	PRIVATE
CSE 784 - Software Studio
	Fall 2001

CSE 784 - Final Project

PRIVATE
 Configuration Management System
version 1.0

22 October 2001
Instructions:
This is a cooperative project requiring the combined efforts of everyone in the class. Participants will be assigned roles in the project, and grades will be based on:

1. how well each of your carries out your assigned role, as measured by products you generate.

2. quality of the final product.

3. conduct of a series of specification, design, and test reviews leading up to the final product qualification test

An Architectural description is provided on the next page, along with additional notes and comments. Also included are job descriptions for each of the roles to be assigned.

The project will be completed and a qualification test conducted on Monday, December 7. Final product delivery of updated specifications and code will be on Monday, December 14.

Configuration Management System

(CONFIGS)

Preliminary Architectural Concept

version 1.0

James Fawcett

22 October 2001
Purpose of CONFIGS:

The goal of the CONFIGS system is to help a software development organization manage quality of its source code and documents and keep track of their many versions by directly supporting management of the software product. The intended scope of Configuration Management active-ities, supported by CONFIGS, are to:

1. Archive in an accessible place all versions of all software products

2. Support extraction of copies of one or more configuration items
 to a specified client directory.

· Extraction operations are either read-only or for-modification.
· After an extraction for-modification, only read-only extractions are allowed until the new version is checked in.

· Appropriate messages are sent to requestors to apprise them of the status of that item.

· The CONFIGS system manages all version numbers. When an item is created, it is assigned version number 0. Each time it is extracted for-modification, the copy’s version number is incremented. When it is checked in, this becomes the new version.
· An item can be checked in only if it differs from the prior version.

· An extraction for-modification can be cancelled by the extracting client.
3. Support the review process for a software product with the following capabilities:
· Check software code products to verify that they meet code standards.

· Show differences between versions of a product. For a software product this entails measuring cyclomatic complexity, lines of code, and text differences. For documents this entails only measuring text differences.

· Add comments to a product.

4. Create associations between various versions of software products
.
5. Associate, with every software product, a change history
. No product can be put under configuration control without a change history.
6. Associate with every software product a status document
.

CONFIGS Activities:

In order to support these activities CONFIGS has facilities to:

1. Store all versions of all software products
.
2. Extract copies of files to a client specified directory.

3. Mark a file as checked out for-modification, and remember its extracting client.
4. Check in a new version of an item
 that has been checked out for-modification.
5. Create an association
 between any two specific software products
. However, a software product can have an association with only one version of another product. If we want to make an association with a newer version, the association to the older version must be deleted.
6. Checking in a new version of a configuration item does not automatically update prior associations. If software product An is updated to An+1 all the associations between An and other items are not changed.

7. Any association between Am and Bn can be updated to an association between Am and Bn+1.

8. Display a list of all items to which a specific software product is associated. Display any items that are not the latest versions with a unique font and/or color. Note that this requires a search.
9. Annotate any configuration item with comments. This could be implemented simply by associating the product with an annotation document.

10. Associate every software product with a text-based change history and status document. The status document must identify a responsible individual
.
11. Run quality assurance tools, e.g., analysis tools, on a list of software products.
12. Determine all the differences between two documents. Note that this is not a trivial design problem. Fortunately, there are many existing tools that can do this job. You should be able to find one via an internet search.
Role Models:

All of the activities and facilities, described above, are role-based. That is, everyone on the project is assigned a role from a finite group of roles. Each role has a finite set of permitted actions.
Roles:

1. Project Manager

2. Software Architect

3. Test Manager

4. Team Leader

5. Team Member

6. CONFIGS Administrator

Permitted Action:

1. Identifying a project person as the responsible individual for a software product. Usually a Team Leader has this authority.
2. Reading and making a copy of a software product
. Usually everyone on the project has the authority to carry out this action.
3. Run software analysis tools on a specified product. Usually everyone on the project has the right to carry out this action
.

