	PRIVATE
CSE 784 - Software Studio
	 Fall 2004

CSE 784 - Final Project

PRIVATE
 Web-Service based Project Center
version 1.1
27 September 2004
Instructions:
This is a cooperative project requiring the combined efforts of everyone in the class. Participants will be assigned roles in the project, and grades will be based on:

1. how well each of your carries out your assigned role, as measured by products you generate.
2. quality of the final product.

3. conduct of a series of specification, design, and test reviews leading up to the final product qualification test

An Architectural description is provided on the next page, along with additional notes and comments. Also included are job descriptions for each of the roles to be assigned.

The project will be completed and a qualification test conducted on Monday, December 8th. Final product delivery of updated specifications and code will be on Monday, December 15.

Web-Service based Project Center
Preliminary Architectural Concept

version 1.0
James Fawcett

27 September 2004
Purpose of the Project:

The goal of the Web-Service Based Project Center is to support management and execution of large projects. The system is described as Web-Service Based because the system is distributed with an underlying transport mechanism that uses message-passing through web services. Consequently, the system can be composed of parts that reside on multiple machines in any set of locations accessible from the web
.
The Project Center is composed of a set of defined parts embedded in an extensible architecture that supports the addition of new tools without rebuilding any other part of the system. Some of these parts will be built as part of this development effort, and some of the parts will be available open-source tools, integrated into the Center.
The main functions provided by the Project Center are:
1. Integration of all tools into a unified, extensible, whole via integrating web and WinForm interfaces
.

· Web interface consists of an ASP.Net application running on a Project Server that links to other ASP pages, accessed through browsers on client machines.
· Winform interface consists of WinForm clients that communicate with a Project Server via web-services that support message-passing.

2. Source control, building, and testing supported by the following open source tools:

· CVS source control system

· NAnt build system
· NUnit test harness

3. Tools developed specifically for this application
:
· Schedule and progress tracker
, supporting scheduling of project milestones, meetings, reviews, integration; and reporting progress against project milestones.

· Requirements-database records and discloses customer and developer requirements.

· Bug Tracker supports the definition, and eventually the closure of bugs encountered in development.

· Change Log supports recording of every change made to any component under source code control. The bug tracker and change control logging should be linked
.

Preliminary Partitions and Their Functions:
Processing required to support the Project Center’s activities is divided into the following subsystems:

1. Asp.Net User Interface

Supports integration of all the tools through Asp.Net pages. Note that a significant amount of early design work will involve learning how to integrate with the existing open-source tools.
2. WinForm User Interface

Supports integration of all the tools through web services. Each of the WinForm clients will run on user’s machines, communicating with the project server via web services. All of the project data and controlled items are maintained on the project server.

3. Open-Source Tools Subsystem

The tools subsystem is responsible for providing an environment in which each of the tools can run and interface with the User Interfaces. Note that it is entirely suitable, although not required
, for the User Interfaces to spawn a separate process to run any of the tools.
4. Scheduling and Tracking Subsystem

The tracking subsystem is responsible for providing scheduling, bug tracking, and change log, all in a consistent, integrated manner for the User Interfaces.
5. Data Management and Security Subsystem

The data management subsystem supports persistent handling of all Project Center data using both SQL Server and XML, although not concurrently
.

6. Communication and File Transfer Subsystem

The Communication Subsystem uses message-passing to communicate requests and pass data, including files, between Project Center clients and server. Message-passing will be implemented using web services.

Critical Issues:

The following issues will need attention at the beginning of the project:

1. ASP.Net Application interface to the open-source tools

It is not clear at this time how ASP can provide access to CVS, NUnit, and NAnt. There may be a programmable interface provided by the tools. If not then we need to attempt to spawn the tools from ASP. That will require the client machines having full trust in the project server.

2. Integration of new tools

If each tool supplies its own Form-based interface and uses message-passing for communication, then integration should be straight-forward for WinForm clients, but we have some of the same issues cited in 1., above, for the ASP.Net interface.

