	PRIVATE
CSE 784 - Software Studio, Fall 2008
	Fall

CSE 784 - Final Project

PRIVATE
 Virtual Repository and Testbed System
Jim Fawcett

version 1.0
14 September 2008
Instructions:
This is a cooperative project requiring the combined efforts of everyone in the class. Participants will be assigned roles in the project, and grades will be based on:

1. how well each of you carries out your assigned role, as measured by products you generate.
2. quality of the final product.

3. conduct of a series of specification, design, and test reviews leading up to the final product qualification test.
An Architectural description is provided in the next few pages, along with additional notes and comments. Also included are job descriptions for each of the roles to be assigned.

The project will be completed and a qualification test conducted on Monday, December 8th. Final product delivery of updated specifications and code will be on Friday, December 5.

Virtual Repository and Testbed System (VRTS)
Preliminary Architectural Concept

version 1.0
Jim Fawcett
14 September 2008
Purpose of the Project:

The goal of the Virtual Repository and Testbed (VRTS) is to support management and execution of large projects with emphasis on managing certified code. The system is described as Virtual because the system is composed of multiple servers which may all reside on one machine, but any of the servers can automatically be deployed to another machine, connected anywhere on the internet. Consequently, the system can be composed of parts that reside on multiple machines in any set of locations accessible from the web
.
The Virtual Repository and Testbed is composed of a Virtual Software Repository server, Virtual Build Server, Virtual Testbed Server, and an arbitrary number of VRTS clients. Clients will, if the user chooses, support client-based virtual servers, dedicated to the local development of software products before they become certified parts of the developing software baseline.
The main functions provided by the Virtual Repository and Testbed are:
1. Maintenance and Tracking of software files and their configuration in a Repository server.

2. Building libraries and execution images by the Build Server for the Testbed from source obtained from the Repository server.

3. Conduct of, possibly concurrent, test sequences, using a test harness structure provided by the Testbed server.
· The Testbed server will run many concurrent test configurations for an evolving software development project. It is intended that testing may be eventually become continuous, and configurations will grow to encompass the entire developing software product. Individual clients can support this same functionality, simply by importing a virtual server.
· Individual clients will run scaled down versions of these test configurations, of interest to a specific team.

· Should the primary Testbed Server become overloaded, a replica can be created and hosted on a remote machine, using the virtual server mechanism.
4. Clients will initiate the creation of software products
, check them into the Repository, and then define and request execution of specific test configurations on the Testbed. It will be the Testbed’s responsibility to request needed components from the Repository, which builds them using the services of the Build Server, initiate testing, and report results to the requesting client.
5. All results of building and testing are stored in the Repository when the testing process is complete. The repository will maintain metadata that correlates each test with versioned test drivers, versioned code, and versioned test results document.

6. All product and test documentation, including source code, will have a webpage view, accessible to anyone with access to the VRT system.
Preliminary Partitions of the Virtual Repository and Testbed System (VRTS) and Their Functions:
Processing required to support the Repository, Build, Testbed Server’s, and Client activities is divided into the following subsystems:

1. VRTS Portal

Desktop and web applications, that support:

· Authenticating users for various levels of access to VRTS.
· Configurable views of the virtual servers that make up VRTS, e.g., the primary (remote) Repository, Build, and Testbed virtual servers, as well as the client’s local servers and those of other members of the user’s team
. Access is role-based and defined by the Authentication process.

· A tool panel that provides access to, and instructions for, a series of code and test analysis tools.

· A browsing tool that supports directed navigation through the documentation, source code, and test results, held on any Virtual Repository Server accessible to the user. Note that all authenticated users have default access to the Repository.
2. VRTS Client

A local process, initiated by a user, that supports:

· Connection to the VRTS Portal on startup.

· Support for Check-in of existing source code to the Repository server
.

· Check-out of source code, for modification, from the Repository server.

· Download of source from the Repository server for viewing.
· Configuration of software files, existing on the client, into items, described by item metadata that refers to one specific module – a single file in C#, or a pair of files in C++ - associated documentation files, and other items on which it depends. An item and the closure of all the items on which it depends, directly or indirectly, is called a component.
· Defining a test configuration for the primary Testbed Server by selection or drag-and-drop operations from lists of components on the primary Repository server, or selection and composition of existing test configurations.

· Defining a test configuration for a local Testbed Server by selection or drag-and-drop operations from lists of components on the local Repository server, or selection and composition of existing test configurations.

· Requesting the execution, pausing, or halting of an existing test configuration.

3. Virtual Repository Server

A dedicated server that supports:

· The extraction of a component using only the name of the component
.

· Check-in and Check-out for modification of existing items.

· Each check-in and check-out has one and only one Responsible Individual (RI). Only the RI of a checked-out component can check-in that component.

· Check-in of a component will send only modified files and new files to the Repository.

· Each file checked-in will be given a version number by the server.

· All earlier versions will be retained in the Repository.

· Each check-in results in creation of a new item metadata with an incremented version.
· A check-in is open for modification without re-versioning, until explicitly closed by the check-in RI. Once closed, any further modification results in a new version. No open check-in can be tested on the primary Testbed Server, nor be the destination of a dependency relationship of a repository item with closed check-in.

· Each item and test configuration is, once closed, immutable – never changes and is only rarely deleted from the Repository. Code changes are effected by creating new versions.
4. Virtual Build Server

A dedicated server that supports:

· The extraction
 and building of a component using only the name of the component
.

· Each component in the repository will have build definition metadata that describes the build target, e.g., execution image, dynamic link library, or statically linked to a higher level component. The build system always builds an extracted component either as an execution image, if so specified, or as a dynamic link library, even if the component’s metadata says it should be statically linked. The static linking option occurs only if the component is part of a higher level component.
· Checks-in the built and versioned component to the corresponding Virtual Repository Server
.
5. Virtual Testbed Server

A dedicated server that supports

· Building test configurations using a Build Process:
· All test configurations are defined on VRTS clients, but will be checked into the Repository Server and selected from there.

