Close the object handle, possibly destroying the internal object
• Objects are reference counted and will be destroyed when all referring handles have

been closed

• Kernel objects have security functions that manage ACLs

8

Kernel Objects

• Kernel objects are operating system resources like processes, threads,
events, mutexes, semaphores, shared memory, and files

• Kernel objects have security attributes and signaled state.
• A kernel object is always either signaled or unsignaled.

• An object in the unsignaled state will cause any thread that waits on the
object’s handle to block.

• An object in the signaled state will not block a thread that called wait on its
handle.

9

Threads

▪ A thread is a path of execution through a program’s code, plus a set of
resources (stack, register state, etc) assigned by the operating system.

▪ A thread lives in one and only one process. A process may have one or
more threads.

▪ Each thread in the process has its own call stack, but shares process
code and global data with other threads in the process.
▪ Thus local data is unique to each thread

▪ Pointers are process specific, so threads can share pointers.

10

Starting a Process

• Every time a process starts windows creates a primary thread.
• The thread begins execution with the application’s startup code that initializes

libraries and enters main

• The process continues until main exits and library code calls ExitProcess.

• You will find demo code for starting a Windows process here:
• http://www.ecs.syr.edu/faculty/fawcett/handouts/Coretechnologies/ThreadsAndSynchroniza

tion/code/ProcessDemoWin32/

• Here is a demo for starting up a process using C#:
• http://www.ecs.syr.edu/faculty/fawcett/handouts/Coretechnologies/ThreadsAndSynchroniza

tion/code/ProcessDemoDotNet/

11

http://www.ecs.syr.edu/faculty/fawcett/handouts/Coretechnologies/ThreadsAndSynchronization/code/ProcessDemoWin32/
http://www.ecs.syr.edu/faculty/fawcett/handouts/Coretechnologies/ThreadsAndSynchronization/code/ProcessDemoDotNet/

Scheduling Threads

• Windows is a preemptive multi-tasking system. Each task is
scheduled to run for some brief time period before another task is
given control of a CPU core.

• Unlike Unix and Linux, in Windows threads are the basic unit of
scheduling. A thread can be in one of three possible states:
• Running

• Blocked or suspended, using virtually no CPU cycles, but consuming about 1
MB of memory per thread

• Ready to run, using virtually no CPU cycles

12

Scheduling Activities

• A running task is stopped by the scheduler if:
• It is blocked waiting for some system event or resource
• Its time slice expires and is placed back on the queue of ready to run threads
• It is suspended by putting itself to sleep for some time, e.g., waiting on a

timer
• It is suspended by some other thread
• It is suspended by Windows while the OS takes care of some critical activity

• Blocked threads become ready to run when an event or resource they
wait on becomes available, e.g., its handle becomes signaled

• Suspended threads become ready to run when their suspend count is
zero

13

Scheduling Threads

14

Blocked and Suspended

TCB

TCB

TCB

TCB

TCB

General Registers

Stack Pointer

Instruction Pointer

FPU Contents

PCB pointer

Priority

Quantum (Time-Slice) remaining

Other Thread Specific Data

Thread Context Block

Address Space Information

Working Set Information

Other Process Specific State

Maintains:

 File and Heap Mappings

 Allocated Handles

Process Context Block

readied

ru
n blocked or suspended

Ready to Run

Highest TCB TCB TCB

Normal TCB

Lowest TCB TCB

Benefits of Using Threads
• Keep user interfaces responsive even if required processing takes a

long time to complete.
• Handle background tasks with one or more threads

• Service the user interface with a dedicated UI thread

• Your program may need to respond to high priority events, so you
can assign that event handler to a high priority thread.

• Take advantage of multiple cores available for a computation.

• Avoid low CPU activity when a thread is blocked waiting for response
from a slow device or human, allowing other threads to continue.

15

More Benefits

• Support access to server resources by multiple concurrent clients.

• For processing with several interacting objects the program may be
significantly easier to design by assigning one thread to each object.

16

Using Threads to Avoid Blocking

Process #2

receiver

Process #1

sender

function sending

data to

Process #2

function receiving

data from

Process #1

interprocess

communication

Non-Blocking Communication in Asynchronous System

FIFO queue

processing

thread

receiver

thread

17

Potential Problems with Threads

• Conflicting access to shared memory
• One thread begins an operation on shared memory, is suspended and leaves

the memory region incompletely transformed.

• A second thread is activated and accesses the shared memory in the
incomplete state, causing errors in its operation and potentially errors in the
operation of the suspended thread when it resumes.

• Race conditions occur when:
• Correct operation depends on the order of completion of two or more

independent activities.

• The order of completion is not deterministic due to use of threads.

18

More Problems with Threads

• Starvation
• A high priority thread dominates CPU resources, preventing lower priority

threads from running often enough or at all.