3. Progress information for Schedule tool

Extracting progress information from CVS, NUnit, and NAnt will be very useful, but it is not clear how that can be done until the tools are available and have been examined.

Project Center System
Preliminary Project Organization

version 1.1
Jim Fawcett

28 September 2004
Software Project Manager

The SPM will manage the Project Center program, with the help of the Software Architect, Test Manager, and all the Team Leaders.

Software Architect

The Software Architect is responsible for the Project Center System architectural concept and A Specification. A preliminary A-Specification is provided as part of this package, but will evolve as the team and customer negotiate system structure and capabilities. The SA will also provide support for qualification testing.

Software Development Teams

Project Center System development will be carried out by teams, defined in this document. There will also be a test team, responsible for developing and executing Qualification Test. Each team, with the exception of test team, will:

1. produce its own behavior specification
, design description, and code

2. present their specifications and design during Project Center System specification and design reviews

3. conduct unit test on their code

4. integrate their software with that of the other teams

5. participate in final qualification testing

Test Team

The test team will prepare a test plan which contains at least the following:

1. A schedule of key milestones and their contents.

2. A schedule for integration testing and qualification testing. The integration test schedule will be phased and clearly describe when each team’s software must be available for integration.

3. A set of qualification test descriptions, procedures, and definition of all instrumentation, logs, and analyses needed to conduct qualification testing.

4. Definition of a process for baselining and accessing test code, including a class build directory structure and error reporting mechanism.

Integration testing is the joint responsibility of the development team leaders and test team leader. Qualification testing is the responsibility of the Software Project Manager, supported by the test team and its manager. Each development team will be responsible for developing qualification tests, in collaboration with the Test Team member assigned to them, which implement the tests described in the test plan in for their software, under the joint direction of their team leader and the test team leader.

Team Assignments:

1. Software Project Manager

Priyaa Nachimuthu

2. Software Architect

Anirudha Krishna

3. Test Team

Avinash Kadaji – Team Leader
· Abhishek Banerjee

· Anirudha Krishnan

· Ashish Poddar

· Shyam Sundaramurthy

· Ramanath Rajagopalan
· Navaneeth Rajkumar
4. Asp.Net User Interface

Ashish Poddar – Team Leader

· Po-Hao Hsieh

5. WinForm User Interface

Shyam Sundaramurthy – Team Leader
· Jaideep Venkatesh

6. Open-Source Tools Subsystem

Gang Cheng – Team Leader

· Dipesh Khakhkhar

· Pritesh Velankar

7. Scheduling and Tracking Subsystem
Jaimeen Kamdar – Team Leader

· Guatum Jayaprakash

· Jimmy Gill

· Sarabjeet Singh

· Nathan Stokes

8. Communication and File Transfer

Hari Kizhakekalem - Team Leader
· Akash Pahuja
9. Data Management and Security

Ghanashyam Namboodiripad - Team Leader

· Charlie Chung

Attachment #1 - Job Descriptions

Job Description: Software Project Manager (SWPM)

The Software Project Manager organizes the teams so that each team owns part of the B-Spec, C-Spec, and software integration. He/She conducts weekly meetings to stay on top of any problems that arise, and manages all the reviews.

The SWPM is expected to know most of the design and the critical code details. The SWPM, Software Architect, and Team Leaders establish the architecture and B-Specs; and they control the design, implementation, and test processes so that the final product is robust and meets specifications.

Finally, the Software Project Manager directs the Test Leader and Architect to prepare a Software Test Plan and conducts qualification tests based on the plan.

Responsibilities:
1. Organize teams

2. Prepare program schedule including Architecture Review, Specification Review, Design Review, and Qualification test. Present the schedule at the Architecture Review and at each succeeding review.

3. Manage B-Spec process with team leaders.

4. Provide the opportunity for each team leader to be a hero, but:

5. Takes full responsibility for success of the project.

6. Conducts specification review on date specified in program schedule.

7. Conducts design review on date specified in program schedule.

8. Prepares, with Test Leader and Software Architect, a Test Plan. Conducts qualification test with the help of Test Leader, Architect, and Team Leaders.