· Testbed is responsible for compiling files in extracted components to satisfy a test configuration, using the services of a Build Server. Each component, held by Repository server contains the specification for its build. The specification, when received along with its component, is used by the Build Process to create test libraries or executables, which will be consumed and used by Testbed’s Test Harness.
· Executing test configurations using a Test Harness:

· Test harness accepts a build configuration’s test libraries, loads them, and executes each test defined by each of the configuration’s libraries. Test harness will generate a resulting test report.

· Testbed will send the test report back to the requesting client.
Repository – Testbed Packages

A set of candidate packages for the Repository Testbed System (RTS) is shown on the next page. This structure incorporates a particular philosophy of design that defines a set of services, provided independent of where that service is delivered. For example, instances of Component Manager may exist on the Repository, Testbed Server, and Client machines, providing functionality specialized to each of these machines. Never-the-less, all of these functionalities are provided by the single service and probably developed by a single team. The intent of this philosophy is to help ensure consistency of concept and implementation, and to make integration easier, since teams are only required to integrate services.
The services are:

1. Component Management
Responsible for assembling files into components by creating and managing metadata in a relational database, and providing navigation services that insert, search, and extract components. Note that items are immutable. They are never modified, and rarely deleted. Development proceeds by creating new versions of items in each component.
2. Communication
Component management requires sending files and messages between machines. The communication package is responsible for this process using WCF protocols that support inter-process, network, and internet communication.
3. File Management
A typical system contains a large number of files. The File manager is responsible for passing files to a machine only if the specific versions requested do not already exist on the target machine. This service is also responsible for establishing and managing caches of files on any given machine, deciding on the lifetime of files in the cache and ensuring the coherency of the files within a cache.
4. Test Configuration
It is likely that concurrent clients will want to define sets of components that will be tested in a given test run. The Test Configurer will create one configuration for each request, e.g., simply a list of component tests to run. It will request the set from the Repository, and pass the configuration to the Test Harness for testing.
5. Building
The building service is used by Test Configurer for generating dynamic link libraries for testing
 by building test code extracted from the repository. The service is provided on Virtual Build Servers. The testbed builds tests on integrated code from multiple teams, using the services of Build Server, while clients will often build just the code developed by a single team and executables for manual testing, using a local Build Server.

6. Test Execution
The Test Harness is responsible for running all the tests defined by a test configuration, in sequence, concurrently with any other running tests.
7. Management of Check-in and Check-out
Checkinout manager will ensure that only RIs Check-in modified components and Check-out for modification existing components in the Repository. It will support the extraction for viewing for any client, but will not accept any of these files back into the Repository.
8. Versioning
This package is responsible for assigning version numbers to new and modified items and files. It is used exclusively by the Repository Server and is not accessible to the RT Clients. Each versioned source file will have, as its first line, a comment with filename, RI, version, and a hash that uniquely identifies this file, and can be used to detect changes without reversioning.
[image: image4.wmf]Repository Server

Testbed Server

VRTS Client

File Manager

Test Harness

Component Manager

Version Control

Test Configurer

Checkinout Manager

Builder

Build Server

VRTS Candidate Top Level Packages

Component Structure

A key property of the Repository is that it manages source code as items and components.

1. An item is a single production source code file, combined with documentation files, and related information that helps users and other parts of the system use the code. Each item may refer to lower-level items, and is bound to its constituent parts with metadata managed by the Repository. Each reference to source code, documentation, lower level items, or other information is encoded by attributes within the metadata.
2. A Component is an item and all the lower level items it references. All code in the repository is accessed as either items or components.
If we want to build a component we simply extract the component by name from the repository which yields the source code of the top-level item in the component and all items on which it depends.

If we want to modify a source file we check-out the item referring to that source file. Check-out and extraction are managed by the checkinout service that, using the services of the File Manager, sends all files in the item that we do not already have
.
Items define specific versions of modules, programs, or systems. Thus, if a client extracts a program, all the files required for the
version of the program requested will be sent to the client, if it does not already have them with the correct version.

[image: image1.emf]mod1.3

mod2.1

mod3.2

file1.2.cs

file2.3.doc

file3.1.cs

file4.1.doc

file5.2.cs

file6.1.doc

program1.2

program2.1

system1.3

Item Metadata contain:

-a brief summary

-a list of keywords

-a list of references to

lower level components

and files.

Definitions

· Item:

A manifest and all the files it

directly references.

· Component:

An item and all the items it

references, directly or

indirectly.

Component Representation

[image: image2.emf]New Versions

M1.1

S1.1

P1.1

M2.1

F2.1.cs F1.3.doc F4.1.cs

M3.1

F5.2.cs

M1.2

M2.2

F2.2.cs

New versions caused by change in file F2:

· F2.2 is the new version of file F2.1

· M2.2 is new version of module M2.1, resulting from referring to

new version of F2. Note that it still refers to the same files, F1.3

and F3.2 as M2.1

· Module M1.2 is new version of M1.1 resulting from referring to new

version, M2.2 It still refers to F4.1.

· The RI for Program P1 has not decided to use the new version of

M1 yet.

RI for a module may link a new version of her manifest to any file or

lower level manifest. The RI may NOT link a higher level manifest to

the new version. That is allowed only by the RI for the higher level

module.

The versioning of M1.2 is open –indicated by dashed lines –meaning

that its RI may change links in that manifest without generating a new

version.

However, M1.2 may not be checked-out for modification until its

versioning is closed. Also, it may only be a part of a test configuration

that does not have modules linking to it, until its versioning is closed.

Older versions:

Older versions are retained in the Repository. This supports two critical

activities:

· Developers can access complete configurations for older products

that are still in service to provide support for customers.

· A configuration can be easily rolled back should an earlier change

prove to be incorrect or lead to other problems in the developing

system.

Metadata and Files:

Metadata are attributes held in a

relational model that define Systems,

Programs, and Modules, simply by

linking to lower level relations and files.

Files are shown with hatched pattern,

manifests have a solid background.

All links are dependency relationships.

Thus, Both modules M2.1 and M2.2

depend on file F1.3. If two modules

have no dependency on each other,

they are not linked.

