	PRIVATE
CSE 784 - Software Studio
	Fall 2003

CSE 784 - Final Project

PRIVATE
 Peer-To-Peer Cloning System
version 1.0
29 September 2003
Instructions:
This is a cooperative project requiring the combined efforts of everyone in the class. Participants will be assigned roles in the project, and grades will be based on:

1. how well each of your carries out your assigned role, as measured by products you generate.
2. quality of the final product.

3. conduct of a series of specification, design, and test reviews leading up to the final product qualification test

An Architectural description is provided on the next page, along with additional notes and comments. Also included are job descriptions for each of the roles to be assigned.

The project will be completed and a qualification test conducted on Monday, December 8th. Final product delivery of updated specifications and code will be on Monday, December 15.

Peer-To-Peer Cloning System
Preliminary Architectural Concept

version 1.0
James Fawcett

29 September 2003
Purpose of the Project:

The goal of the Peer-To-Peer Cloning system is to build one or more directory images on a remote machine. The system is described as Peer-To-Peer because each machine that participates in the cloning operation, e.g., source and destination, has an identical cloning system installed. The system reads a pattern of files from the source, and transfers all files matching the pattern from the source machine to the destination machine. A cloning operation can use any two machines containing cloning systems as either source or destination.
The pattern may be a physical directory to clone or one or more file patterns that describe files to be transferred from a specified source path to the specified destination path. The cloner may be instructed to ensure that exactly the same files reside on the destination as the source or it may be instructed to simply insure that all the matching files are transferred. In the later case, and only in the later case, the destination may contain files not on the source after transfer is complete. Note that the source of both patterns and files may be a removable drive installed on the source machine.
The Cloning System may also be instructed to insure that some subtree of the destination’s registry matches the source machine registry subtree or matches a specified .reg file, as used by the RegEdit and RegEdt32 programs. It may also be instructed to insure that a specified set of key-value pairs are present, or possibly, absent
 in the destination registry.
All of the cloning operations may be executed manually at the source or destination console, or may be executed from a script describing one or more directories to clone with a pattern possibly
 associated with each source directory.

Preliminary Partitions and Their Functions:
Processing required to support the Peer-To-Peer Cloner’s activities is divided into the following:

1. User Interface

Supports manual sequencing through cloning operations or selection of a script to run. Also supports the editing and persistence of scripts, using services of the Scripting Subsystem.

2. Reporting Subsystem

The reporting subsystem displays all differences between source and destination or pattern and destination and requests confirmation before a change may be initiated. When the change is complete the reporting subsystem writes a log describing the destination before and after the changes. The reporting subsystem may use the User Interface for all display or may provide its own form.
3. Communication Subsystem

The Communication Subsystem uses message-passing to communicate requests and pass data, including files, between cloning peers.
4. File Transfer Subsystem

The file transfer subsystem is responsible for sending files and file information between source and destination, using the services of the communication subsystem. The file transfer subsystem is also responsible for maintaining any necessary state to roll back the most recent changes. That is, all of the changes made for a given run of the cloning system must be reversible, up to the time at which the cloning system is shut down or another change is made to the same destination path
.
5. Registry Subsystem

The registry subsystem is responsible for adding and/or deleting keys and values so that a specified destination registry subtree matches a specified source subtree or a pattern specified by a .reg file. The registry subsystem is also responsible for rolling back any changes made to the registry, up to the time at which the cloning system is shut down or another change is made to the same branch of the registry.
6. Script Subsystem

This subsystem is responsible for creating, modifying, persisting, and executing scripts that describe one or more cloning operations. Each operation consists of a path to a folder of files on the source machine from which transfers are initiated, a path to a folder on the destination machine where files are to be transferred
, and a pattern that describes files to be transferred from the source. By default the pattern is “*.*”.
 The Script subsystem uses the services of the subsystems, described above, to carry out its activities.