4. Addition or modification of a specified product – usually those software products for which that person is the responsible individual. Note that every modification creates a new version. Older versions are not discarded. They remain under configuration control. This would be given to a team member until the product had passed a certain stage in the development process, as indicated by its status.

5. Addition or modification of all products in a group – usually all the products for which a team is responsible, given to the team leader until the products had passed a certain stage in the development process, as indicated by its status.

6. Deletion of a software product. This is a very rare event, and very few individuals would be given this authority, usually only the Project Manager and Software Architect.

7. Addition of a Foreign
 software product. This is a very rare event and very few individuals have this authority, usually only the Project Manager, Software Architect, and Test Manager.

Preliminary Partitions and Their Functions:
The CONFIGS software manages Software products, User Identities and Roles. Processing required to manage these components is divided into the following:

1. CONFIGS Server

Supports the storage and retrieval of all versions of all software products. It maintains associations between components and supports the role-based operations of creation, addition, modification, deletion, annotation of all software products.
The CONFIGS Server provides an interfaces for:

1. CONFIGS administrators to carry out these activities.

2. client processes to carry out the same set of activities.
3. Checking the authorization of a user request with the Role Manager.

The CONFIGS Server accepts messages from one or more concurrent clients containing requests to carry out any of its supported activities. Requests are serialized through a request queue.

2. CONFIGS Client

The CONFIGS client provides an interface for displaying views of all the software products, their associations, and their creation time and times of last modification
. It provides the controls necessary for a user to carry out any of the CONFIGS activities, and views to display the results.

All CONFIGS clients are instances of a single execution image
. They are responsible for requesting all the additions, modifications, and creation of software products. They are also responsible for requesting all the associations held by the CONFIGS Server. The client provides an interface for running tool programs on some set of software products (for this project this will be limited to source code files).

3. Role Manager

Manages the creation of roles as a named group that specifically allows or disallows any of the actions described above. The Role Manager also manages a list of all CONFIGS users and their assigned roles. Note that any user may have more than one role.

4. Software Quality Tools

For this project the software quality tools consist of two items:

· Code analyzer that checks adherence to the Project’s code standards, e.g., use of header and test stub pre-processor guards, manual and maintenance pages, and use of function prologues.

· Difference analyzer that displays the differences in cyclomatic complexity, lines of code, and specific text differences.

5. Communication Subsystem

The Communication Subsystem is responsible for transporting all requests and files between any CONFIGS Client and the CONFIGS Server. It is sockets-based, and uses socket serving threads to avoid blocking a Client process while serving one or more requests.

Software Products:
Software products controlled by the CONFIGS System include all of the following
:

1. Architectural Concept Document – each version of this document is placed under configuration control.

2. Requirements Document – when placed under configuration control, this document is given an association with its Architectural Concept Document.
3. Design Document – this document is given an association with its Requirements Document.

4. Source Code – Each module is managed as a unique configuration item. That is, if the module contains both a header and implementation file, the two files are managed as a single item. Each version is treated as a distinct configuration item. When placed under configuration control this document is given an association with its Requirements and Design Documents.
5. Released Code – Every header file and object file or library released for use by more than one team is placed under configuration control before a team other than the developing team can use it. Released code is placed in a special directory, on the path of every CONFIGS Client for use during integration of two or more team’s code.

6. Build Manifest – every integration build is covered by a manifest that identifies every version of every source code item used in the build. The Build Manifest is given associations with every software item cited in the manifest text.

7. Test Plan – the test plan, when placed under configuration control, is given associations with all modules covered in the document.

8. Test Code – Each test driver used for unit test, integration test, or qualification test is placed under control and is given an association with the source code it tests and the test plan.

9. Technical Memos – Each technical memo is given associations with the software products discussed in the memo.

10. Contract Letters – a contract letter usually addresses modifications to the contract. That usually affects one or more requirements documents. When entered into configuration control a contract letter is given associations to all those software products affected by the resulting change in contract, if any.

Configuration Management System

(CONFIGS)
Preliminary Project Organization

version 1.0

Jim Fawcett

22 October 2001
Software Project Manager

The SPM will manage the CONFIGS project, with the help of the Software Architect, Test Manager, and all the Team Leaders.

