	PRIVATE
CSE 784 - Software Studio
	 Fall 2006

CSE 784 - Final Project

PRIVATE
 Remote Software Assistant
Jim Fawcett

version 1.0
25 September 2006
Instructions:
This is a cooperative project requiring the combined efforts of everyone in the class. Participants will be assigned roles in the project, and grades will be based on:

1. how well each of your carries out your assigned role, as measured by products you generate.
2. quality of the final product.

3. conduct of a series of specification, design, and test reviews leading up to the final product qualification test

An Architectural description is provided on the next page, along with additional notes and comments. Also included are job descriptions for each of the roles to be assigned.

The project will be completed and a qualification test conducted on Friday, December 8th. Final product delivery of updated specifications and code will be on Monday, December 11.

Remote Software Assistant
Preliminary Architectural Concept

version 1.0
Jim Fawcett
25 September 2006
Purpose of the Project:

The goal of the Remote Software Assistant (RSA) is to support automation of software development tasks, where that is feasible, and otherwise to support efficient, human-guided, software development tasks. The system is described as remote because the system is distributed with an underlying transport mechanism that uses message-passing through sockets and web services. Consequently, the system can be composed of parts that reside on multiple machines in any set of locations accessible from a local network or the web
.
The Software Assistant is composed of facilities for communication, remote execution, shared data, and automated generation of specification, design, code, and test items. All automated generation is based on the use of XSLT processing of XML templates, and the use of a Model Builder to create XML templates and manually supply information to placeholders within the templates. The Software Assistant also provides a set of tools, embedded in a pluggable architecture that provides for adding new tools at any time.
The main functions provided by the Software Assistant are:
1. Building software code and documentation models:

· A model is an XML file that defines the structure, and some of the contents of a source code or document file. The model building process is illustrated in Figure 1.
· The Model Builder is a tool that builds models based on inputs from a user by drawing and entering text.

· Models include Data Flow Diagrams (DFDs), Package Diagrams (PDs), and Class Diagrams (CDs).

· These models are used to create Requirements Specifications (RSs), Design Documents (DDs), code, Change Reports (CRs), Test Plans (TPs), and Test Reports (TRs).

· All documents are build as HTML.

· The intent is to define a Model-Driven Development process:

i. a DFD is drawn to define the structure of the requirements model for a system or module.

ii. The DFD is populated with input/output definitions and requirements via data input forms in the modeler and also, when the developer prefers, manually, in the model structure.

iii. The DFD is used to generate a set of code models, one module for each DFD process, with an interface defined by the DFD’s data flows. A module diagram and Design Document is also generated from the DFD.

iv. Modules are populated with classes, using a class diagrammer, and populated with methods, properties, and fields, using a data input form and also, when the developer wishes, manually, in the model structure. The Design Document is populated with details, either through an entry form or manually.
v. The Module Builder can also create the code for Test Libraries, directly from the model for each module. This generated code should be directly compatible with the RSA Test Harness, e.g., support the interface expected by the Test Harness.

vi. All the documents and code – modules and test drivers – have structures that are designed as part of this project, do not change, other than having information inserted, and are understood by the model builder and parser.

vii. The diagrams are intended to be simple, displaying nothing but lines with arrow heads, ovals, rectangles, and names. Clicking on any oval or rectangle pops up a form that displays its information and supports editing, formatted by the underlying XML model structure. Some support for positioning of ovals and rectangles is expected, keeping intact their lines
, but no other processing is expected.
2. Parsing code and documents to create revised models:

· Documents and code produced by Remote Software Assistant have a specific structure, designed in part to be easily parsed.

· Any code or document, produced by the Software Assistant, and modified by a developer in a manner consistent with the RSA’s model structures, can be parsed to create an updated model. Usually, such updates will consist of adding code to function shells, adding new functions, and adding text to comments created by the model building process.

· The model builder will not generate code or documents unless they are new, or were parsed from existing code or documents. This is necessary to prevent loss of developer modifications by overwriting with a model with less detail.

3. Naming Service:

· RSA stores all names of packages, classes, and documents in namespace.declared_name form.

· The Model Builder uses this service to deny use of a name previously assigned to any other developer on the current project.

4. Testing Support:

· RSA provides a test harness environment that executes tests loaded in the form of Dynamic Link Libraries. Each library consists of a test interface inherited by all test drivers, a derived test driver, and the code being tested.

· A test harness is part of RSA. It loads tests dynamically and, at the conclusion of testing, issues a Test Report.

· A specific test run is defined by a Test Configuration, an XML file that identifies the test libraries to be executed.