Peer-To-Peer Cloning System
Preliminary Project Organization

version 1.0

Jim Fawcett

31 September 2003
Software Project Manager

The SPM will manage the PEER-TO-PEER CLONER project, with the help of the Software Architect, Test Manager, and all the Team Leaders.

Software Architect

The Software Architect is responsible for the Peer-To-Peer Cloning System architectural concept and A Specification. A preliminary A-Specification is provided as part of this package, but will evolve as the team and customer negotiate system structure and capabilities. The SA will also provide support for qualification testing.

Software Development Teams

Peer-To-Peer Cloning System development will be carried out by teams, defined in this document. There will also be a test team, responsible for developing and executing Qualification Test. Each team, with the exception of test team, will:

1. produce its own behavior specification
, design description, and code

2. present their specifications and design during Peer-To-Peer Cloning System specification and design reviews

3. conduct unit test on their code

4. integrate their software with that of the other teams

5. participate in final qualification testing

Test Team

The test team will prepare a test plan which contains at least the following:

1. A schedule of key milestones and their contents.

2. A schedule for integration testing and qualification testing. The integration test schedule will be phased and clearly describe when each team’s software must be available for integration.

3. A set of qualification test descriptions, procedures, and definition of all instrumentation, logs, and analyses needed to conduct qualification testing.

4. Definition of a process for baselining and accessing test code, including a class build directory structure and error reporting mechanism.

Integration testing is the joint responsibility of the development team leaders and test team leader. Qualification testing is the responsibility of the Software Project Manager, supported by the test team and its manager. Each development team will be responsible for developing qualification tests, in collaboration with the Test Team member assigned to them, which implement the tests described in the test plan in for their software, under the joint direction of their team leader and the test team leader.

Team Assignments:

1. Software Project Manager

Riddhiman Ghosh

2. Software Architect

Mike Woodruff

3. Test Team

Vishali Chandrimouli – Team Leader
· Abhishek Jain
· Sashidhar Kokku
· Mithun Shanbhag

· Xin Zhao
4. Communication and File Transfer

Kedar Gangal - Team Leader
· Jovial Shah
· Ramiswamy Krishnan-Chittur
5. Registry

Mithun Shanbhag - Team Leader

· Mayor Oberoi

6. Scripting

Xin Zhao - Team Leader
· Prateek Dalvi
7. User Interface and Reporting

Chiu-Ming Wang - Team Leader
· Yogeshkumar Khatri
Attachment #1 - Job Descriptions

Job Description: Software Project Manager (SWPM)

The Software Project Manager organizes the teams so that each team owns part of the B-Spec, C-Spec, and software integration. He/She conducts weekly meetings to stay on top of any problems that arise, and manages all the reviews.

The SWPM is expected to know most of the design and the critical code details. The SWPM, Software Architect, and Team Leaders establish the architecture and B-Specs; and they control the design, implementation, and test processes so that the final product is robust and meets specifications.

Finally, the Software Project Manager directs the Test Leader and Architect to prepare a Software Test Plan and conducts qualification tests based on the plan.

Responsibilities:
1. Organize teams

2. Prepare program schedule including Architecture Review, Specification Review, Design Review, and Qualification test. Present the schedule at the Architecture Review and at each succeeding review.

3. Manage B-Spec process with team leaders.

4. Provide the opportunity for each team leader to be a hero, but:

5. Takes full responsibility for success of the project.

6. Conducts specification review on date specified in program schedule.

7. Conducts design review on date specified in program schedule.

8. Prepares, with Test Leader and Software Architect, a Test Plan. Conducts qualification test with the help of Test Leader, Architect, and Team Leaders.

Evaluation:
The Project Manager's grade is based on:

1. meeting program schedule

2. Software Test Plan and success of qualification

3. an oral examination.

Job Description: Software Architect (SA)
The Software Architect is responsible for the architectural concept, effectiveness and ease of use of the user interface, modularity and robustness of the design. He/She supports the team leaders in developing elegance and quality in the final product.