Software Architect

The Software Architect is responsible for the CONFIGS architecture concept and the CONFIGS A Specification. The SA will also provide support for qualification testing.

Software Development Teams

Each of the components listed above will have a team for its development. There will also be a test team. Each team, with the exceptions of the test team and prototyping team will:

1. produce its own CONFIGS B-Spec, C-Spec, and code

2. present their specifications and design during CONFIGS specification and design reviews

3. conduct unit test on their code

4. integrate their software with that of the other teams

5. participate in final qualification testing

Prototyping Team

In addition to the development teams there will be a prototyping team. Their responsibilities are to build critical component prototypes quickly to test design and implementation ideas. Their products are “throw-away” proof of concept components. They will not be expected to heavily document their prototypes. However, they are expected to produce white papers that describe their results and provide access to their code. Members of the prototyping team will move into the development teams when prototyping is complete. The prototyping team will be responsible for a least the following:

1. Establish an early version of the communication subsystem to provide a backbone for CONFIGS Clients and Server to conduct their developments.

2. To define an approach for association of Software products and managing the CONFIGS database
.

Test Team

The test team will prepare a test plan which contains at least the following:

1. A schedule of key milestones and their contents.

2. A schedule of integration testing and qualification testing.

3. A set of qualification test descriptions, procedures, and definition of all instrumentation, logs, and analyses needed to conduct qualification testing.

4. Definition of a process for baselining and accessing test code, including a class build directory structure and error reporting mechanism.

Integration testing is the joint responsibility of the development team leaders and test team leader. Qualification testing is the responsibility of the Software Project Manager, supported by the test team. Each development team will be responsible for developing qualification tests which implement the tests described in the test plan for their software, under the joint direction of their team leader and the test team leader.

Team Assignments:

1. Software Project Manager

Indranil Basak

2. Software Architect

Vivekanathan Murugesan

3. Prototyping Team – Lead by Software Architect
· Kevin Zhu
· Samir Mistry

4. Test Team

Team Leader:
Michael Xavier
· Mandar Bapat
· Ahmet Sula
· Chia-Chi Kuan
· Pratyush Rai
· Ajay Deshmukh
5. CONFIGS Server Team

Team Leader:
Amol Hardikar
· Minu Puranik
· Rajneesh Joshi
· Kirankumar Nallabothula

· Samir Mistry (after prototyping)
· Indranil Basak
6. CONFIGS Client Team

Team Leader:
Amit Mohindra
· Minmei Hou
· Rakesh Menon
· Pranesh Indurti

· Michael Xavier

7. Role Manager Team

Team Leader:
Hitesh Hemnani
· Pei Lin
· Chin-Ting Mao
· Tarun Kataria
8. Software Analysis Tools Team

Team Leader:
Sergey Karamov
· Mohammad Ali Qadri
· Rahul Shelar
· Cheng-Chen Shih
9. Communication Manager Team

Team Leader:
Madhuri Rambhatla
· Yi-Che Hsu
· Rishikesh Shringarpure
· Kevin Zhu (after prototyping)
· Vivekananathan Murugesan
Attachment #1 - Job Descriptions

Job Description: Software Project Manager (SWPM)

The Software Project Manager organizes the teams so that each team owns part of the B-Spec, C-Spec, and software integration. He/She conducts weekly meetings to stay on top of any problems that arise, and manages all the reviews.

The SWPM is expected to know most of the design and the critical code details. The SWPM, Software Architect, and Team Leaders establish the architecture and B-Specs; and they control the design, implementation, and test processes so that the final product is robust and meets specifications.

Finally, the Software Project Manager directs the Test Leader and Architect to prepare a Software Test Plan and conducts qualification tests based on the plan.

Responsibilities:
1. Organize teams

2. Prepare program schedule including Architecture Review, Specification Review, Design Review, and Qualification test. Present the schedule at the Architecture Review and at each succeeding review.