Evaluation:
The Project Manager's grade is based on:

1. meeting program schedule

2. Software Test Plan and success of qualification

3. an oral examination.

Job Description: Software Architect (SA)
The Software Architect is responsible for the architectural concept, effectiveness and ease of use of the user interface, modularity and robustness of the design. He/She supports the team leaders in developing elegance and quality in the final product.

The SA is required to know the entire design and provides support for team leaders during major reviews. He/She has responsibility for consistency and integrity of all requirements with special focus on the user interface. The SA is also responsible for the top-level physical structure, organizing principles, and built in test
. Built in test should directly support qualification testing.

SA participates in all weekly meetings, spending at least some time with each team, making sure they understand the architecture and testbed, and helps with problem solving as needed by each team. The SA is responsible for ensuring that the requirements are sensibly allocated to individual teams and that each team understands their allocation.

Responsibilities:
1. Prepare an Architectural Concept Document which includes:
a. Organizing principles for project including processing partitions for each team

b. Definition of user interface

c. Definition of, and logical model for, top level processes and data flows, e.g., one DFD per team (worked out with respective Team Leader)

d. Updated to include definition of, and logical model for, each module in the Project Center System design, including key classes.
e. This work will be presented at the architecture review.
2. Support SW integration process
.

3. Provide technical support to teams during Specification Review, Design Review, and Qualification test.

4. Help with design and implementation when needed.

5. Assist SWPM and Test Leader with final product Qualification Test

Evaluation:
The Software Architect's grade is based on:

1. Architectural Concept Document

2. Success of reviews

3. Support provided to teams during integration so that subsystems behavior reflects architectural goals and the subsystem interfaces are understood by all teams.
4. Support provided to SWPM and Test Leader during Qualification

5. An oral examination.

Job Description: Test Manager (TsM)

The Test Manager is the technical lead for integration
 and qualification test. Does whatever is needed to detect and locate latent errors in project code.

The TsM is required to know the entire design and provides support for team leaders during integration testing. He/She shares responsibility for qualification test with the Software Project Manager, assisted by the SA. The Test Leader:

1. prepares a test plan, including qualification test descriptions and procedures

2. reports status of unit testing, solicited from the Team Leaders.
3. coordinates integration test schedule and supports team leaders in integration

4. provides qualification test templates

5. conducts the mechanics of qualification test while the Software Project Manager leads the test and signs off on tests with the customer

6. manages a test bed
 which includes all released codes which are shared between teams or modules within a team. The test bed is built around a directory structure established by the Test Leader with the Software Architect and ECS cluster system administrators.

TsM participates in all weekly meetings, spending at least some time with each team, making sure they understand the test process and testbed, and helps with problem solving as needed by each team.

Responsibilities:
1. Prepare a Test Plan Document which includes:

a. test schedule

b. priorities for integration test, based on dependency analysis of each team’s code base.
c. definition of qualification test templates

d. qualification test descriptions and test procedures (about 90% of the Test Plan)

2. Provide technical support to teams during integration and qualification test.

3. Manage the testbed used for the project.

4. Help with design and implementation when needed.

5. Help team leaders plan and conduct integration test.

6. Plan and share responsibility with the Software Project Manager for final product Qualification Test.

Evaluation:
The Test Leader's grade is based on:

1. Test Plan Document

2. Success of qualification testing

3. Integrity of the final product

4. An oral examination.

Job Description: Team Leader (TL)

The Team Leader is the technical lead for one specific part of the system. Does whatever he/she has to make that part successful. The TL prepares the B-Spec for his/her assigned part of the system with the help of the Software Architect and presents that part at Specification Review. He/She organizes the team to produce the C-Spec, conduct design review, produce code, test drivers, and conduct unit testing. TLs share responsibility with the Test Manager for software integration. They are directly responsible for running all integration tests and preparing any required modifications to their team’s code.
Responsibilities:
1. Reviews Architectural Concept and prepares assigned part of B-Spec.