The SA is required to know the entire design and provides support for team leaders during major reviews. He/She has responsibility for consistency and integrity of all requirements with special focus on the user interface. The SA is also responsible for the top-level physical structure, organizing principles, and built in test
. Built in test should directly support qualification testing.

SA participates in all weekly meetings, spending at least some time with each team, making sure they understand the architecture and testbed, and helps with problem solving as needed by each team. The SA is responsible for ensuring that the requirements are sensibly allocated to individual teams and that each team understands their allocation.

Responsibilities:
1. Prepare an Architectural Concept Document which includes:
a. Organizing principles for project including processing partitions for each team

b. Definition of user interface

c. Definition of, and logical model for, top level processes and data flows, e.g., one DFD per team (worked out with respective Team Leader)

d. Updated to include definition of, and logical model for, each module in the Peer-To-Peer Cloning System design, including key classes.
e. This work will be presented at the architecture review.
2. Support SW integration process
.

3. Provide technical support to teams during Specification Review, Design Review, and Qualification test.

4. Help with design and implementation when needed.

5. Assist SWPM and Test Leader with final product Qualification Test

Evaluation:
The Software Architect's grade is based on:

1. Architectural Concept Document

2. Success of reviews

3. Support provided to teams during integration so that subsystems behavior reflects architectural goals and the subsystem interfaces are understood by all teams.
4. Support provided to SWPM and Test Leader during Qualification

5. An oral examination.

Job Description: Test Manager (TsM)

The Test Manager is the technical lead for integration
 and qualification test. Does whatever is needed to detect and locate latent errors in project code.

The TsM is required to know the entire design and provides support for team leaders during integration testing. He/She shares responsibility for qualification test with the Software Project Manager, assisted by the SA. The Test Leader:

1. prepares a test plan, including qualification test descriptions and procedures

2. reports status of unit testing, solicited from the Team Leaders.
3. coordinates integration test schedule and supports team leaders in integration

4. provides qualification test templates

5. conducts the mechanics of qualification test while the Software Project Manager leads the test and signs off on tests with the customer

6. manages a test bed
 which includes all released codes which are shared between teams or modules within a team. The test bed is built around a directory structure established by the Test Leader with the Software Architect and ECS cluster system administrators.

TsM participates in all weekly meetings, spending at least some time with each team, making sure they understand the test process and testbed, and helps with problem solving as needed by each team.

Responsibilities:
1. Prepare a Test Plan Document which includes:

a. test schedule

b. priorities for integration test, based on dependency analysis of each team’s code base.
c. definition of qualification test templates

d. qualification test descriptions and test procedures (about 90% of the Test Plan)

2. Provide technical support to teams during integration and qualification test.

3. Manage the testbed used for the project.

4. Help with design and implementation when needed.

5. Help team leaders plan and conduct integration test.

6. Plan and share responsibility with the Software Project Manager for final product Qualification Test.

Evaluation:
The Test Leader's grade is based on:

1. Test Plan Document

2. Success of qualification testing

3. Integrity of the final product

4. An oral examination.

Job Description: Team Leader (TL)

The Team Leader is the technical lead for one specific part of the system. Does whatever he/she has to make that part successful. The TL prepares the B-Spec for his/her assigned part of the system with the help of the Software Architect and presents that part at Specification Review. He/She organizes the team to produce the C-Spec, conduct design review, produce code, test drivers, and conduct unit testing. TLs share responsibility with the Test Manager for software integration. They are directly responsible for running all integration tests and preparing any required modifications to their team’s code.
Responsibilities:
1. Reviews Architectural Concept and prepares assigned part of B-Spec.

