CSE784 – Software Studio

Fall 2003

Project #1 – Test Harness
B-Specification due Sep 15, code due Sep 22, C-Specification due Sep 29, revised B-Specification due Oct 13
Purpose:

This project provides a facility for constructing and executing test suites. It provides interfaces for classes that provide individual tests, for logging results, and for tracking allocations, and also provides a class for test aggregation.
Specifically the project may provide an ITest interface that has a member function, virtual bool test(), that must be overridden by every class derived from ITest. A developer will derive at least one class from ITest for each module of a program to be tested
. These classes will usually define a set of test functions that exercise all of the module’s functionality, with each of the functions called, in some appropriate sequence, by test(). Note that constructors or other member functions in the derived classes can be used to provide parameters needed for testing.
The project may provide an ILog interface that has a member function virtual void report(), responsible for logging test results. It also may have non-virtual member function void bind(ostream&)
 that supports binding to either a console stream, a memory stream, or a file stream.

The project may provide an IAllocTracker interface that provides members virtual void acquire() and virtual void release(), used to track the number of allocations and deallocations of each resource used by the program under test.
The project also may provide a CTestSuite class that provides non virtual member functions void add(ITest&) and void test(). Function add(ITest&) is used to add references to each class derived from ITest to a collection of tests. Function test() then exercises each of the tests by calling ITest::test() on each of the test objects in its collection. CTestSuite also provides functions that return the total number of tests and the number of tests that failed.
Requirements:

Your TestHarness program:

1. Shall compile and link successfully in the ECS clusters using Visual Studio 7.0.

2. Shall provide a test facility with interfaces for constructing and executing tests, for logging test results, for tracking allocations, and for aggregating tests for programs implemented with more than one module.
3. Shall provide at least one class derived from the test interface for each module being tested.

4. Shall provide classes derived from the logging interface for each of the following: console stream, memory stream, and file stream.

5. Shall provide a class derived from the tracking interface that logs the total number of bytes allocated and the net number of allocated bytes remaining when the program terminates.

6. Shall demonstrate each of these features while testing several components from a project implemented in CSE681 or CSE687.

� One would expect all but the simplest modules to define several test classes used to cover the complete range of their activities.

� This specification uses C++ syntax to describe the required operations. You may, however, implement this project using C#, modifying the syntax accordingly.

