
Win32 Sockets

Jim Fawcett

CSE 687 – Object Oriented Design

Spring 2015

References

 Socket Routines, MSDN help

 Network Programming for Microsoft Windows, Jones
& Ohlund, Microsoft Press, 1999 (a later edition is in
print)

 C# Network Programming, Richard Blum, Sybex,
2003

 http://tangentsoft.net/wskfaq

http://tangentsoft.net/wskfaq

What are Sockets?

 Sockets provide a common interface to the

various protocols supported by networks.

 They allow you to establish connections

between machines to send and receive

data.

 Sockets support the simultaneous

connection of multiple clients to a single

server machine.

Network Protocols

 Socket applications can adopt communication styles supported
by a specific underlying protocol, e.g.:

 We will focus on sockets using TCP/IP, that is, reliable, packet
ordered, connection-oriented communication with streams.

Protocol Name Message Type Connection Type Reliable Packet Ordered

IP MSAFD TCP stream connection yes yes

MSAFD UDP message connectionless no no

RSVP TCP stream connection yes yes

RSVP UDP message connectionless no no

NetBios Sequential Packets message connection yes yes

Datagrams message connectionless no no

TCP Protocol
 TCP/IP stands for "Transmission Control Protocol / Internet Protocol.

TCP/IP is the most important of several protocols used on the internet. Some
others are: HyperText Transport Protocol (HTTP), File Transfer Protocol (FTP),
Simple Mail Transfer Protocol (SMTP), and Telnet, a protocol for logging into a
remote computer. Sockets provide a standard interface for a variety of network
protocols. TCP/IP is, by far, the most commonly used protocol for sockets. Here
are the main features of TCP/IP:

 IP is a routable protocol.
That means that TCP/IP messages can be passed between networks in a
Wide Area Network (WAN) cluster.

 Each device using TCP/IP must have an IP address.
This address is a 32 bit word, organized into four 8-bit fields, called octets.
Part of the IP address identifies the network and the rest identifies a specific
host on the network.

 IP addresses are organized into three classes.
Each class has a different allocation of octets to these two identifiers. This
allows the internet to define many networks, each containing up to 256
devices (mostly computers), and a few networks, each containing many
more devices.

 A single machine can run mulitple communictaions sessions using
TCP/IP.
That is, you can run a web browser while using Telnet and FTP,
simultaneously.

TCP/IP based Sockets

 Connection-oriented means that two communicating

machines must first connect.

 All data sent will be received in the same order as sent.

 Note that IP packets may arrive in a different order than that

sent.

 This occurs because all packets in a communication do not

necessarily travel the same route between sender and receiver.

 Streams mean that, as far as sockets are concerned, the

only recognized structure is bytes of data.

Socket Logical Structure

Socket

recv buffer
recv buffer

Socket

recv buffer

bytes

bytes

Creating Sockets

 Socket connections are based on:

 Domains – network connection or IPC pipe

 AF_INET for IPv4 protocol

 AF_INET6 for IPv6 protocol

 Type – stream, datagram, raw IP packets, …

 SOCK_STREAM TCP packets

 SOCK_DGRAM UDP packets

 Protocol – TCP, UDP, …

 0 default, e.g., TCP for SOCK_STREAM

 Example:
HANDLE sock = socket(AF_INET,SOCK_STREAM,0);

Connecting Sockets

 Socket addresses
struct SOCKADDR_IN {

sin_family // AF_INET

sin_address.s_addr // inet_addr(“127.0.0.1”);

sin_port // htons(8000);

} addr;

 Bind server listener to port:
int err = bind(sock, (SOCKADDR_IN*)&addr,sizeof(addr));

 Connect client to server:
HANDLE connect(sock, (SOCKADDR_IN*)&addr,sizeof(addr))

Client / Server Processing

socket()

bind()

listen()

accept()

recv()

send()

close()

socket()

connect()

send()

recv()

close()

Server Client

Accessing Sockets Library

 #include <winsock2.h>

 Link with wsock32.lib

 To build a server for multiple clients you will need to use threads,
e.g.:

#include <process.h>

and use the Project Settings:

C/C++ language\category=code generation\debug multithreaded

Project Setting #1

Project Setting #2

Sockets API

 WSAStartup - loads WS2_32.dll

 WSACleanup - unloads dll

 socket - create socket object

 connect - connect client to server

 bind - bind server socket to address/port

 listen - request server to listen for connection requests

 accept - server accepts a client connection

 send - send data to remote socket

 recv - collect data from remote socket

 Shutdown - close connection

 closesocket - closes socket handle

Sequence of Server Calls

 WSAStartup

 socket (create listener socket)

 bind

 listen

 accept

 create new socket so listener can continue listening

 create new thread for socket

 send and recv

 closesocket (on new socket)

 terminate thread

 shutdown

 closesocket (on listener socket)

 WSACleanup

WSAStartup

wVersionRequested = MAKEWORD(1,1);

WSAData wData;

lpWSAData = &wData

int WSAStartup(

WORD wVersionRequested,

LPWSADATA lpWSAData

)

 Loads WS2_32.dll

TCP/IP socket

af = AF_INET

type = SOCK_STREAM

protocol = IPPROTO_IP

SOCKET socket(int af, int type, int protocol)

 Creates a socket object and returns handle to socket.

Bind socket

Struct sockaddr_in local;

… define fields of local …

name = (sockaddr*)&local

namelen = sizeof(local)

int bind(

SOCKET s,

const struct sockaddr *name,

int namelen

)

 Bind listener socket to network card and port

Listen for incoming requests

int listen(SOCKET s, int backlog)

 backlog is the number of incoming connections queued (pending)

for acceptance

 Puts socket in listening mode, waiting for requests for service

from remote clients.