2. Presents team's part of B-Spec at Specification Review.

3. Assigns classes/modules to individual team members.

4. Guides the team in preparation of design and C-Spec.

5. Assigns team members to present during design review
.

6. Insures that all requirements are traceable to the process and function level.

7. Provides opportunity for each team member to be a hero, but:

8. Takes full responsibility for success of team.

9. Shares responsibility for software integration with TsM and other TLs.

10. Helps team members with design and/or implementation problems.

Evaluation:
Grade based on:

1. B-Spec for assigned part of system

2. Presentation during B-Spec Review

3. Meets allocated specifications

4. Has adequate derived specifications and meets them

5. Success of team's design and implementation, e.g.,

6. Robustness of Team’s code.
7. an oral examination.

Job Description: Team Member (TM)

Concentrates on one specific part of the system. Does whatever necessary to make assigned parts successful. TM has primary responsibility for assigned classes/modules including design, implementation, and test. He/She prepares C-Spec for assigned functionality, presents that part at the design review, develops code, and conducts unit test. The TM supports the Team Leader in conducting integration if requested by TL.

Responsibilities:
1. Reads B-specification

2. Prepares assigned part of the C-Spec and design.

3. Presents that part at Design Review.

4. Implements assigned part, paying attention to complexity, size, robustness, understandability.

5. Develops unit test drivers.

6. Tests every function and allocated requirement as early as possible

7. Takes full responsibility for assigned part of subsystem.

Evaluation:
Grade based on:

1. C-Spec Review presentation

2. quality of assigned code and test

3. robustness of code.
4. "reasonable" size and complexity

5. good understandability

6. success of team's assigned part

7. willingness to support team leader in documentation, design, implementation, and test
Final Project

Peer-To-Peer Cloning System
Statement of Work

version 1.0

Jim Fawcett

29 September 2003
1. Introduction:
The Peer-To-Peer Cloning System is a tool designed to help manage the configuration of machines on a network. PEER-TO-PEER CLONER has facilities for:

· Defining Directory and Registry configuration, e.g. contained files and Registry key-value pairs, respectively.

· Modifying a destination machine’s configuration to match a source machine or a pattern held by the source machine.

· Reporting changes about to be made, provided the user confirms, logging changes made, and rolling back changes if the user requests that.

2. Customer Furnished Equipment:

The operating environment for Peer-To-Peer Cloning System will be Windows XP, as provided in the ECS clusters. The Peer-To-Peer Cloning System software must compile and link using Visual C# and/or C++, as provided by Visual Studio.Net. This environment is available in the ECS clusters in 010 Link, 200 Link, and Hinds Hall, Syracuse University.

3. Reference Documents:

· Peer-To-Peer Cloning System Preliminary Architectural Concept, 29 September 2003, or latest version.

· Peer-To-Peer Cloning System A-Level Specification, 29 September 2003, or latest version.

· Visual C#, C++, and Class Library on-line documentation

4. Preliminary Schedule – Fall 2003:

	Project start date
	29 September

	Program and Architecture Review
	13 October

	B Specification Review
	27 October

	Design and Prototypes Review
	03 November

	Design and Implementation Meetings
	10 November

	Design and Implementation Meetings
	17 November

	Test Readiness Review
	24 November

	Qualification Test
	08 December

	Final Products Delivery
	15 December

Final Project

Peer-To-Peer Cloning System
A-Level Specification

version 1.0

Jim Fawcett

31 September 2003
Peer-To-Peer Cloning System
5. Introduction:
The Peer-To-Peer Cloning System is a tool designed to help manage the configuration of machines on a network. PEER-TO-PEER CLONER has facilities for:

· Defining Directory and Registry configuration, e.g. contained files and Registry key-value pairs, respectively.

· Modifying a destination machine’s configuration to match a source machine or a pattern held by the source machine.

· Reporting changes about to be made, provided the user confirms, logging changes made, and rolling back changes if the user requests that.