2. Presents team's part of B-Spec at Specification Review.

3. Assigns classes/modules to individual team members.

4. Guides the team in preparation of design and C-Spec.

5. Assigns team members to present during design review
.

6. Insures that all requirements are traceable to the process and function level.

7. Provides opportunity for each team member to be a hero, but:

8. Takes full responsibility for success of team.

9. Shares responsibility for software integration with TsM and other TLs.

10. Helps team members with design and/or implementation problems.

Evaluation:
Grade based on:

1. B-Spec for assigned part of system

2. Presentation during B-Spec Review

3. Meets allocated specifications

4. Has adequate derived specifications and meets them

5. Success of team's design and implementation, e.g.,

6. Robustness of Team’s code.
7. an oral examination.

Job Description: Team Member (TM)

Concentrates on one specific part of the system. Does whatever necessary to make assigned parts successful. TM has primary responsibility for assigned classes/modules including design, implementation, and test. He/She prepares C-Spec for assigned functionality, presents that part at the design review, develops code, and conducts unit test. The TM supports the Team Leader in conducting integration if requested by TL.

Responsibilities:
1. Reads B-specification

2. Prepares assigned part of the C-Spec and design.

3. Presents that part at Design Review.

4. Implements assigned part, paying attention to complexity, size, robustness, understandability.

5. Develops unit test drivers.

6. Tests every function and allocated requirement as early as possible

7. Takes full responsibility for assigned part of subsystem.

Evaluation:
Grade based on:

1. C-Spec Review presentation

2. quality of assigned code and test

3. robustness of code.
4. "reasonable" size and complexity

5. good understandability

6. success of team's assigned part

7. willingness to support team leader in documentation, design, implementation, and test
Final Project

Project Center System
Statement of Work

version 1.0

Jim Fawcett

27 September 2004
1. Introduction:
The Project Test Center System is a tool designed to help manage the code development tasks of a large project. Project Center has facilities for:

· Integrating a series of tools, and accepting new tools as needed by the project.

· Supporting control, building, and testing a large code base.

· Reporting changes, bugs, and progress against project milestones.

2. Customer Furnished Equipment:

The operating environment for Project Center System will be Windows XP, as provided in the ECS clusters. The Project Center System software must compile and link using Visual C#, as provided by Visual Studio.Net. This environment is available in the ECS clusters in 010 Link, 202 Link, 2-122 in CST, and Hinds Hall, Syracuse University.

3. Reference Documents:

· Project Center System Preliminary Architectural Concept, 27 September 2004, or latest version.

· Project Center System A-Level Specification, 27 September 2004, or latest version.

· Visual C# and Class Library on-line documentation

4. Preliminary Schedule – Fall 2004:

	Project start date
	27 September

	Program and Architecture Review
	11 October

	B Specification Review
	25 October

	Design and Prototypes Review
	01 November

	Design and Implementation Meetings
	08 November

	Design and Implementation Meetings
	15 November

	Test Readiness Review
	22 November

	Qualification Test
	06 December

	Final Products Delivery
	13 December

Final Project

Project Center System
A-Level Specification

version 1.2
Jim Fawcett

28 September 2004
Project Center System
1. Introduction:
The Project Center System is a tool designed to help manage the code development tasks of a large project
. Project Center has facilities for:

· Integrating a series of tools, and accepting new tools as needed by the project.

· Supporting control, building, and testing a large code base.

· Reporting changes, bugs, and progress against project milestones.

[image: image2.wmf]FileInfo Requests

Files

Project Center

Directory

Services

Network

Services

User

Interface

controls

Display

Information

Messages

commands

Messages

,

Connection Requests

User Commands

Status Messages

,

error messages

Open

-

Source

Tools

path

,

tools data

,

help info

responses

SQL Server

Data requests

Data responses

Figure 1 – Project Center System Context Diagram

The Project Center System Architecture consists of the partitions:

1. Asp.Net User Interface

Supports integration of all the tools through Asp.Net pages. Note that a significant amount of early design work will involve learning how to integrate with the existing open-source tools.
2. WinForm User Interface

Supports integration of all the tools through web services. Each of the WinForm clients will run on user’s machines, communicating with the project server via web services. All of the project data and controlled items are maintained on the project server.