Note that the Repository need make no

distinction between Systems,

Programs, and Modules. That is

simply a developer’s design distinction.

F3.2.doc

Versioning Concept

Test Harness

The test harness provides a testing service for both Testbed Server and each RT Client via a Virtual Testbed Server. The harness contains a test aggregator, called tester, that loads a specified set of test Dynamic Link Libraries (DLLs). Each test library is required to support the ITest interface, so the aggregator creates instances of each test it loads (one per library), bound to the ITest interface, and executes the test by invoking a test() method declared by the interface and implemented by the class that implements the interface.
The test class derives from the ITest interface and aggregates a default TestVectorGenerator class and set of Logger classes. The TestVectorGenerator provides facilities for generating test inputs that classes derived from test use while testing. An example of one such facility reads a specified file line by line, supplying a new line each time its GenerateNext() function is called.

The FileLogger, ConsoleLogger, and MemoryLogger each derive from the ILogger interface and provide default facilities for writing test output to a file, stream, or saved to memory, for use later in the test.

We expect that a class, aTest, derived from test will be created for each module of source code to be tested, which must implement the test() function, defining specific testing operations. The designer of the derived aTest class will often provide classes derived from TestVectorGenerator and one or more of the loggers to provide the test inputs and logging needed for this specific test.
Note that both the Testbed Server and RT Clients have Test Harnesses, Test Configurers, and Builders. The RT Client will use these facilities to develop a team’s tested source code before checking in the code’s component to the Repository Server. The Testbed Server uses these facilities to run, perhaps many, concurrent tests on code combined from two or more of the teams working on the project.

Note also, that it would make a lot of sense to dedicate one of the RT Clients for each team to act as a local Testbed Server to integrate the team’s code, before passing it to the repository to be integrated with other team’s code.

[image: image3.emf]+write()

+showAll()

«interface»

ILogger

MemoryLogger

+test() : bool

+registerTest() : void

-ArrayList

-failed : unsigned int

tester

+test() : bool

+title() : string

-tout : ILogger

-title : string

test

aTest -Application Specific Test Driver

1 *

MemoryStream

ConsoleLogger

Console

FileLogger

FileStream

+test() : bool

«interface»

ITest

1 *

class from Tested Module #1

+GenerateNext() : object

«interface»

ITestVectorGenerator

TestVectorGenerator

ApplicationTVG

ApplicationFL ApplicationCL ApplicationML

Test Harness Concept

Critical Issues:

The following issues will need attention at the beginning of the project:

1. Design Concept

Each service, outlined above, has been described as being implemented as a single component, probably by one team, even though its functionality may be specialized for the various types of location, e.g., Repository Server, Build Server, Testbed Server, or VRTS Client. This appears to be an effective way to develop the system, but it will be up to the project management to decide if this strategy is appropriate for the teams on this project.

2. Build Process

As projects mature, there may be thousands of files in larger test configurations. A prototype of the build process will be needed to explore how to provide a suitable directory structure to hold test source and libraries which supports efficient loading by the test harness.

3. Test harness structure and activities

Tests will be loaded dynamically and test class instances created using reflection and construction in child application domains. A prototype will help explore effective ways of doing that. The test harness will need to provide default Test Vector Generation (generation of test inputs) and default output Logging base classes. Application specific input generation and output logging will be developed by deriving from the base services. The prototype can be used to explore these issues.

4. Client Activities

Building test configurations will require disclosing, to a requesting client, information about components held in the Repository. Allowing browsing of the Repository by every client may overload the Repository server, so some distributed file management is required. One model would cache all of the Repository’s metadatas on each client
 for browsing and send files to the Test Harness only if not already there. A client, when started, could interrogate the Repository for all new metadata since the client last logged on.

5. Virtual Servers

Virtual Repository, Build, and Testbed Servers will be deployed as primary VRTS servers, local individual servers, and team shared servers. It is therefore critical that a deployment strategy be developed that will make deployment virtually (pun intended) automatic.

6. Browsing Service

All documentation, source code, and test results are required to have a webpage representation. That entails the auto-generation of page content on demand. Since some of the information is captured as test logs, some as source code files, and some as documents
, a strategy will be needed to guide this development, with the intent that it won’t be too difficult to incorporate new document types (remember Design Patterns!).

7. Communication service

Communication between RT clients, Repository, and Testbed are specified to be implemented with Windows Communication Foundation (WCF) Services, that support inter-process, network, and internet communication. Since there may be multiple clients communicating concurrently with any of these servers, the initial system design should focus on the communication structure needed to support the client and server activities described above.

6. Repository Tools

The repository serves, not only as a container for software products, but also an environment in which tools will run. Quality Assurance, for example, will run code analysis tools, and monitor test results. Developers and managers will be interested in the differences between versions of items. Repository Tools fill this need. In this project we will incorporate, or develop:

· Anal – an existing code analysis tool that evaluates size and complexity metrics.

· Diff – a difference engine, used to determine the differences between two versions of a file
.

· TestStats – a tool that makes queries into the primary Repository Server to:

· plot a sequence of test dates, with pass/fail indicators, for a specified collection of files, identified by name, date, RI, team, or any combination of those attributes

· plot the number of tests passing in any specified period time between project start and present date, as a percentage of the files in the repository at each of the plotted times. Provide an option to show failing tests instead.
8. Test Tools

Testing a system of the size of this project entails a lot of activity and effort. We should develop a few tools to support that process, e.g.: on-line forms-based development of test descriptions, test procedures, and test results, scripts for running long complex tests, and a tool that will parse test procedures to build a Requirements Traceability Matrix.

Virtual Repository and Testbed System
Preliminary Project Organization

version 2.0
Jim Fawcett

15 September 2008
Software Project Manager

The SPM will manage the Repository and Testbed program, with the help of the Software Architect, Test Manager, and all the Team Leaders.

Software Architect

The Software Architect is responsible for the Repository and Testbed System architectural concept and A Specification. A preliminary A-Specification is provided as part of this package, but will evolve as the team and customer negotiate system structure and capabilities. The SA will also provide support for qualification testing.