[image: image2.wmf]Peer-To-Peer

Cloning

Directory

Services

Network

Services

User

Interface

Display

Information

Files

FileInfo Requests

DirectoryInfo

Messages

keys/values

Messages,

Connection Requests

User Commands

Status Messages,

error messages

Registry

path

keys/values

Figure 1 – Peer-To-Peer Cloning System Context Diagram

The Peer-To-Peer Cloning System Architecture consists of the partitions:

7. User Interface

Supports manual sequencing through cloning operations or selection of a script to run. Also supports the editing and persistence of scripts, using services of the Scripting Subsystem.

8. Reporting Subsystem

The reporting subsystem displays all differences between source and destination or pattern and destination and requests confirmation before a change may be initiated. When the change is complete the reporting subsystem writes a log describing the destination before and after the changes. The reporting subsystem may use the User Interface for all display or may provide its own form.
9. Communication Subsystem

The Communication Subsystem uses message-passing to communicate requests and pass data, including files, between cloning peers.
10. File Transfer Subsystem

The file transfer subsystem is responsible for sending files and file information between source and destination, using the services of the communication subsystem. The file transfer subsystem is also responsible for maintaining any necessary state to roll back the most recent changes. That is, all of the changes made for a given run of the cloning system must be reversible, up to the time at which the cloning system is shut down or another change is made to the same destination path
.
11. Registry Subsystem

The registry subsystem is responsible for adding and/or deleting keys and values so that a specified destination registry subtree matches a specified source subtree or a pattern specified by a .reg file. The registry subsystem is also responsible for rolling back any changes made to the registry, up to the time at which the cloning system is shut down or another change is made to the same branch of the registry.
12. Script Subsystem

This subsystem is responsible for creating, modifying, persisting, and executing scripts that describe one or more cloning operations. Each operation consists of a path to a folder of files on the source machine from which transfers are initiated, a path to a folder on the destination machine where files are to be transferred
, and a pattern that describes files to be transferred from the source. By default the pattern is “*.*”.
 The Script subsystem uses the services of the subsystems, described above, to carry out its activities.

[image: image1.emf]User Interface

Communications

Scripting

File Transfer Registry Reporting

Figure 2 - Peer-To-Peer Cloning System Module Diagram
2. Reference Documents:

1. Peer-To-Peer Cloning System Preliminary Architectural Concept, 29 September 2003.

2. Peer-To-Peer Cloning System Statement of Work, 29 September 2003.

Requirements:

The Peer-To-Peer Cloning System is a tool designed to help manage the configuration of machines on a network. The requirements are allocated below, to each of the major partitions described in Section 1.
3.1. Functional Requirements

The Peer-To-Peer Cloning System supports the transfer of files, editing of the registry, and display and possibly roll-back of modifications. It:

3.1.1. shall accept a specification of source machine, path, and file pattern and the specification of a destination machine and path
 to prepare for a file transfer operation.
3.1.2. shall transfer files from the source machine to the destination machine when commanded, provided the source path, destination path, and optionally a file pattern have been specified.
3.1.3. shall provide the capability to make the files on the destination path exactly match the source path and/or pattern.
3.1.4. shall provide the capability to make the files on the destination path contain all the files matching the source path and/or pattern.
3.1.5. shall accept the specification of source machine, destination machine, and a registry pattern
 to prepare for registry editing operation.
3.1.6. shall edit the destination registry when commanded, provided the source machine, destination machine, and registry pattern have been specified.
3.1.7. shall provide the capability to make the destination registry subtree exactly match the corresponding subtree on the source machine.
3.1.8. shall provide the capability to add, delete, or edit specific registry key/value pairs.
3.1.9. shall provide the capability to support all of the operations described above using a script
.
3.1.9.1. The Peer-To-Peer Cloning System shall provide the capability to edit scripts, make them persistent, and execute them from the User Interface
.
3.1.10. shall use an XML-based message-passing communication layer for all communication between machines
.
3.1.10.1. The communication layer shall be responsible for establishing and terminating connections when requested to do so.
3.1.10.2. The communication layer shall provide facilities for composing and extracting contents from messages.
3.1.11. shall provide the capability to display the changes that will be made by a file transfer or registry edit before those actions are executed, and proceed only after user confirmation.
3.1.12. shall provide the capability to roll-back file transfers or registry edits so that the destination machine is in the same state, with the possible exception of temporary directories, as it was prior to the operation.
3.1.12.1. Roll-back shall be provided until either the Peer-To-Peer Cloning System is shut down.