3. Open-Source Tools Subsystem

The tools subsystem is responsible for providing an environment in which each of the tools can run and interface with the User Interfaces. Note that it is entirely suitable, although not required
, for the User Interfaces to spawn a separate process to run any of the tools.
4. Scheduling and Tracking Subsystem

The tracking subsystem is responsible for providing requirements capture, scheduling, bug tracking, and change log, all in a consistent, integrated manner for the User Interfaces.
5. Data Management and Security Subsystem

The data management subsystem supports persistent handling of all Project Center data using both SQL Server and XML, although not concurrently
.
6. Communication and File Transfer Subsystem

The Communication Subsystem uses message-passing to communicate requests and pass data, including files, between Project Center clients and server. Message-passing will be implemented using web services.

[image: image1.emf]User Interfaces

Communications and

File Transfer

Data

Management and

Security

Open-Source

Tools

Scheduling and

Tracking

Tool Integration

Services

Figure 2 – Project Center System Module Diagram
2. Reference Documents:

1. Project Center System Preliminary Architectural Concept, 27 September 2004.

2. Project Center System Statement of Work, 27 September 2004.

Requirements:

The Project Center System is a tool designed to help manage code development, control, and testing. The requirements are allocated below, to each of the major partitions described in Section 1.
3.1. Functional Requirements

The Project Center System supports the control, building, and testing of project code, and display and management of requirements, schedules, tracking of bugs, and recording all changes made to code under control. It:

3.1.1. shall support the creation of a database for a new project and the installation of all Project Center tools on a newly designated server.
3.1.2. shall support the creation of Project Center clients on a finite number of machines, configured to operate with the server of 3.1.1.
3.1.3. shall provide the capability to insert new tools defined and acquired during the execution of the project.
3.1.4. shall provide help for the Project Center as a whole and for each of its tools. This help should be detailed enough that a new user can start with no other instruction.
3.1.5. shall provide a WinForms-based User Interface for Project Center clients that supports integrated access within a network domain to all the tools described in this specification.
3.1.6. shall provide an Asp.Net User Interface for Project Center users that supports integrated access across the internet to all the tools described in this specification.
3.1.7. shall provide the services of CVS for source control, NUnit for testing, and NAnt for building software libraries and executables.
3.1.8. shall provide facilites for creating, editing, and displaying one or more titled, paged, project schedules. Each schedule shall support the display of status information derived from CVS and NUnit data.
3.1.9. shall support the capture, editing, and disclosure of customer and project requirements.
3.1.10. shall provide logging facility for tracking bugs that provides a text description of the bug, responsible party assigned to the bug, and date and action taken to resolve the bug.
3.1.11. shall provide a logging facility for tracking changes to the code base. Every change of the CVS code base will be recorded along with the reason for the change.
3.1.12. shall use an XML-based message-passing communication layer for all communication between machines
 implemented using web services.
3.1.13. shall provide the capability to store persistently all data used by Project Center. All data, excluding that managed by CVS, shall be held in an SQL Server database.
3.1.14. shall provide the capability export all Project Center data to one or more XML files. The Project Center shall provide a version of the Project Center client and Server that operate using this XML data representation
.
3.2. Process Requirements:

These requirements specify the physical structure of delivered code and the environment where it must operate.

