	PRIVATE
CSE 784 - Software Studio
	Fall 2008

Software Studio Midterm Examination

Critical Analysis of Project #1PRIVATE

Instructions:

This is a take home examination. Please finish and submit by Monday, 13 November.

You are required to perform a critical review of your project #1 and submit a report covering the specification, design, implementation, and testing issues discussed in class.

Analysis of Documentation and Design:
B-Specification Review:
Determine if each of the A-Spec requirements (shalls) have been allocated to requirements (shalls) in the B-Spec. Does the B-Spec identify derived requirements necessary to completely specify what the program must do.

Do the data flow diagrams and Pspecs (HIPOs) successfully capture all the processing required of the program? Are the data flows complete? Are the DFDs adequately leveled and do they balance?

Does your data dictionary list every data flow shown on every DFD and context diagram?

Does the Requirements Traceability Matrix list every shall in the A and B level specifications? Are the additional derived requirements adequate to ensure that the pro​duct developed functions as expected?

C-Specification Review:
Does your C-Spec capture the architecture and organizing principles of your design in an introductory section?

Analyze your module diagram, class inheritance diagrams, structure charts, event trace diagrams, and any other diagrams you have used. Relate diagrams and charts to your design strategies, e.g., top-down, left-to-right, bottoms-up etc. Note that designs are often dominated by two or more strategies. The top level may have been developed using top-down successive refinement process, while the middle level is dominated by left-to-right or right-to-left design. Did bottoms-up processing play a role in your design process?

Did your design use a modular structure where each module and class has a well- defined public interface and private implementa​tion? Does each module and class have a coherent abstraction? Did each module’s top-level Pspec (prologue) capture these issues?

Is every function called shown, or at least listed, on a structure chart?
 Are all data couplings shown? Is the structure chart in classic form, e.g., executive processing at the top, input on the left, output on the right, transforms in the middle, physical processing at the bottom?

Are structure charts used for classes with layered member functions? Are classes and class systems illustrated with UML diagrams? Do class manual pages effectively capture the class’s operations? Is the class design obvious or documented with design notes and comments where appropriate?

C-Specification Review (continued):
Analyze each module description. Does a processing statement exist for each function? Do the processing statements effectively (briefly and complete​ly) describe the processing to be done and data flows
? Is your supplied code in the C-Spec self documenting? Have you used state transition diagrams, class diagrams, event traces, and/or data structure diagrams to illustrate your code.

Design Review:
Analyze each module, evaluating its abstraction, modularity, hierarchy, coupling, cohesion, cyclo​ma​tic complexity, size, use of objects, reusability, and understand​abil​ity. Does each C++ server module have a guarded header and each server module a test stub? Does every module have manual and maintenance pages?

Analyze each global and member function of every module for the same issues. Under​standability is often dominated by names used and layout of control structures and white space.

Do every module and every function in each module of your source code have a prologue? Does the prologue provide a HIPO statement when data input is non-trivial? Comments should be used to clarify your code and be as brief as possible while still being useful. Design issues you wish to illuminate should be addressed in the prologue processing or prologue notes. Comment on the effectiveness of prologue and comments for each module and each function.

Implementation Review:

Analyze robustness of your design. Does each module and class properly encapsulate its internal mechanisms? Does the program use exception handling and/or check error returns when available from your code and C and/or C++ library functions? Does program check for errors in input data? Does each code segment that writes to a buffer through an array or pointer reference guard against buffer overflow? Does design make any implicit assump​tions regarding program input which affects correct operation over all code your program was required to process? How have you ensured that all pointers are properly initialized and memory successfully allocated and de-allocated? Have you provided functions that check module or class invariants?

Re-implementing your Design:
Briefly describe how you would fix any grievous errors found through your analysis. Specifically consider:

- Vague or imprecise abstractions

- Implicit assumptions made by a component about operations of other components

- Lack of design modularity, encapsulation, and layering

- Over-size or over-complex functions

- Functions and modules with poor cohesion

- Complex coupling

- Use of global variables

- Tramp data

Identify reusable routines and identify simple changes that make non-reusable functions reusable. Note that you are not required to re-implement your code, only comment on what you would do if you did do that.
Test:
Unit Test:
For one of your more significant modules, exhaustively test each function if possible. Provide a test report that lists each function and discusses the test method. Provide a test log of output data and record of critical watch values during debugger walk through.

Integration Tests:
Provide each module with a test stub if it does not already have one, surrounded by #ifdef and #endifs, e.g.:

#ifdef TEST_module_name

int main(...) { ... }

#endif

Identify a module test sequence where the first module depends on no other, the second depends on the first, etc. Integrate modules one-by-one, and conduct tests at each stage
. Leave the test stubs appended to each module for maintenance testing.

Qualification Tests:
Demonstrate that your program is (or is not) able to successfully process it's own source code, if appropriate.

Pre​pare and execute test programs that will test each require​ment of the A and B-Specs. Provide a Requirements Traceability Matrix that shows how each test maps back to the B-Spec. Make sure that your B-Spec Traceability Matrix properly maps back to the A-Spec.

Documentation:
Prepare an analysis report that addresses each of the issues outlined above. Divide your report into a section on specifica​tions, on program structure, a section dealing with module and function by function analysis, and test.

Specifications Section:
Address each of the issues discussed above and others that seem appropriate.

Design Report Section:
Address each of the issues discussed above. Organize this section on a module and class or global function basis.

Provide a subsection devoted to enumerat​ing the changes you would make to improve the design and/or implementation. Provide annotated source code listings of your design in an appendix.

Test Report Section:
Prepare a test report organized by test level, unit, integration, and qualification. The test report should announce tests pass/failed in an initial summary, contain traceability matrices in an appendix, and Print-outs of all test data carefully organized to demonstrate correctness at all levels.

The most important parts of an analysis are the conclusions you draw at the end of each section and provide in an executive summary at the beginning. Without conclusions your analysis provides data, not information.

� If a module implements an abstract data type the couplings from client modules may be so intense that showing on a chart is counter productive.

 � HIPOs for C++ class functions need only processing descriptions if client inputs/outputs are obvious or if I/O only involves class member data.

 � This may require significant modifications to your existing test stub.