3. Manage B-Spec process with team leaders.

4. Provide the opportunity for each team leader to be a hero, but:

5. Takes full responsibility for success of the project.

6. Conducts specification review on date specified in program schedule.

7. Conducts design review on date specified in program schedule.

8. Prepares, with Test Leader and Software Architect, a Test Plan. Conducts qualification test with the help of Test Leader, Architect, and Team Leaders.

Evaluation:
The Project Manager's grade is based on:

1. program meeting schedule

2. Software Test Plan and success of qualification

3. an oral examination.

Job Description: Software Architect (SA)
The Software Architect is responsible for the architectural concept, effectiveness and ease of use of the user interface, modularity and robustness of the design. He/She supports the team leaders in developing elegance and quality in the final product.

The SA is required to know the entire design and provides support for team leaders during major reviews. He/She has responsibility for consistency and integrity of all requirements with especial focus on the user interface. The SA is also responsible for the top-level physical structure, organizing principles, and built in test
. Built in test should directly support qualification testing.

SA participates in all weekly meetings, spending at least some time with each team, making sure they understand the architecture and testbed, and helps with problem solving as needed by each team. The SA is responsible for ensuring that the requirements are sensibly allocated to individual teams and that each team understands their allocation.

Responsibilities:
1. Prepare an Architectural Concept Document which includes:

2. Organizing principles for project including processing partitions for each team

3. Definition of user interface

4. Definition of, and logical model for, top level processes and data flows, e.g., one DFD per team (worked out with respective Team Leader)

5. Updated to include definition of, and logical model for, each module in the CONFIGS design including key classes. This work will be presented at the architecture review.

6. Provide technical support to teams during Specification Review, Design Review, and Qualification test.

7. Help with design and implementation when needed.

8. Assist SWPM and Test Leader with final product Qualification Test

Evaluation:
The Software Architect's grade is based on:

1. Architectural Concept Document

2. Success of reviews

3. Integration completed successfully on schedule

4. Support provided to SWPM and Test Leader during Qualification

5. An oral examination.

Job Description: Test Leader (TsL)

The Test Leader is the technical lead for integration and qualification test. Does whatever is needed to detect and locate latent errors in project code.

The TsL is required to know the entire design and provides support for team leaders during integration testing. He/She shares responsibility for qualification test with the Software Project Manager, assisted by the SA. The Test Leader:

1. prepares a test plan, including qualification test descriptions and procedures

2. provides templates for unit test drivers

3. identifies priorities for unit test

4. coordinates integration test schedule and supports team leaders in integration

5. provides qualification test templates

6. conducts the mechanics of qualification test while the Software Project Manager leads the test and signs off on tests with the customer

7. manages a test bed which includes all header files which are shared between teams or modules within a team. The test bed is built around a directory structure established by the Test Leader with the Software Architect and ECS cluster system administrators.

TsL participates in all weekly meetings, spending at least some time with each team, making sure they understand the test process and testbed, and helps with problem solving as needed by each team.

Responsibilities:
1. Prepare a Test Plan Document which includes:

2. test schedule

3. priorities for unit test

4. definition of unit test and qualification test templates

5. qualification test descriptions and test procedures (about 90% of the whole)

6. Provide technical support to teams during integration and qualification test.

7. Manage the testbed used for the project.

8. Help with design and implementation when needed.

9. Help team leaders plan and conduct integration test.

10. Plan and share responsibility with the Software Project Manager for final product Qualification Test.

Evaluation:
The Test Leader's grade is based on:

1. Test Plan Document

2. Success of qualification testing

3. Integrity of the final product

4. An oral examination.

Job Description: Team Leader (TL)

The Team Leader is the technical lead for one specific part of the system. Does whatever s/he has to make that part successful. The TL prepares the B-Spec for his/her assigned part of the system with the help of the Software Architect and presents that part at Specification Review. He/She organizes the team to produce the C-Spec, conduct design review, produce code, test drivers, and conduct unit testing. TLs share responsibility with the Software Architect for software integration.