· The Model Builder generates test driver shells, for any specified code model. Testing details are provided manually by the developer.

5. Code and Document Maintenance:

· RSA provides a Repository for documents and code that supports versioning.
· The interface to the repository will consist of XML messages that support check-in, check-out, and extraction.

· Check-in saves a new version. Check-out extracts an existing version for modification. Extraction sends managed documents and code to a client, but will not allow Check-in of those items.

· A check-in can be either open or closed.

i. If check-in is open, then further changes can be made without changing the version number, but no other component is allowed to depend on this code until its version is closed. The Repository should enforce this rule. An open check-in can be closed at any time.

ii. If check-in is closed it becomes immutable, and other components are allowed to refer to this version.

6. Shared Data:

· RSA provides a shared data service that is composed of three parts:

i. A shared dictionary that supports sharing of key-value pairs as data that is accessible and mutable by any application.

ii. Storage of messages for later use, perhaps by a disconnected client.

iii. A relational database, used by tools, accessed by queries within messages.

7. Communication System:

· RSA provides a message-passing communication system implemented with both sockets and web-services.

· Message targets include:
i. Repository

ii. Test facility

iii. Toolset

iv. Data manager

v. Any client currently registered and logged into the RSA.

8. Supported Tools:

· RSA will be delivered with a tools set that consists of newly developed tools and existing tools.

· Newly developed tools include Model Builder, Bug Tracker, Requirements Database, and Change logger, that use the Shared Data resource, provided by RSA, and do all their communication via messages.
· Legacy tools include the source code analyzer, anal, found in the Handouts/CSE784/code directory. Legacy tools are wrapped, as shown in Figures 2, 4, and 5.

9. Clients:

· RSA Clients provide access to the RSA toolset, Repository, and Test facilities in a graphical user interface.

· The user interface provides login, modeling – both model building and parsing, check-in, check-out, extraction, definition of, and execution of, test configurations, and viewing of documents, code, and reports generated by the RSA processing.

10. Repository:

· The repository provides for persistence, and implementation of check-in, check-out, extraction, and versioning.

· It is intended that its storage mechanisms be based on dependency relationships between stored items, defined at the time of check-in.

· The repository interface is based on message-passing.

11. Testbed:

· The testbed provides a Test Harness that loads, executes, and reports on test configurations, defined by RSA clients.

· Test configurations are lists of Tests, by version. Each test can, if requested, provide the name and version of the modules it tests.

· Each test configuration runs on its own thread, so that multiple clients can run tests concurrently.

· By default, test configurations run from code the Testbed loads from the repository. It will be useful to provide a file cache, so that the testbed only loads files it does not already have.

[image: image1.emf]XSL Code Model to Code

Transformation

Template

XML Document

Model Template

XML Code

Model Template

Code

Document Parser

Code Parser

XSL Transformation

Model Building

Tool

Figure 1 -Code and Document Generation

Concept

XSL Document Model to Document

Transformation Template

XSL Code Model to Document Model

Transformation Template

Document

[image: image2.emf]Graphical User Interface

Local Executive

Local Application

Wrapper

Local Library

Wrapper

Message-Passing

Communication

Remote Executive

Remote Application

Wrapper

Remote Library

Wrapper

XML

mesages

XML

mesages

XML

mesages

XML

mesages

XML

mesages

XML

mesages

XML

mesages

Library

procedure calls

Application

Commandline,

File, IPC,

Memory-mapped files

Library

procedure calls

Application

Commandline,

File, IPC,

Memory-mapped files

Library

procedure calls

Figure 2 -Pluggable Remote Executive Architecture

XML

mesages

Shared Data

Management

XML

mesages

[image: image3.emf]Graphical User Interface

Local Executive

Message-Passing

Communication

Remote Executive

XML

mesages

XML

mesages

XML

mesages

XML

mesages

Library

Figure 3 -Application of Pluggable Remote

 Executive Architecture

Graphical User Interface

XML

mesages

Library

[image: image4.emf]Wrapper

dispatcher

PostMsg(msg)

msg

queue

ArrayList of

references to

registered

objects

Wrapped Library

function call

return

PostMsg(msg)

msg

Optional Child

thread

Figure 4 -Library Wrapper

[image: image5.emf]Wrapper

dispatcher

msg

queue

ArrayList of

references to

registered

objects

Wrapped Application

Command line

msg

Optional Child

thread

Figure 5 -Application Wrapper

File

Redirected

Std Output

PostMsg(msg)

PostMsg(msg)

Preliminary Partitions and Their Functions:

Processing required to support the Remote Software Assistant’s activities is divided into the following subsystems:

1. RSA Client and Executors

A local process, initiated by a user, that supports:

· Primary interface of the system, providing the services that follow.