Accept Incoming Connection

SOCKET accept(

SOCKET s,

struct sockaddr *addr,

int *addrLen

)

 Accepts a pending request for service and returns a socket

bound to a new port for communication with new client.

 Usually server will spawn a new thread to manage the socket

returned by accept.

Client/Server Configuration

Server Main Thread

Socket Receiver Thread

Server

Socket

use socket

data

Client

Client

Socket

listener

socket

C
re

a
te

T
h

re
a

d

data

port

listener

port

recv

int recv(

SOCKET s,

char *buff,

int len,

int flags

)

 Receive data in buff up to len bytes.

 Returns actual number of bytes read.

 flags variable should normally be zero.

send

int send(

SOCKET s,

char *buff,

int len,

int flags

)

 Send data in buff up to len bytes.

 Returns actual number of bytes sent.

 flags variable should normally be zero.

shutdown

int shutdown(SOCKET s, int how)

 how = SD_SEND or SD_RECEIVE or SD_BOTH

 Disables new sends, receives, or both, respectively. Sends a FIN to
server causing thread for this client to terminate (server will continue
to listen for new clients).

closesocket

int closesocket(SOCKET s)

 Closes socket handle s, returning heap

allocation for that data structure back to

system.

WSACleanup

int WSACleanup()

 Unloads W2_32.dll if no other users. Must call this once for

each call to WSAStartup.

Sequence of Client Calls

 WSAStartup

 socket

 address resolution - set address and port of

intended receiver

 connect - send and recv

 shutdown

 closesocket

 WSACleanup

TCP Addresses

struct sockaddr_in{

short sin_family;

unsigned short sin_port;

struct in_addr sin_addr;

char sin_zero[8];

} SOCKADDR_IN;

TCP/IP Address fields

 sin_family AF_INET

 sin_port at or above 1024

 sin_addr inet_addr(“127.0.0.1”);

 sin_zero padding

 Setting sin_addr.s_addr = INADDR_ANY allows a server

application to listen for client activity on every network

interface on a host computer.

connect

int connect(

SOCKET s,

const struct sockaddr *name,

int namelen

)

 Connects client socket to a specific machine and port.

Special Functions

 htons – converts short from host to

network byte order

 htonl – converts long from host to network

byte order

 ntohs – converts short from network to host

byte order

 ntohl – converts long from network to host

byte order

A Word of Caution

 With stream oriented sockets, send does not

guarantee transfer of all bytes requested in a single

call.

 That’s why send returns an int, the number of bytes

actually send.

 It’s up to you to ensure that all the bytes are actually

sent

 See my code example – socks.cpp

Non-Blocking Communication

Process #2

receiver

Process #1

sender

function sending

data to

Process #2

function receiving

data from

Process #1

interprocess

communication

FIFO queue

processing thread

receiver thread

Store and Forward Architecture

Process #1 - Main Thread

Socket Thread

socket

Process #2 - Main Thread

Socket Thread

socket
Interprocess

Communication

SendQ RecvQ

SendQ is used to hold messages
in the event that communication
with the remote receiver fails.

Messages are held until
communication is re-established.

RecvQ is used to quickly remove
messages from the socket
connection so that the socket
buffer never fills (that would block
the sender).

Messaging System Architecture

Client Server

MessageMgr

sockets

MessageMgr

sockets
bidirectional

byte stream

asynchronous messages

and data transfers

send and receive

messages and data

client/server

model

MessageMgr

Model

sockets model

- develops interface for clients

 and servers

- implements protocols for

 message and data transfer

- uses sockets interface to

 effect transfers

- queues messages at receiver

- handles socket with one thread,

 parses messages and handles

 queue with another

- server listens, spawns a

 thread for each client

thread-safe
queues

thread-safe
queues

Talk Protocol

 The hardest part of a client/server socket
communication design is to control the active
participant

 If single-threaded client and server both talk at the same
time, their socket buffers will fill up and they both will block,
e.g., deadlock.

 If they both listen at the same time, again there is deadlock.

 Often the best approach is to use separate send and
receive threads

Client

Server’s Client Handler

sending receiving

/extract token

/send token

/send message /extract message

receiving sending

/extract token

/send token
/send message/extract message

/send token

/send done

/receive done

State Chart - Socket

Bilateral Communication Protocol

Each connection channel
contains one “sending” token.

Message Length

 Another vexing issue is that the receiver may not

know how long a sent message is.

 so the receiver doesn’t know how many bytes to pull from

the stream to compose a message.

 Often, the communication design will arrange to use

message delimiters, fixed length messages, or message

headers that carry the message length as a parameter.

 MessageFramingWithThreadsAndQs – only in C# right now

 SocketBlocks SocketCommunicator

Message Framing

 Sockets only understand arrays of bytes
 Don’t know about strings, messages, or objects

 In order to send messages you simply build the
message string, probably with XML
 string msg = “<msg>message text goes here</msg>”
 Then send(sock,msg,strlen(msg),flags)

 Receiving messages requires more work
 Read socket one byte at a time and append to message

string:

 recv(sock,&ch,1,flags); msg.append(ch);

 Search string msg from the back for </

 Then collect the msg>

They’re Everywhere

 Virtually every network and internet

communication method uses sockets, often in

a way that is invisible to an application

designer.

 Browser/server

 ftp

 SOAP

 Network applications

What we didn’t talk about

 udp protocol

 socket select(…) function

 non-blocking sockets

Sockets

The End