Responsibilities:
1. Reviews Architectural Concept and prepares assigned part of B-Spec.

2. Presents team's part of B-Spec at Specification Review.

3. Assigns functions/modules to individual team members.

4. Guides the team in preparation of design and C-Spec.

5. Assigns (as many as practical) team members to present during design review.

6. Insures that all requirements are traceable to the process and function level.

7. Provides opportunity for each team member to be a hero, but:

8. Takes full responsibility for success of team.

9. Shares responsibility for software integration with SA and other TLs.

10. Helps team members with design and/or implementation problems.

Evaluation:
Grade based on:

1. B-Spec for assigned part of system

2. Presentation during B-Spec Review

3. Success of team's design and implementation, e.g.,

4. no pointer problems

5. meets allocated specifications

6. has adequate derived specifications and meets them

7. an oral examination.

Job Description: Team Member (TM)

Concentrates on one specific part of the system. Does whatever necessary to make assigned parts successful. TM has primary responsibility for assigned functions/modules including design, implementation, and test. He/She prepares C-Spec for assigned functions, presents that part at the design review, develops code, and conducts unit test. The TM supports the Team Leader in conducting integration if requested by TL.

Responsibilities:
1. Reads B-specification

2. Prepares assigned part of the C-Spec and design.

3. Presents that part at Design Review.

4. Implements assigned part, paying attention to complexity, size, robustness, understandability.

5. Develops unit test drivers.

6. Tests every function and allocated requirement as early as possible

7. Takes full responsibility for assigned part of subsystem.

Evaluation:
Grade based on:

1. C-Spec Review presentation

2. quality of assigned code and test

3. no pointer problems

4. "reasonable" size and complexity

5. good understandability

6. success of team's assigned part

7. willingness to support team leader in documentation, design, implementation, and test
Final Project

Configuration Management System

Statement of Work

version 1.0

Jim Fawcett

22 October 2001
1. Introduction:
The Configuration Management System (CONFIGS) is a tool designed to help developers manage the quantity and quality of their software components and documents. CONFIGS has facilities for:

· Storing all versions of a Software product

· Extracting read-only or for-modification copies of software products to a specified directory.
· Analyze software products relative to code standards and to show differences between versions.
· Add comments, associations, status report, and change history to any software product.
· The purpose of CONFIGS is to capture, save, and control changes to each of the software products developed on a project.

2. Customer Furnished Equipment:

The operating environment for CONFIGS will be windows NT, ver 4.0 or later. The CONFIGS software must compile and link using Visual C++, version 6.0. This environment is available in the ECS clusters in 010, 200, and 202 Link Hall and CST 2-122, Syracuse University.

3. Reference Documents:

· CONFIGS Preliminary Architectural Concept, 22 October 2001, or latest version.

· CONFIGS A-Level Specification, 22 October 2001, or latest version.

· Visual C++ on-line documentation

4. Schedule:

	Project start date
	22 October 2001

	Program and Architecture Review
	29 October 2001

	B Specification Review
	05 November 2001

	Design and Prototype Review
	12 November 2001

	Design and Implementation Meetings
	19 November 2001

	Test Readiness Review
	26 November 2001

	Qualification Test
	7 December 2001

	Final Products Delivery
	14 December 2001

Final Project

Collaboration System

(CONFIGS)

A-Level Specification

version 1.0

Jim Fawcett

22 October 2001
Collaboration System (CONFIGS)

5. Introduction:
The Configuration Management System (CONFIGS) is a tool designed to help developers manage the quantity and quality of their software components and documents. CONFIGS has facilities for:

· Storing all versions of a Software product

· Extracting read-only or for-modification copies of software products to a specified directory.
· Analyze software products relative to code standards and to show differences between versions.
· Build associations between any two software products.
· Add comments, status report, and change history to any software product.

· The purpose of CONFIGS is to capture, save, and control changes to each of the software products developed on a project.