· Check-in of existing source code to the Repository server.
· Check-out of source code, for modification, from the Repository server.

· Download of source from the Repository server for viewing.
· Integrating a set of tools, defined below, into the user interface, and providing wrappers and executors to support tool use.
· Building and updating models, using a graphical interface, data entry, and XML templates to create models, documents, and code. Note that this support is limited to hosting a panel, developed as part of the Model Builder.
2. Repository Server and Shared Data Manager

A dedicated process that supports:

· The extraction of a component using only the name of the component
.

· Check-in and Check-out for modification of existing items.

· Check-in of a component will send only modified files and new files to the Repository.

· Each file checked-in will be given a version number by the server.

· All earlier versions will be retained in the Repository.

· Each check-in results in creation of a new item manifest with an incremented version.
· Check-ins may be either open – allowing changes without reversioning, or closed – immutable. Only closed items can be referenced by other items.
3. Testbed Server

A dedicated process that:

· Builds test configurations using a Build Process:

· All test configurations are defined on RSA clients.
· Executes tests using a Test Harness, and generates model-driven reports for each test configuration, citing all code tested by version, and the results of each test.
4. Model Builder

A dedicated process that:

· Defines the XML templates code and document templates, XSL transformation templates, and parsing mechanisms to support coordinated updates from either model or code and documents.

· Provides a graphics panel, used to define Data Flow Diagram, Package Diagram, and Class Diagram models, and to show the model outputs from the parser.

5. Tool Set

A set of executables that support:

· Tracking requirements

· Tracking bugs

· Recording all changes to code and documents, used by the check-in manager of the repository.

· Analyzing code held in the repository or in a client’s machine.
6. Communication System

A facility that:

· provides the means to send messages between processes in a machine or between machines, using sockets, and across the internet, using web services.

· Provides facilities, used by all other tools and processes in the RSA, to build and parse messages, including messages that send files from one machine to another.

[image: image6.emf]+write()

+showAll()

«interface»

ILogger

MemoryLogger

+test() : bool

+registerTest() : void

-ArrayList

-failed : unsigned int

tester

+test() : bool

+title() : string

-tout : ILogger

-title : string

test

aTest -Application Specific Test Driver

1 *

MemoryStream

ConsoleLogger

Console

FileLogger

FileStream

+test() : bool

«interface»

ITest

1 *

class from Tested Module #1

+GenerateNext() : object

«interface»

ITestVectorGenerator

TestVectorGenerator

ApplicationTVG

ApplicationFL ApplicationCL ApplicationML

Test Harness Concept

Repository and Testbed System
Preliminary Project Organization

version 1.0
Jim Fawcett

25 September 2006
Software Project Manager

The SPM will manage the Remote Software Assistant program, with the help of the Software Architect, Test Manager, and all the Team Leaders.

Software Architect

The Software Architect is responsible for the Remote Software Assistant’s architectural concept and A Specification. A preliminary A-Specification is provided as part of this package, but will evolve as the team and customer negotiate system structure and capabilities. The SA will also provide support for qualification testing.

Software Development Teams

Remote Software Assistant development will be carried out by teams, defined in this document. There will also be a test team, responsible for developing and executing Qualification Test. Each team, with the exception of test team, will:

1. produce its own behavior specification
, design description, and code

2. present their specifications and design during Software Assistant System specification and design reviews

3. conduct unit test on their code

4. integrate their software with that of the other teams

5. participate in final qualification testing

Test Team

The test team will prepare a test plan which contains at least the following:

1. A schedule of key milestones and their contents.

2. A schedule for integration testing and qualification testing. The integration test schedule will be phased and clearly describe when each team’s software must be available for integration.

3. A set of qualification test descriptions, procedures, and definition of all instrumentation, logs, and analyses needed to conduct qualification testing.

4. Definition of a process for baselining and accessing test code, including a class build directory structure and error reporting mechanism.

Integration testing is the joint responsibility of the development team leaders and test team leader. Qualification testing is the responsibility of the Software Project Manager, supported by the test team and its manager. Each development team will be responsible for developing qualification tests, in collaboration with the Test Team member assigned to them, which implement the tests described in the test plan in for their software, under the joint direction of their team leader and the test team leader.