Software Development Teams

Repository and Testbed System development will be carried out by teams, defined in this document. There will also be a test team, responsible for developing and executing Qualification Test. Each team, with the exception of test team, will:

1. produce its own behavior specification
, design description, and code

2. present their specifications and design during Repository and Testbed System specification and design reviews

3. conduct unit test on their code

4. integrate their software with that of the other teams

5. participate in final qualification testing

Test Team

The test team will prepare a test plan which contains at least the following:

1. A schedule of key milestones and their contents.

2. A schedule for integration testing and qualification testing. The integration test schedule will be phased and clearly describe when each team’s software must be available for integration.

3. A set of qualification test descriptions, procedures, and definition of all instrumentation, logs, and analyses needed to conduct qualification testing.

4. Definition of a process for baselining and accessing test code, including a class build directory structure and error reporting mechanism.

Integration testing is the joint responsibility of the development team leaders and test team leader. Qualification testing is the responsibility of the Software Project Manager, supported by the test team and its manager. Each development team will be responsible for developing qualification tests, in collaboration with the Test Team member assigned to them, which implement the tests described in the test plan in for their software, under the joint direction of their team leader and the test team leader.

Team Assignments:

1. Software Project Manager

Phil Pratt-Szeliga

2. Software Architect

Dusan Palider

3. Test Team

Madhumita Nagel – Team Leader
· Devaprem Banerjee

· Gauri Bindu

· Hitendrakumar Modi

· Sonam Neema

· Deepashree Prabhakar

· Anand Panneer Selvam

· Somashekhar Kotagi

· Zhe Zhao

4. VRTS Tools, Test Tools

Rajaa Alqudah – Team Leader
· Madhumita Nagel
· Archana Pillaipakkam
· Paul Petzke

· Mark Web

5. VRTS Client and Portal

Mohammed Koni – Team Leader
· Manasavalli Vidali
· Shashikiran Srinivasa

6. Virtual Repository Server

Gokul Sivaji – Team Leader

· Nedhi Solanki

· Sarvesh Devi

· Robert Durham

· Anway Shahane

7. Virtual Testbed Server

Devendra Chauhan – Team Leader

· Siddharth Damani

· Anuhya Kodali

· Sohil Shah

8. Virtual Build Server

Devaprem Banerjee – Team Leader

· Sudheer Anantha

· Nikila Iyer
· Mitali Patel

9. Communication

Somashekhar Kotagi – Team Leader

· Sagar Gupta

· Sambhav Jain
· Jayarama Reddy

10. Browsing Service

Saikiran Permula – Team Leader

· Sumanth Anand

· Akshara Chaturvedi
· Jay Sachaniya

Attachment #1 - Job Descriptions

Job Description: Software Project Manager (SWPM)

The Software Project Manager organizes the teams so that each team owns part of the B-Spec, C-Spec, and software integration. He/She conducts weekly meetings to stay on top of any problems that arise, and manages all the reviews.

The SWPM is expected to know most of the design and the critical code details. The SWPM, Software Architect, and Team Leaders establish the architecture and B-Specs; and they control the design, implementation, and test processes so that the final product is robust and meets specifications.

Finally, the Software Project Manager directs the Test Leader and Architect to prepare a Software Test Plan and conducts qualification tests based on the plan.

Responsibilities:
1. Organize teams

2. Prepare program schedule including Architecture Review, Specification Review, Design Review, and Qualification test. Present the schedule at the Architecture Review and at each succeeding review.

3. Manage B-Spec process with team leaders.

4. Provide the opportunity for each team leader to be a hero, but:

5. Takes full responsibility for success of the project.

6. Conducts specification review on date specified in program schedule.

7. Conducts design review on date specified in program schedule.

8. Prepares, with Test Leader and Software Architect, a Test Plan. Conducts qualification test with the help of Test Leader, Architect, and Team Leaders.

Evaluation:
The Project Manager's grade is based on:

1. meeting program schedule

2. Software Test Plan and success of qualification

3. an oral examination.

Job Description: Software Architect (SA)
The Software Architect is responsible for the architectural concept, effectiveness and ease of use of the user interface, modularity and robustness of the design. He/She supports the team leaders in developing elegance and quality in the final product.

The SA is required to know the entire design and provides support for team leaders during major reviews. He/She has responsibility for consistency and integrity of all requirements with special focus on the user interface. The SA is also responsible for the top-level physical structure, organizing principles, and built in test
. Built in test should directly support qualification testing.

SA participates in all weekly meetings, spending at least some time with each team, making sure they understand the architecture and testbed, and helps with problem solving as needed by each team. The SA is responsible for ensuring that the requirements are sensibly allocated to individual teams and that each team understands their allocation.

Responsibilities:
1. Prepare an Architectural Concept Document which includes:
a. Organizing principles for project including processing partitions for each team

b. Definition of user interface

c. Definition of, and logical model for, top level processes and data flows, e.g., one DFD per team (worked out with respective Team Leader)

d. Updated to include definition of, and logical model for, each module in the Repository and Testbed System design, including key classes.
e. This work will be presented at the architecture review.
2. Support SW integration process
.

3. Provide technical support to teams during Specification Review, Design Review, and Qualification test.

4. Help with design and implementation when needed.

5. Assist SWPM and Test Leader with final product Qualification Test

Evaluation:
The Software Architect's grade is based on:

1. Architectural Concept Document

2. Success of reviews

3. Support provided to teams during integration so that subsystems behavior reflects architectural goals and the subsystem interfaces are understood by all teams.
4. Support provided to SWPM and Test Leader during Qualification

5. An oral examination.

Job Description: Test Manager (TsM)

The Test Manager is the technical lead for integration
 and qualification test. Does whatever is needed to detect and locate latent errors in project code.