3.2. Process Requirements:

These requirements specify the physical structure of delivered code and the environment where it must operate.

3.2.1. Physical Structure

3.2.1.1. The Peer-To-Peer Cloning System shall be composed of modules.
3.2.1.2. The User Interface shall delegate all operations, not directly associated with providing the user interface, to its server modules, e.g., Communication, File Transfer, Registry, Reporting, and Script modules.
3.2.1.3. All modules shall be provided with manual pages and correct maintenance pages.
3.2.1.4. Each server module shall be provided with a functional test stub.
3.2.2. Development Environment
3.2.2.1. The Peer-To-Peer Cloning System shall build and operate in the ECS clusters, e.g., 010 Link, 202 Link, 129 Hinds, or 2-122 CST.
3.2.3. Program Management
3.2.3.1. The Peer-To-Peer Cloning System shall be developed subject to the conditions specified in the Peer-To-Peer Cloning System Statement of Work, of the latest version.

� EMBED Visio.Drawing.6 ���

� To remove spurious startups, malicious code, or unwanted registered code.

� If a pattern is not supplied, the cloner uses the files in the source directory to define the pattern.

� The current design concept is to create tempory directories that hold the original content, but are deleted when the cloning system is shut down.

� Note that the destination path may not exist. In this case the cloning system will put up a confirmation dialog to ask permission to create a new directory or allow the user to browse for an existing directory. The browse control is required to allow the creation of a new directory in any selected location if the user desires, or to indicate the selection of an existing directory.

� The form of behavior and design descriptions will be as cited above in the Preliminary Architectural Concept.

� Each subsystem should have means to test the validity of its operations.

� This is a technical support role, not a managerial role.

� Team leaders conduct the integration process, as scheduled by the Test Manager. This schedule should be negotiated with everyone agreeing that it can be met. Should this be difficult, please consult the customer.

� The test bed starts out as a set of directories globally accessible to the development teams, with permissions established to control the evolving product. As Qualification Test approaches the test bed typically contains a number of tools designed by the test team to support qualification testing.

� The Team Leader should assign presentation responsibilities and introduce each speaker on his/her team, but should ensure that team members each get a major part of the presentation.

� The current design concept is to create tempory directories that hold the original content, but are deleted when the cloning system is shut down.

� Note that the destination path may not exist. In this case the cloning system will put up a confirmation dialog to ask permission to create a new directory or allow the user to browse for an existing directory. The browse control is required to allow the creation of a new directory in any selected location if the user desires, or to indicate the selection of an existing directory.

� It is acceptable, but not necessary, to require that the user’s machine be either source or destination. If this restriction applies, the user’s machine must be able to server in either role.

� The registry pattern may be a registry key, requiring a match of the subtree rooted at that key, or may be a set of key/value pairs, or may be a “.reg” file as exported by RegEdit and RegEdt32.

� The nature of the script is left up to the Software Architect and Script team.

� A secondary form may be used for that purpose, but the system is not obligated to do so.

� The intent of this requirement is to produce a reusable communication subsystem, based on sockets or .Net remoting.

PAGE
7
[image: image3.wmf]Peer-To-Peer

Cloning

Directory

Services

Network

Services

User

Interface

Display

Information

Files

FileInfo Requests

DirectoryInfo

Messages

keys/values

Messages,

Connection Requests

User Commands

Status Messages,

error messages

Registry

path

keys/values

_1126264813.vsd

_1126263421.vsd