[image: image1.wmf]COLLAB

Server

COLLAB

Client

Role Manager

Software Quality

Tools

Communication

Subsystem

Figure 1 - CONFIGS Context Diagram

The CONFIGS Architecture consists of the components:

1. CONFIGS Server

Supports the storage and retrieval of all versions of all software products. It maintains associations between components and supports the role-based operations of creation, addition, modification, deletion, annotation of all software products.
The Collaboration Server provides an interfaces for:

· CONFIGS administrators to carry out these activities.

· client processes to carry out the same set of activities.

· Checking authorization of a user request with the Role Manager.

The CONFIGS Server accepts messages from one or more concurrent clients containing requests to carry out any of its supported activities. Requests are serialized through a request queue.
2. CONFIGS Client

The CONFIGS client provides an interface for displaying views of all the software products, their associations, and their creation time and times of last modification
. It provides the controls necessary for a user to carry out any of the CONFIGS activities, and views to display the results.

All CONFIGS clients are instances of a single execution image
. They are responsible for requesting all the additions, modifications, and creation of software products. They are also responsible for requesting all the associations held by the CONFIGS Server. The client provides an interface for running tool programs on some set of software products.

3. Communication Subsystem

Provides the capability to send XML-based messages, source code files, and documents between Collaboration Client and Server, or between any two clients
. The Communication Subsystem consists of a Receiver and a Sender component on each machine in the CONFIGS system. Its responsibilities are to provide the entire infrastructure for asynchronous message passing between machines and to provide a simple interface for the Client and Server to use.

4. Role Manager

Manages the creation of roles as a named group that specifically allows or disallows any of the actions described above. The Role Manager also manages a list of all CONFIGS users and their assigned roles. Note that any user may have more than one role. The Role Manager will be called by client and/or server to authenticate a specific request, based on the requestor’s role.

5. Software Quality Tools

For this project the software quality tools consist of two items:

· Code analyzer that checks adherence to the Project’s code standards, e.g., use of header and test stub pre-processor guards, manual and maintenance pages, and use of module and function prologues.

Difference analyzer that displays the differences in cyclomatic complexity, lines of code, and specific text differences.

[image: image2.wmf]CONFIGS

Directory

Services

Network

Services

User

Control

Display

Information

Configuration

Item

Configuration

Item

selections

Requests,

Configuration Items

Configuration Items,

Associations

Requests,

Configuration Items

User Commands

Status Messages,

error messages

Figure 2 - CONFIGS Module Diagram
2. Reference Documents:

1. Collaboration System (CONFIGS) Preliminary Architectural Concept, 22 October 2001.

2. Collaboration System Statement of Work, 22 October 2001.

Requirements:

The Configuration Management system (CONFIGS) is a tool designed to help a development organization manage quality of its code and documents, keep track of versions, and impose change control. The requirements are allocated below, to each of the major partitions described above.
3.1. CONFIGS Server

Supports the storage and extraction of software products. It also manages associations between each of the software products, placed under its control. The server creates placeholders for new software products, releases products for read-only access or for-modification access, and stores associations between products. It communicates with CONFIGS clients via the Communication Subsystem.

The CONFIGS Server is responsible for providing an interface for CONFIGS administrators (on the local machine) and CONFIGS clients (on remote machines) to use for creating, modifying, reading, and rarely deleting software products.

3.1.1. The CONFIGS Server shall accept software products for storage, and provide a persistent set of associations and storage for each such product.
3.1.2. The Server shall provide an ordered list of all software products currently under its control. It shall also provide, for any specified product, a list of all the other products associated with that product.
3.1.3. The Server shall support the disassociation and deletion of software products only by the software product author or a CONFIGS administrator.
3.1.4.
The Server shall accept association requests and provide persistent storage for each association presented.

3.1.5. The Server shall support association updates to a more recent version of a software product.

3.1.6. The CONFIGS Server shall send a software product to a requesting client as read-only or for-modification. If a software product has been checked-out for-modification, the Server shall allow only read-only extractions until the modified product is checked-in.