Team Assignments:

1. Software Project Manager

Rahul Chandrasekaran

2. Software Architect

Tilakumar Patel

3. Test Team and Tool Set

Nandita Chakraborti – Team Leader
· Sandeep Divekar

· Garima Dixit
· Aditya Kota
· Samir Patel

· Milind Raut

4. Model Builder

Matthew Vanderhoof – Team Leader
· Ajay Challa

· Avinash Gupta

· Mario Tayah

5. SA Client
and Executors

Rahul Taing
· Chandresh Karira

· Kester Marrain

6. SA Repository and Data Mgmt
Avinash Suresh – Team Leader

· Rahul Chandrasekaran

· Simin Zhao

· Francisco Zurita

7. SA Testbed

Jay Vora – Team Leader

· Nandita Chakraborti
· Akshay Menon
· Deepak Sindagi
8. Communication

Manas Kelshikar
· Naitik Dani

· Tilakumar Patel

· Shreya Vyas

Attachment #1 - Job Descriptions

Job Description: Software Project Manager (SWPM)

The Software Project Manager organizes the teams so that each team owns part of the B-Spec, C-Spec, and software integration. He/She conducts weekly meetings to stay on top of any problems that arise, and manages all the reviews.

The SWPM is expected to know most of the design and the critical code details. The SWPM, Software Architect, and Team Leaders establish the architecture and B-Specs; and they control the design, implementation, and test processes so that the final product is robust and meets specifications.

Finally, the Software Project Manager directs the Test Leader and Architect to prepare a Software Test Plan and conducts qualification tests based on the plan.

Responsibilities:
1. Organize teams

2. Prepare program schedule including Architecture Review, Specification Review, Design Review, and Qualification test. Present the schedule at the Architecture Review and at each succeeding review.

3. Manage B-Spec process with team leaders.

4. Provide the opportunity for each team leader to be a hero, but:

5. Takes full responsibility for success of the project.

6. Conducts specification review on date specified in program schedule.

7. Conducts design review on date specified in program schedule.

8. Prepares, with Test Leader and Software Architect, a Test Plan. Conducts qualification test with the help of Test Leader, Architect, and Team Leaders.

Evaluation:
The Project Manager's grade is based on:

1. meeting program schedule

2. Software Test Plan and success of qualification

3. an oral examination.

Job Description: Software Architect (SA)
The Software Architect is responsible for the architectural concept, effectiveness and ease of use of the user interface, modularity and robustness of the design. He/She supports the team leaders in developing elegance and quality in the final product.

The SA is required to know the entire design and provides support for team leaders during major reviews. He/She has responsibility for consistency and integrity of all requirements with special focus on the user interface. The SA is also responsible for the top-level physical structure, organizing principles, and built in test
. Built in test should directly support qualification testing.

SA participates in all weekly meetings, spending at least some time with each team, making sure they understand the architecture and testbed, and helps with problem solving as needed by each team. The SA is responsible for ensuring that the requirements are sensibly allocated to individual teams and that each team understands their allocation.

Responsibilities:
1. Prepare an Architectural Concept Document which includes:
a. Organizing principles for project including processing partitions for each team

b. Definition of user interface

c. Definition of, and logical model for, top level processes and data flows, e.g., one DFD per team (worked out with respective Team Leader)

d. Updated to include definition of, and logical model for, each module in the Software Assistant System design, including key classes.
e. This work will be presented at the architecture review.
2. Support SW integration process
.

3. Provide technical support to teams during Specification Review, Design Review, and Qualification test.

4. Help with design and implementation when needed.

5. Assist SWPM and Test Leader with final product Qualification Test

Evaluation:
The Software Architect's grade is based on:

1. Architectural Concept Document

2. Success of reviews

3. Support provided to teams during integration so that subsystems behavior reflects architectural goals and the subsystem interfaces are understood by all teams.
4. Support provided to SWPM and Test Leader during Qualification

5. An oral examination.

Job Description: Test Manager (TsM)

The Test Manager is the technical lead for integration
 and qualification test. Does whatever is needed to detect and locate latent errors in project code.

The TsM is required to know the entire design and provides support for team leaders during integration testing. He/She shares responsibility for qualification test with the Software Project Manager, assisted by the SA. The Test Leader:

1. prepares a test plan, including qualification test descriptions and procedures

2. reports status of unit testing, solicited from the Team Leaders.
3. coordinates integration test schedule and supports team leaders in integration

4. provides qualification test templates

5. conducts the mechanics of qualification test while the Software Project Manager leads the test and signs off on tests with the customer

6. manages a test bed
 which includes all released codes which are shared between teams or modules within a team. The test bed is built around a directory structure established by the Test Leader with the Software Architect and ECS cluster system administrators.

TsM participates in all weekly meetings, spending at least some time with each team, making sure they understand the test process and testbed, and helps with problem solving as needed by each team.