The TsM is required to know the entire design and provides support for team leaders during integration testing. He/She shares responsibility for qualification test with the Software Project Manager, assisted by the SA. The Test Leader:

1. prepares a test plan, including qualification test descriptions and procedures

2. reports status of unit testing, solicited from the Team Leaders.
3. coordinates integration test schedule and supports team leaders in integration

4. provides qualification test templates

5. conducts the mechanics of qualification test while the Software Project Manager leads the test and signs off on tests with the customer

6. manages a test bed
 which includes all released codes which are shared between teams or modules within a team. The test bed is built around a directory structure established by the Test Leader with the Software Architect and ECS cluster system administrators.

TsM participates in all weekly meetings, spending at least some time with each team, making sure they understand the test process and testbed, and helps with problem solving as needed by each team.

Responsibilities:
1. Prepare a Test Plan Document which includes:

a. test schedule

b. priorities for integration test, based on dependency analysis of each team’s code base.
c. definition of qualification test templates

d. qualification test descriptions and test procedures (about 90% of the Test Plan)

2. Provide technical support to teams during integration and qualification test.

3. Manage the testbed used for the project.

4. Help with design and implementation when needed.

5. Help team leaders plan and conduct integration test.

6. Plan and share responsibility with the Software Project Manager for final product Qualification Test.

Evaluation:
The Test Leader's grade is based on:

1. Test Plan Document

2. Success of qualification testing

3. Integrity of the final product

4. An oral examination.

Job Description: Team Leader (TL)

The Team Leader is the technical lead for one specific part of the system. Does whatever he/she has to make that part successful. The TL prepares the B-Spec for his/her assigned part of the system with the help of the Software Architect and presents that part at Specification Review. He/She organizes the team to produce the C-Spec, conduct design review, produce code, test drivers, and conduct unit testing. TLs share responsibility with the Test Manager for software integration. They are directly responsible for running all integration tests and preparing any required modifications to their team’s code.
Responsibilities:
1. Reviews Architectural Concept and prepares assigned part of B-Spec.

2. Presents team's part of B-Spec at Specification Review.

3. Assigns classes/modules to individual team members.

4. Guides the team in preparation of design and C-Spec.

5. Assigns team members to present during design review
.

6. Insures that all requirements are traceable to the process and function level.

7. Provides opportunity for each team member to be a hero, but:

8. Takes full responsibility for success of team.

9. Shares responsibility for software integration with TsM and other TLs.

10. Helps team members with design and/or implementation problems.

Evaluation:
Grade based on:

1. B-Spec for assigned part of system

2. Presentation during B-Spec Review

3. Meets allocated specifications

4. Has adequate derived specifications and meets them

5. Success of team's design and implementation, e.g.,

6. Robustness of Team’s code.
7. an oral examination.

Job Description: Team Member (TM)

Concentrates on one specific part of the system. Does whatever necessary to make assigned parts successful. TM has primary responsibility for assigned classes/modules including design, implementation, and test. He/She prepares C-Spec for assigned functionality, presents that part at the design review, develops code, and conducts unit test. The TM supports the Team Leader in conducting integration if requested by TL.

Responsibilities:
1. Reads B-specification

2. Prepares assigned part of the C-Spec and design.

3. Presents that part at Design Review.

4. Implements assigned part, paying attention to complexity, size, robustness, understandability.

5. Develops unit test drivers.

6. Tests every function and allocated requirement as early as possible

7. Takes full responsibility for assigned part of subsystem.

Evaluation:
Grade based on:

1. C-Spec Review presentation

2. quality of assigned code and test

3. robustness of code.
4. "reasonable" size and complexity

5. good understandability

6. success of team's assigned part

7. willingness to support team leader in documentation, design, implementation, and test
Final Project

Virtual Repository and Testbed System
Statement of Work

version 1.0

Jim Fawcett

15 September 2008
1. Introduction:
The Virtual Repository Testbed System (VRTS) is designed to help manage and test the code developed in a large project. Repository, Build, and Testbed Virtual Servers have facilities for:

· Source code check-in and check-out and versioning.

· Defining, building, and executing test configurations remotely.

· Reporting test results.

2. Customer Furnished Equipment:

The operating environment for VRTS will be Windows XP, as provided in the ECS clusters. The VRTS software must compile and link using Visual C# or C++, as provided by Visual Studio.Net. This environment is available in the ECS clusters in 010 Link, 201 Link, 202 Link, 274 Link, and 3-201 in CST, Syracuse University.

3. Reference Documents:

· Virtual Repository and Testbed System Preliminary Architectural Concept, 15 September 2008, or latest version.

· Virtual Repository and Testbed System A-Level Specification, 15 September 2008, or latest version.

· Visual C#, C++, and Class Libraries on-line documentation

4. Preliminary Schedule – Fall 2008:

	Project start date
	22 September

	Program and Architecture Review
	06 October

	B Specification Review
	20 October

	Design and Prototypes Review
	03 November

	Design and Implementation Meetings
	10 November

	Design and Implementation Meetings
	17 November

	Test Readiness Review
	24 November

	Qualification Test
	05 December

	Final Products Delivery
	08 December

Final Project

Virtual Repository and Testbed System
Draft A-Level Specification

version 0.9
Jim Fawcett

25 September 2005
Repository and Testbed System (RTS)
5. Introduction:
The Repository Testbed System is designed to help manage and test code produced in a large software development project. Repository and Testbed has facilities for:

· Source code check-in, check-out and versioning.

· Defining, building, and executing test configurations remotely.

· Reporting test results.

[image: image5.wmf]Repository Server

Testbed Server

VRTS Client

File Manager

Test Harness

Component Manager

Version Control

Test Configurer

Checkinout Manager

Builder

Build Server

Figure 1 – Repository and Testbed System Context Diagram

The Repository and Testbed System Architecture consists of the partitions:

1. Virtual Repository Server

Maintains a persistent, versioned, set of components, using metadata, captured in a relational store, to identify a component’s constituent parts.
2. Virtual Build Server

Supports builds of Repository source code for testing.
3. Virtual Testbed Server

Supports test configuration and execution for multiple, concurrent clients.