• Priority Inversion
• A low priority task holds a resource needed by a higher priority task, blocking

it from running.

• Deadlock
• Two or more tasks each own resources needed by the other preventing either

one from running so neither ever completes and never releases its resources.

19

UI and Worker Threads
• User interface (UI) threads create windows and process messages

sent to those windows.

• Worker threads receive no direct input from the user.
• Worker threads must not directly access a window’s member functions. This

will cause exceptions.

• Worker threads communicate with a program’s windows by calling the
Win32 API PostMessage and SendMessage functions.

• With modern GUI frameworks that is handled by calling Form.Invoke or
Dispatcher.Invoke passing a delegate to the UI thread bound to a function
that handles the worker’s data.

20

Creating Win32 Threads
• Call CreateThread(…) only if you won’t be using ANY language libraries, as

these are not initialized by Win32 API functions.

• HANDLE hThrd =
(HANDLE)_beginthread(ThreadFunc, 0, &ThreadInfo);

• ThreadFunc – the function executed by the new thread

• void _cdecl ThreadFunc(void *pThreadInfo);

• pThreadInfo – pointer to input parameters for the thread
• For threads created with _beginthread the thread function, ThreadFunc,

must be a global function or static member function of a class. It can not
be a non-static member function.

21

Creating Win32 Threads
• HANDLE hThrd = (HANDLE)_beginthreadex(// returns 0 on failure

pSecurity, stack_size, ThreadFunc, pThreadInfo, initflg, pThrd

);

• SECURITY_ATTRIBUTES *pSecurity – null for user priviledges

• unsigned int stack_size – size of stack to use, 0 gives default size

• ThreadFunc – the function executed by the new thread

unsigned _stdcall ThreadFunc(void *pThreadInfo); // returns exit code

• void *pThreadInfo – pointer to input parameter structure for use by ThreadFunc

• Enum initflg – 0 to start running or CREATE_SUSPENDED to start suspended

• Int32 *pThrdID – returns pointer to threadID if non-null on call, otherwise not used

• For threads created with _beginthreadex the thread function, ThreadFunc, must be a global function or static
member function of a class. It can not be a non-static member function.

22

Thread Priority
• You use thread priority to balance processing performance between the

interfaces and computations.
• If UI threads have insufficient priority the display freezes while computation

proceeds.
• If UI threads have very high priority the computation may suffer.
• We will look at an example that shows this clearly.

• Thread priorities take the values:
• THREAD_PRIORITY_IDLE
• THREAD_PRIORITY_LOWEST
• THREAD_PRIORITY_BELOW_NORMAL
• THREAD_PRIORITY_NORMAL
• THREAD_PRIORITY_ABOVE_NORMAL
• THREAD_PRIORITY_HIGHEST
• THREAD_PRIORITY_TIME_CRITICAL

23

Creating Threads using C++11

• std::thread t(f)

• f is a callable object, e.g., function pointer, functor, or lambda that takes no
arguments and has void return type

• std::thread t(g,a1, a2, …)

• g is a callable object that takes arguments a1, a2, … and has void return type

24

C++11 Thread Functions

• t.get_id() returns thread id – unique among all running threads

• t.join() blocks until thread t completes, e.g., exits its thread function

• t.detach() disassociates thread object t from underlying OS thread.

• All theads must be joined or detached (not both) before thread object goes out of
scope.

• std::this_thread::sleep_for(chrono::duration);

25

Shared Resources
• A child thread often needs to communciate with its parent thread. It

does this via some shared resource, like a queue.

26

Parent Thread

Child Thread

Sending Message to Child

Receiving Message from

Parent

Shared Queue

Synchronization
• A program may need multiple threads to share some data.

• If access is not controlled to be sequential, then shared data may
become corrupted.
• One thread accesses the data, begins to modify the data, and then is put to

sleep because its time slice has expired. The problem arises when the data
is in an incomplete state of modification.

• Another thread awakes and accesses the data, that is only partially modified.
The result is very likely to be corrupt data.

• The process of making access serial is called serialization or
synchronization.

27

Wait for Objects

• WaitForSingleObject makes one thread wait for:
• Termination of another thread
• An event
• Release of a mutex
• Syntax: WaitForSingleObject(objHandle, dwMillisec)

• WaitForMultipleObjects makes one thread wait for the elements of an array of
kernel objects, e.g., threads, events, mutexes.
• Syntax: WaitForMultipleObjects(

nCount, lpHandles, fwait, dwMillisec
)

• nCount: number of objects in array of handles
• lpHandles: array of handles to kernel objects
• fwait: TRUE => wait for all objects, FALSE => wait for first object
• dwMillisec: time to wait, can be INFINITE

28

Win32 Thread Synchroniztion

• Synchronizing threads means that every access to data shared between threads is
protected so that when any thread starts an operation on the shared data no other
thread is allowed access until the first thread is done.