3.2.1. Physical Structure

3.2.1.1. The Project Center System source code shall be composed of modules.
3.2.1.2. Project Center System builds shall be composed of managed code executables and dynamic-link libraries.
3.2.1.3. The User Interfaces shall delegate all operations, not directly associated with providing the user interfaces, to server modules, e.g., Communication, Data Management and Security, Scheduling and Tracking, and Open-Source Tool Integration.
3.2.1.4. All modules shall be provided with manual pages and correct maintenance pages.
3.2.1.5. Each server module shall be provided with a functional test library for use with NUnit and build scripts for use with NAnt.
3.2.2. Development

3.2.2.1. The project center development process shall use CVS, NUnit, and NAnt for all development. It shall use the Scheduler, bug tracker, and Change Log as soon as these tools become individually available. Prior to that time the development team shall use a manual process for scheduling, bug tracking, and logging changes.
3.2.3. Development Environment
3.2.3.1. The Project Center System shall build and operate in the ECS clusters, e.g., 010 Link, 202 Link, 129 Hinds, or 2-122 CST.
3.2.4. Program Management
3.2.4.1. The Project Center System shall be developed subject to the conditions specified in the Project Center System Statement of Work, of the latest version.

� EMBED Visio.Drawing.6 ���

� e.g., hosted by a web server on a machine connected to the internet.

� One important goal of this development is that the Web and Winform interfaces are to be as similar as practical.

� Both documents and code will be managed with CVS

� All tools should work with persistence based on either XML or SQL Server. This supports efficient access to large data stores while allowing any user to export and work with data on their laptops.

� The progress tracker is linked to CVS and NUnit, parsing the CVS data and NUnit tests to record progress against milestones.

� Each change to correct a bug should link to the corresponding bug report. Each bug report should link to all the changes made to resolve the bug.

� Tools may provide a programmable interface, and if so, the tools team may choose to expose that.

� Two separate Project Center configurations are provided, one using SQL Server, the other using XML services, intended for use on laptops. It is highly desirable that most of the software is common between these two configurations. If possible all differences are confined to the Data Management and Security Subsystem. Use of ADO to manipulate XML data will support this goal.

� The form of behavior and design descriptions will be as cited above in the Preliminary Architectural Concept.

� Each subsystem should have means to test the validity of its operations.

� This is a technical support role, not a managerial role.

� Team leaders conduct the integration process, as scheduled by the Test Manager. This schedule should be negotiated with everyone agreeing that it can be met. Should this be difficult, please consult the customer.

� The test bed starts out as a set of directories globally accessible to the development teams, with permissions established to control the evolving product. As Qualification Test approaches the test bed typically contains a number of tools designed by the test team to support qualification testing.

� The Team Leader should assign presentation responsibilities and introduce each speaker on his/her team, but should ensure that team members each get a major part of the presentation.

� It is a goal of this project to use the facilities of the Project Center while building it, via a bootstrapping process.

� Tools may provide a programmable interface, and if so, the tools team may choose to expose that.

� Two separate Project Center configurations are provided, one using SQL Server, the other using XML services, intended for use on laptops. It is highly desirable that most of the software is common between these two configurations. If possible all differences are confined to the Data Management and Security Subsystem. Use of ADO to manipulate XML data will support this goal.

� The intent of this requirement is to produce a reusable communication subsystem, based on sockets or .Net remoting.

� This supports the disconnected use of the Project Center on a user’s laptop for purposes of customer discussions and out-of-office work activities.

PAGE
6
[image: image3.wmf]FileInfo Requests

Files

Project Center

Directory

Services

Network

Services

User

Interface

controls

Display

Information

Messages

commands

Messages

,

Connection Requests

User Commands

Status Messages

,

error messages

Open

-

Source

Tools

path

,

tools data

,

help info

responses

SQL Server

Data requests

Data responses

_1157734575.vsd
Class name

User Interfaces

Communications and File Transfer

Data Management and Security

Open-Source Tools

Scheduling and Tracking

Tool Integration Services

_1157768649.vsd
State

Process name

Class name

Event_name

Project Center

Directory
Services

Network
Services

User
Interface controls

Display
Information

Files

FileInfo Requests

Messages

commands

Messages,
Connection Requests

User Commands

Status Messages,
error messages

Open-Source Tools

path, tools data,
help info

responses

SQL Server

Data requests

Data responses