4. VRTS Client

Provides an interface for accessing and controlling the various Repository Testbed services and products.
5. Checkinout Service

Manages storage of new versions of components on the Repository Server and extraction for modification or viewing.
6. Test Service

Provides a test configuration and execution facility on Virtual Testbed Servers including those held by RT Clients.
7. Communication Service

Manages the transfer of component parts between processes on the same machine, between machines on a local network, and across the internet, using WCF services, with message passing.

[image: image6.wmf]FileInfo Requests

Files

VRTS

Directory

Services

Network

Services

User

Interface

controls

Display

Information

Messages

Messages

,

Connection Requests

User Commands

Status Messages

,

error messages

Test results

,

path

,

help info

Figure 2 – Candidate VRTS Package Diagram
2. Reference Documents:

1. Repository and Testbed System Preliminary Architectural Concept, 15 September 2008.

2. Repository and Testbed System Statement of Work, 15 September 2008.

3. Requirements:

The Repository and Testbed System is a tool designed to help manage code development, control, and testing. The requirements are allocated below, to each of the major partitions described in Section 1.

Definitions:

a. Version – a number, generated in sequence by the Repository Server, assigned to a file. This number is encoded in the file specification, using the convention:

filename.VersionNumber.Extension

Each checked-in modification of a file results in a new version number, generated sequentially. Should a version be removed from the Repository Server – a very rare event – versions of this file with higher version numbers will not be re-versioned. All files stored in the repository, including test data files will be versioned.

b. Item – a named, versioned, set of metadata and all the files to which it refers, excluding references to other items. Each item refers directly to exactly one product source code module, that is to one C# source file or two C++ files, a header file and an implementation file. Metadata may also hold references to documentation files and other items on which it depends. Each Item represents a module and must refer to a Responsible Individual (RI), that is, some member of the development team.
c. Component – one root item and all the items it references, either directly or indirectly. That is, a component is an item and the closure of all its references. The name of a component is the name of its top-level item. Its version is the version of its top-level item. Programs are Items that refer only to module items, test source files, and documentation. Systems are items that refer only to program items, test source files, and documentation.
d. Test Configuration – a named, versioned, XML file that refers to production source code items and any number of test source code files for each source item. This XML file is referred to as a test item. A test item may refer to lower-level test items. That is, composition of test configurations is supported.
e. Check-in – process of storing all the files of an item in the repository and providing sequenced version numbers, as described above. Only an item’s RI may check it in. On check-in, the item is given a unique identifier and version number. Check in does not replace files with earlier version numbers. Once an item is checked in, and closed, it is immutable.
f. Check-out – process of transferring files of an item to an RT Client for the express purpose of modification. Only the item’s RI may check it out.

g. Extraction – process of transferring a component’s files to a VRTS Client. Extraction is not limited to the item’s RI. However, no extracted items may be checked back in. Both VRTS Clients, Build, and Testbed Virtual Servers are expected to use extraction.
3.1. Functional Requirements

The Repository and Testbed System supports the control, building, and testing of project code.
3.1.1. The Virtual Repository and Testbed System shall provide a user interface with both desktop and web application facilities. The functionality supported by the web application shall be functionally the same as the desktop application. It is desirable that they have the same look and feel
.
3.1.2. The Repository, Build, and Testbed Servers shall be virtual servers. That means that they can be cloned and deployed automatically to another process on the same or another VRTS machine, including a web site that has been prepared to serve as part of VRTS. All the VRTS infrastructure shall informed of the existence and endpoints of a new virtual server.
3.1.3. The Repository Server shall support check-in of items and test configurations from VRTS Clients.
3.1.4. Each check-in shall result in creating a new version number for the checked-in item and the marking of the item with a unique identifier
. Any source code and documentation files supplied for this checking process shall be given new version numbers. All of these presented files shall then be stored in the Repository.
3.1.5. Check-in shall succeed only if the check-in process presents to the Repository Server an item file and all the files to which it refers, if those files do not already exist on the Repository Server. Also, check-in shall succeed only if one of the following two conditions is satisfied:
3.1.5.1. the item file is un-versioned, has no unique identifier, and the Repository Server does not contain another item with the same name
.
3.1.5.2. the item file is versioned, has a unique identifier, and the user requesting check-in is authenticated as the item’s Responsible Individual (RI).
3.1.6. Check-ins shall support an open version status. When open an item may be modified without changing its version by accepting new references to items and files or changing an existing reference.
3.1.7. The Repository Server shall allow only the Responsible Individual of the item to change its status from open to closed. Once closed, the Repository Server shall not allow its status to be changed to open.
3.1.8. The Repository Server shall support check-out of items and test configurations by VRTS Clients. For check-out to succeed, the Repository shall authenticate the user as RI for the requested item. It then will identify the item as checked out
.
3.1.9. Check-outs of an item with open status shall fail.
3.1.10. shall support extraction of components
 and test configurations by the Build Server, Testbed Server, or VRTS Clients, using a Component Manager. No authentication as RI is required for extraction. Extracted items shall have their unique identifiers removed
.
3.1.11. The Repository Server shall support scope for the extraction operation that is one of the following: (a) source code, (b) test and source code, or (c) all files including documentation.
3.1.12. Both check-out and extraction shall transfer only versions of files not currently existing on the target. This implies the presence of file caches on the Build Server, Testbed Server, and VRTS Clients.
3.1.13. shall support creation of items and test configurations on VRTS Clients
.
3.1.14. Creation of an item shall consist of the creation metadata in the Repository relational store that refers to all the items and files the item depends on directly. Each item shall define a Responsible Individual and shall provide keywords and a small amount of text describing the item
.
3.1.15. Creation of a test configuration shall consist of creation of a named XML file that refers to one or more test source code files. Each test configuration shall provide a small amount of text describing the purpose of the test.
3.1.16. VRTS Clients shall support the creation of a test configuration by composition with existing configurations.
3.1.17. The Testbed Server shall support the execution of test configurations. All components and test configurations placed on the Testbed Server shall be transferred only from the Repository Server, using its extraction process, and the services of the Build Server. This transfer shall occur when an VRTS Client requests test execution of a configuration that does not currently exist on the server.
3.1.18. Upon receiving a request to execute a test configuration, the Testbed Server shall verify that a build exists for that configuration. If not, the Testbed Server shall request an extraction of the configuration and its corresponding components and build the required libraries that will be loaded by the Test Harness for execution
.
3.1.19. shall support the display of test results on the VRTS Client requesting the execution of a specified test configuration.