• The principle means of synchronizing access to shared data within the Win32 API are:
• Interlocked increment

• only for incrementing or decrementing integral types
• Critical Section

• Good only inside one process
• Mutex (kernel object)

• Named mutexes can be shared by threads in different processes.
• Event (kernel object)

• Useful for synchronization as well as other event notifications.
• Semiphore (kernel object)

• Allows a specified number of threads to use a resource
• SlimReaderWriter lock

• Supports concurrent reads while making writes and reads sequential
• Condition Variable (kernel object)

• Used in conjuction with a Critical Section or Mutex to signal an event that allows one or more threads to
proceed.

29

C++11 Synchronization
• std::mutex

• Wraps an OS mutex.
• methods lock(), try_lock(), unlock()

• Variations on std::mutex:
• std::timed_mutex, std::recursive_mutex, std::shared_mutex, std::shared_timed_mutex

• std::lock_guard<mutex>
• constructor calls mutex.lock() and destructor calls mutex.unlock()
• thrown exceptions will unlock()

• std::unique_lock<mutex>
• movable but not copyable

• std::shared_lock<mutex>
• reference counted, movable, but not copyable

• std::condition_variable
• manages access to mutable values – see Cpp11-BlockingQueue

• std::atomic<T>
• Supports atomic operations on trivially copyable types, e.g., ints of all sizes, chars, and bools
• Methods are store(t), load(), exchange(t)

• std::future
• get() returns value that may be set asynchronously, blocks until value is set.

30

Appendix
More details on some of the Synchronization Operations

Win32 Interlocked Operations

• InterlockedIncrement increments a 32 bit integer as an atomic operation. It is
guaranteed to complete before the incrementing thread is suspended.

long value = 5;
InterlockedIncrement(&value);

• InterlockedDecrement decrements a 32 bit integer as an atomic operation:

InterlockedDecrement(&value);

32

Win32 Critical Sections
• Threads within a single process can use critical sections to ensure mutually exclusive access to critical

regions of code. To use a critical section you:
• allocate a critical section structure

• initialize the critical section structure by calling a win32 API function

• enter the critical section by invoking a win32 API function

• leave the critical section by invoking another win32 function.

• When one thread has entered a critical section, other threads requesting entry are suspended and queued
waiting for release by the first thread.

• The win32 API critical section functions are:

• CRITICAL_SECTION critsec;

• InitializeCriticalSection(&critsec);

• EnterCriticalSection(&critsec);

• TryEnterCriticalSection(&critsec);

• LeaveCriticalSection(&critsec);

• DeleteCriticalSection(&critsec);
33

Win32 Mutexes
• Mutually exclusive access to a resource can be guaranteed through the use of mutexes. To use a

mutex object you:
• identify the resource (section of code, shared data, a device) being shared by two or more threads

• declare a global mutex object

• program each thread to call the mutex’s acquire operation before using the shared resource

• call the mutex’s release operation after finishing with the shared resource

• The mutex functions are:

• hMutex = CreateMutex(0,FALSE,0);

• WaitForSingleObject(hMutex,INFINITE);

• WaitForMultipleObjects(count,MTXs,TRUE,INFINITE);

• ReleaseMutex(hMutex);

• CloseHandle(hMutex);

34

Win32 Condition Variables

• Provides facility for thread-safe changes to a shared resource and
notifying waiting threads of the change.

• The condition variable functions are:
• Condition_Variable ConditionVariable;

• InitializeConditionVariable(&ConditionVariable);

• SleepConditionVariableCS(&ConditionVariable,
&CriticalSection, WaitTime);

• WakeConditionVariable(&ConditionVariable);

35

Win32 Events
• Events are objects which threads can use to serialize access to resources by

setting an event when they have access to a resource and resetting the event
when through. All threads use WaitForSingleObject or WaitForMultipleObjects
before attempting access to the shared resource.

• Unlike mutexes and semaphores, events have no predefined semantics.
• An event object stays in the nonsignaled stated until your program sets its state to signaled,

presumably because the program detected some corresponding important event.

• Auto-reset events will be automatically set back to the non-signaled state after a thread
completes a wait on that event.

• After a thread completes a wait on a manual-reset event the event will return to the non-
signaled state only when reset by your program.

36

Win32 Events Continued

• Event functions are:
• HANDLE hEvent = CreateEvent(0,FALSE,TRUE,0);

• OpenEvent – not used too often

• SetEvent(hEvent);

• ResetEvent(hEvent);

• PulseEvent(hEvent);

• WaitForSingleObject(hEvent,INFINITE);

• WaitForMultipleObjects(count,Events,TRUE,INFINITE);

37

End of Presentation

38