3.1.7. The Server shall support version numbers for each software product under its control. When a new software product, or product placeholder, is created it shall set that product’s version number to zero. Whenever a software product is checked out for-modification, the Server shall increment the product’s version number before extraction, and it shall write an entry to the product’s change history log.
3.1.8. If the product is checked-in without modification, as determined by a tool provided by the Software Quality Tools component, then the Server shall simply destroy the copy.
3.1.9. If the product is checked-in with modification, as determined by a tool provided by the Software Quality Tools component, then the Server shall store the modified product with its new version number, without changing the previous version. That is, all versions of a software product are maintained in the Server’s storage.

3.2. CONFIGS Client

Manages the creation of new software products and the transmission of a new product to the CONFIGS Server. It also manages the addition of associations to other software products. It is the responsibility of the CONFIGS Client to ensure that all appropriate associations are requested of the Server. Finally, the CONFIGS Client uses the services of the Communication system to send all requests to the CONFIGS Server, and to receive software products from the Server.

The CONFIGS Client is responsible for providing an interface for users to interact with the CONFIGS system. This interface will provide all the controls to make requests, and the views needed to review all the contained software products and their associations.

3.2.1. The CONFIGS Client shall support requests for the creation of a software product at any time. The Client shall provide an interface for creation and retrieval of the Software product via read-only or for-modification checkout, and for checkin of the modified product.
3.2.2. The Client shall support the addition and modification of status messages, associations, general comments, and change history comments.
3.2.3. The Client shall support the transmission of a new or updated Software product to the CONFIGS server, using the services of the Communication subsystem.
3.2.4. The Client shall provide a display of software products and their associations. The Client shall also provide a list view showing all the associations for any specified product.
3.2.5. The Client shall support the extraction of a software product into a named or, by default, the current working directory. If the product was checkedout read-only, then the read only file attribute shall be set.
3.2.6. The client displays shall show file name, extension, version number, and time and date of last modification, and creation date.
 The displays shall also show the type of software product
. Note that this places an implied requirement on the CONFIGS Server to store the product type and on the CONFIGS Client to specified the product type when the product or product placeholder is created.

3.3. Communication Subsystem

Provides the capability to send XML-based messages, source code files, and documents between CONFIGS Client and Server, or between any two clients. The Communication Subsystem consists of a Receiver and a Sender component on each machine in the CONFIGS system. Its responsibilities are to provide the entire infrastructure for asynchronous message passing between machines and to provide a simple interface for the Client and Server to use.

3.3.1. The Communication subsystem shall provide an interface for the transmission and reception of XML-based messages, source code files, and documents between machines in the CONFIGS system. The intent of this requirement is that the subsystem accepts a request, source file, or document, does any translation needed to transmit the document, and, on the receiving side, reverses the translation to provide the transmitted message, source file, or document to the calling component.

3.3.2. The Subsystem shall provide for asynchronous transmission of messages and files. Under asynchronous transmission the subsystem shall place received messages and files, or file references, in a queue with a receiving thread, and provide an interface for subsystem clients to retrieve the document on the client’s thread.

3.3.3. The Communication Subsystem shall provide for routing messages by default to the CONFIGS Server if no destination is specified by the sender.

3.4. Role Manager

The Role Manager component provides the means to authenticate user requests, based on their roles. For each request the Role Manager looks up the role of the author of the request and reports whether the requestor is allowed to carry out that action.

3.4.1. The Role Manager shall provide a registry of roles and actions that are allowed for each role. It shall also maintain a list of all CONFIGS users and their associated roles. It shall provide an interface for returning authentication, given a user name and request message type.

3.4.2. This component shall provide for persistent storage of each of the role registry and user list.
3.4.3. It shall provide an interface for creating roles and for adding allowed request messages to the role. The Role Manager shall allow only CONFIGS administrators to add new roles or add new request message types to an existing role.

3.4.4. The Role Manager shall provide an interface for adding a new user to the CONFIGS user list and assigning that user a role. It shall allow only CONFIGS administrators to add new users.

3.4.5. The Role Manager shall provide an interface for CONFIGS Clients and Server to request authentication for a specified user and request message.