3.1.20. shall support the execution of test configurations on VRTS Clients for components and configurations, using local virtual servers. These configurations are not required to originate from the Repository Server.
3.1.21. The Test
Harness shall support the concurrent execution of test configurations.
3.1.22. Any VRTS Client shall be allowed to request a test execution without authentication as the test configuration Responsible Individual.
3.1.23. The Testbed Server shall direct test output to the requesting VRTS Client. The Testbed Server shall also accept requests to change between quiet and verbose output modes. The Test Harness shall request tests to change mode on receipt of an output mode change request
.

3.1.24. The Testbed Server shall accept requests to pause or stop execution of any test configuration by the VRTS Client that requested its execution. Paused test executions shall resume at the state of execution that was present when paused
. When the test configuration has concluded execution, the test RI shall be given the option of discarding the test results, or checking them into the Repository server. This checkin shall require no participation by the RI other than to request checkin.
3.1.25. The VRTS Client shall support cloning of a test configuration, consisting of making a new version of an existing test configuration, in which one or more tests or components have new versions.
3.1.26. Each VRTS Client shall support a user interface providing operations for creating items and test configurations, checking items and test configurations in and out of the Repository Server, requesting test executions on the Testbed Server and pausing or stopping running tests. The VRTS Client interface shall also support the removal of specified files from the Client’s file cache.
3.1.27. Each VRTS Client shall support the execution of test configurations and the building of Components that include program executables
 for testing on the VRTS Client before checking-in the Repository and executing on the Testbed Server.
3.1.28. The Repository Server shall support a user interface intended for administration. This interface shall support the all the operations of the VRTS Client, but also include deletion of items from the Repository.
3.1.29. The Build Server shall support an interface intended for administration. This interface shall support all the operations of the VRTS Client, but also include deletion of built files and removal of files from its file cache.

3.1.30. The Testbed Server shall support an interface intended for administration. This interface shall support all the operations of the VRTS Client, but also include deletion of test configurations and removal of files from its file cache.

3.1.31. Any operation that requires authentication of a Responsible Individual shall succeed if the requestor is authenticated as an VRTS administrator.

3.1.32. The interfaces for the Repository Server, Build Server, Testbed Server, and VRTS Clients shall provide help for their respective operations. This help should be detailed enough that a new user can start with no other instruction.
3.1.33. The Repository Testbed system shall use a message-passing communication layer for all communication between machines
 implemented using Windows Communication Foundation (WCF) services.

3.2. Process Requirements:

These requirements specify the physical structure of delivered code and the environment where it must operate.

3.2.1. Physical Structure

3.2.1.1. The Repository and Testbed System source code shall be composed of modules.
3.2.1.2. Repository and Testbed System builds shall be composed of managed or unmanaged code executables and dynamic-link libraries
.
3.2.1.3. The User Interfaces shall delegate all operations, not directly associated with providing the user interfaces, to server modules, e.g., Communication, Data Management and all operations specifed in this document.
3.2.1.4. All modules shall be provided with manual pages and correct maintenance pages.
3.2.1.5. Each server module shall be provided with a test configuration that is held by the Repository Server and can be executed by the Testbed Server on request from an VRTS Client.
3.2.1.6. Code that implements services shared by Repository, Testbed, and or VRTS Clients shall be implemented with identical code, with the possible exception of configuration files
.
3.2.2. Development

3.2.2.1. The Repository and Testbed development process shall use the Repository Server, Testbed Server, and VRTS Clients for final integration and for Qualification testing.
3.2.3. Development Environment
3.2.3.1. The Repository and Testbed System shall build and operate in the ECS clusters, e.g., 010 Link, 202 Link, or 2-122 CST.
3.2.4. Program Management
3.2.4.1. The Repository and Testbed System shall be developed subject to the conditions specified in the Repository and Testbed System Statement of Work, of the latest version.

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.6 ���

� e.g., hosted by a web server on a machine connected to the internet.

� Probably using local virtual servers for holding, building, and testing code before being checked into the primary system.

� The intent here is that a team may share a (non-primary) virtual server and, also, any team member may grant temporary access to another authenticated user of VRTS to a server created by that team member.

� This is expected to be hosted by component management software developed by the repository team with a part hosted by each Virtual Repository Server and a part hosted by each VRTS client.

� This implies that many files are extracted using only one component name.

� Extraction is not a check-out. There is no intent of ever checking back in an extracted component.

� This implies that many files are extracted using only one component name.

� The build process checks a built component into the primary Repository if it resides on the Primary Build Server. Otherwise it checks-in the built component to the local repository.

� The Testbed Server provides the executable typically used for running tests, but the Test Harness should support standalone operation on a client machine.

� All communication between VRTS clients and servers are handled by a Windows Communication Foundation based communication component, not shown here.

� Note that, as described below, each version of a component is immutable, containing a specific set of versioned files. If a requester has some earlier version of a file referred to by the component, directly or indirectly, the version of the file referred in the component is sent.

� Perhaps by providing a local copy of the primary Repository DB file.

� Product documentation does not need to be PDF or Word files. We could decide to make HTML or XML our document encoding type.

� This may be an open-source tool or one we develop.

� The form of behavior and design descriptions will be as cited above in the Preliminary Architectural Concept.

� After Virtual Build Server is integrated

� After Communication is integrated

� Each subsystem should have means to test the validity of its operations.

� This is a technical support role, not a managerial role.

� Team leaders conduct the integration process, as scheduled by the Test Manager. This schedule should be negotiated with everyone agreeing that it can be met. Should this be difficult, please consult the customer.

� The test bed starts out as a set of directories globally accessible to the development teams, with permissions established to control the evolving product. As Qualification Test approaches the test bed typically contains a number of tools designed by the test team to support qualification testing.

� The Team Leader should assign presentation responsibilities and introduce each speaker on his/her team, but should ensure that team members each get a major part of the presentation.

� One way to support this similarity of look and feel is to use Silverlight 2.0 for the web application and Windows Presentation Foundation (WPF) as the basis for desktop processing.

� Check in results in a new item being placed in the Repository, not the replacement of the older version. Thus, every item, once checked-in, becomes immutable.

� It may be necessary to use namespaces as part of the Repository’s naming convention.

� It is required that this be accomplished by marking each checked-out item with a secure hash which is also stored on the Repository Server. The stored hash would then be compared with the item’s hash to authenticate subsequent check-in.

� Extraction is accomplished by recursively traversing the component’s items, sending the files of each item to the requesting client.

� Note that this implies that an item may be cloned by extracting from the Repository, given a new name, and presented for Check-in, starting a new version sequence. This is the VRTS accepted way to start a new branch of the versioning sequence, e.g., by starting with the branch as a new version root.

� It is desirable, but not required, that this be accomplished by drag and drop operations in the RT Client interface.

� Typically, this will be a phrase consisting of a few words.

� Note that builds do not get out-of-date. All components and test configurations are immutable. When an RT Client checks-in a new item, a test configuration for that version must be created in order to run tests against that version.

� What this mode change means to the test is left to the designer of the test, except that the ITest interface must support this request.

� This can be accomplished by pausing the test’s thread of execution. This implies that every test execution must run on its own thread.

� Testbed Server test configurations consist of Dynamic Link Libraries, loaded by the Test Harness.

� The intent of this requirement is to produce a reusable communication subsystem.

� This is intended to allow the Project Management to select either C++, C#, or both as implementation languages.

� It is expected that each shared service is implemented by a single team, with the consultation of other affected teams.

PAGE
1

[image: image7.wmf]Repository Server

Testbed Server

VRTS Client

File Manager

Test Harness

Component Manager

Version Control

Test Configurer

Checkinout Manager

Builder

Build Server

[image: image8.wmf]FileInfo Requests

Files

VRTS

Directory

Services

Network

Services

User

Interface

controls

Display

Information

Messages

Messages

,

Connection Requests

User Commands

Status Messages

,

error messages

Test results

,

path

,

help info

_1282894839.vsd
Class name

Balloon callout. Select shape and start typing. Resize box to desired dimensions. Move control handle to aim pointer at speaker.

mod1.3

mod2.1

mod3.2

file1.2.cs

file2.3.doc

file3.1.cs

file4.1.doc

file5.2.cs

file6.1.doc

program1.2

program2.1

system1.3

Item Metadata contain:
- a brief summary
- a list of keywords
- a list of references to   lower level components
 and files.

Definitions
Item: A manifest and all the files it directly references.
Component: An item and all the items it references, directly or indirectly.

_1282894925.vsd
Drag the side handles to change the width of the text block.

Drag the side handles to change the width of the text block.

M1.1

S1.1

P1.1

M2.1

F2.1.cs

F1.3.doc

F3.2.doc

F4.1.cs

M3.1

F5.2.cs

M1.2

M2.2

F2.2.cs

New Versions

New versions caused by change in file F2: 
F2.2 is the new version of file F2.1
M2.2 is new version of module M2.1, resulting from referring to new version of F2. Note that it still refers to the same files, F1.3 and F3.2 as M2.1
Module M1.2 is new version of M1.1 resulting from referring to new version, M2.2 It still refers to F4.1.
The RI for Program P1 has not decided to use the new version of M1 yet. 
RI for a module may link a new version of her manifest to any file or lower level manifest. The RI may NOT link a higher level manifest to the new version. That is allowed only by the RI for the higher level module.

The versioning of M1.2 is open – indicated by dashed lines – meaning that its RI may change links in that manifest without generating a new version.   However, M1.2 may not be checked-out for modification until its versioning is closed. Also, it may only be a part of a test configuration that does not have modules linking to it, until its versioning is closed.

Older versions: 
Older versions are retained in the Repository. This supports two critical activities: 
Developers can access complete configurations for older products that are still in service to provide support for customers.
A configuration can be easily rolled back should an earlier change prove to be incorrect or lead to other problems in the developing system.

Metadata and Files: 
Metadata are attributes held in a relational model that define Systems, Programs, and Modules, simply by linking to lower level relations and files. Files are shown with hatched pattern, manifests have a solid background.

All links are dependency relationships. Thus, Both modules M2.1 and M2.2 depend on file F1.3. If two modules have no dependency on each other, they are not linked.

Note that the Repository need make no distinction between Systems, Programs, and Modules. That is simply a developer’s design distinction.

_1282903124.vsd
State

Process name

Class name

Event_name

VRTS

Directory
Services

Network
Services

User
Interface controls

Display
Information

Files

FileInfo Requests

Messages

Messages,
Connection Requests

User Commands

Status Messages,
error messages

Test results,
path,
help info

_1189095643.vsd
+test() : bool

«interface»
ITest

1

ConsoleLogger

+write()
+showAll()

«interface»
ILogger

MemoryLogger

+test() : bool
+registerTest() : void

-ArrayList
-failed : unsigned int

tester

+test() : bool
+title() : string

-tout : ILogger
-title : string

test

+aTest(output& out) : test(out)()

aTest - Application Specific Test Driver

1

*

Console

-End3

MemoryStream

1

-End4

FileLogger

FileStream

*

*

class from Tested Module #1

-End3

1

+GenerateNext() : object

«interface»
ITestVectorGenerator

+operator()() : bool
+aTest(output& out) : test(out)()

TestVectorGenerator

+aTest(output& out) : test(out)()

+aTest(output& out) : test(out)()

-End4

*

-End3

1

-End4

*

+operator()() : bool
+aTest(output& out) : test(out)()

ApplicationTVG

ApplicationFL

ApplicationCL

ApplicationML

_1282894040.vsd
Repository Server

Testbed Server

VRTS Client

File Manager

Test Harness

Component Manager

Version Control

Test Configurer

Checkinout Manager

Builder

Build Server