3.5. Software Quality Tools Component

The Software Quality Tools Component provides tools for testing differences and for testing adherence to Project Code Standards.
3.5.1. The Software Quality Tools Component shall provide a tool for testing differences between source code files. The differences tool shall compare file date of last modification, size, file attributes, cyclomatic complexity of each function, number of lines of each function, and text differences between two ASCII files. The tool shall provide and interface that allows the comparison of any or all of these measures for any two ASCII files.
3.5.2. The Software Quality Tools Component shall provide a tool for testing differences of any file, based only on file date of last modification, size, and file attributes. It is intended that this tool be used to compare non-ASCII files.

3.5.3. The Software Quality Tools Component shall provide a tool for analyzing the conformance of any C or C++ source code file against a Project Code Standard.

3.5.4. Conformance shall be measured by checking for the presence and proper configuration of header file preprocessor compilation control statements, for implementation file test stub compilation control statements, and for presence of manual and maintenance pages.
3.5.5. The conformance analyzer shall also check that only inline and template function definitions are found in header files, and only constant or static global variable definitions are found in header files. It shall check that no using xxx namespace; declarations appear in any header file.
3.5.6. This Component shall provide an interface for testing differences given two file paths and a specification of the type of comparison requested. It shall also provide an interface for testing the conformance of any specified file with Project Code Standards, as cited above.

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� A configuration item is any software product under configuration control.

� For example, a Team Leader could create associations between a module, all its test drivers, other modules on which it depends, its requirements and design documents, and any contract letters that are relevant.

� A change history is a text-based list of every change by date, with a title and brief description.

� This is a brief text description of the components status, e.g., not started, under development, passed review, passed unit test (code product only), integration complete, qualified, or development complete.

� Windows NT and 2000 support the use of version numbers as an extension, e.g., myModule.cpp.3

� We will use the terms “software product”, “configuration item”, and “item” interchangeably. That is, they mean the same thing.

� Note that an association is not a directed relationship. That is, if A is associated with B, then B is associated with A, by definition. The CONFIGS software will have to enforce this property.

� A sparse matrix is a frequently used method of storing such associations. Another way would be to represent all products with a string name and a collection of iterators pointing to the string name of other products. This could be represented with an STL map with the string name as a key and a list of iterators pointing to other keys as the value.

� The responsible individual is usually the Team Leader of the team that developed the product.

� A copy is not under configuration control. Rather, it is simply for an individual’s personal work activities. It may not be re-entered into the configuration management database.

� Actions that are USUALLY permitted to everyone are still role-based. That is, the Config system must be able to assign roles that are not allowed to carry out this action.

� A foreign software product is one that has not been under configuration management from the time of its creation.

� Note that time here means a time/date stamp.

� That is, each client is a process created from the ConfigClient.exe program.

� The Software Architect may decide that it is appropriate to manage other software related items as well.

� The term database is probably misleading. The Config database is simply a directory to hold all the software products and the code which manages those products. This is a prime role of the Config Server.

� Each server component should have means to test the validity of its operations, e.g., the database manager should be able to test the integrity of the database, directory manager test integrity of the directory indexes, file viewer test the integrity of its page handler if one is used.

� Note that time here means a time/date stamp.

� That is, each client is a process created from the ConfigClient.exe program.

� It is not clear, at this time, that clients will need to communicate accept through the server, but the communication system component should be prepared to facilitate this mode of operation if needed.

� Refer to the Software Products section of the Architectural Concept Document.

PAGE
3
[image: image3.wmf]COLLAB

Server

COLLAB

Client

Role Manager

Software Quality

Tools

Communication

Subsystem

[image: image4.wmf]CONFIGS

Directory

Services

Network

Services

User

Control

Display

Information

Configuration

Item

Configuration

Item

selections

Requests,

Configuration Items

Configuration Items,

Associations

Requests,

Configuration Items

User Commands

Status Messages,

error messages

_1064946573.vsd

_1065256927.vsd