Responsibilities:
1. Prepare a Test Plan Document which includes:

a. test schedule

b. priorities for integration test, based on dependency analysis of each team’s code base.
c. definition of qualification test templates

d. qualification test descriptions and test procedures (about 90% of the Test Plan)

2. Provide technical support to teams during integration and qualification test.

3. Manage the testbed used for the project.

4. Help with design and implementation when needed.

5. Help team leaders plan and conduct integration test.

6. Plan and share responsibility with the Software Project Manager for final product Qualification Test.

Evaluation:
The Test Leader's grade is based on:

1. Test Plan Document

2. Success of qualification testing

3. Integrity of the final product

4. An oral examination.

Job Description: Team Leader (TL)

The Team Leader is the technical lead for one specific part of the system. Does whatever he/she has to make that part successful. The TL prepares the B-Spec for his/her assigned part of the system with the help of the Software Architect and presents that part at Specification Review. He/She organizes the team to produce the C-Spec, conduct design review, produce code, test drivers, and conduct unit testing. TLs share responsibility with the Test Manager for software integration. They are directly responsible for running all integration tests and preparing any required modifications to their team’s code.
Responsibilities:
1. Reviews Architectural Concept and prepares assigned part of B-Spec.

2. Presents team's part of B-Spec at Specification Review.

3. Assigns classes/modules to individual team members.

4. Guides the team in preparation of design and C-Spec.

5. Assigns team members to present during design review
.

6. Insures that all requirements are traceable to the process and function level.

7. Provides opportunity for each team member to be a hero, but:

8. Takes full responsibility for success of team.

9. Shares responsibility for software integration with TsM and other TLs.

10. Helps team members with design and/or implementation problems.

Evaluation:
Grade based on:

1. B-Spec for assigned part of system

2. Presentation during B-Spec Review

3. Meets allocated specifications

4. Has adequate derived specifications and meets them

5. Success of team's design and implementation, e.g.,

6. Robustness of Team’s code.
7. an oral examination.

Job Description: Team Member (TM)

Concentrates on one specific part of the system. Does whatever necessary to make assigned parts successful. TM has primary responsibility for assigned classes/modules including design, implementation, and test. He/She prepares C-Spec for assigned functionality, presents that part at the design review, develops code, and conducts unit test. The TM supports the Team Leader in conducting integration if requested by TL.

Responsibilities:
1. Reads B-specification

2. Prepares assigned part of the C-Spec and design.

3. Presents that part at Design Review.

4. Implements assigned part, paying attention to complexity, size, robustness, understandability.

5. Develops unit test drivers.

6. Tests every function and allocated requirement as early as possible

7. Takes full responsibility for assigned part of subsystem.

Evaluation:
Grade based on:

1. C-Spec Review presentation

2. quality of assigned code and test

3. robustness of code.
4. "reasonable" size and complexity

5. good understandability

6. success of team's assigned part

7. willingness to support team leader in documentation, design, implementation, and test
Final Project

Remote Software Assistant
Statement of Work

version 1.0

Jim Fawcett

25 September 2006
1. Introduction:
The Remote Software Assistant is designed to help manage and test code developed in a large project. Software Assistant has facilities for:

· Model driven design

· Source code check-in and check-out and versioning.

· Defining, building, and executing test configurations remotely.

· Reporting test results.

2. Customer Furnished Equipment:

The operating environment for Software Assistant System will be Windows XP, as provided in the ECS clusters. The Software Assistant System software must compile and link using Visual C# or C++, as provided by Visual Studio.Net. This environment is available in the ECS clusters in 010 Link, 202 Link, and 2-122 in CST, Syracuse University.

3. Reference Documents:

· Software Assistant System Preliminary Architectural Concept, 25 September 2006, or latest version.

· Software Assistant System A-Level Specification, 25 September 2006, or latest version.

· Visual C#, C++, and Class Libraries on-line documentation

4. Preliminary Schedule – Fall 2006:

	Project start date
	25 September

	Program and Architecture Review
	09 October

	B Specification Review
	16 October

	Design and Prototypes Review
	30 October

	Design and Implementation Meetings
	06 November

	Design and Implementation Meetings
	13 November

	Test Readiness Review
	27 November

	Qualification Test
	08 December

	Final Products Delivery
	11 December

Final Project

Software Assistant System
A-Level Specification

version 1.0
Jim Fawcett

25 September 2006
Software Assistant System (RTS)
1. Introduction:
The Repository Testbed System is designed to help manage and test code produced in a large software development project. Software Assistant has facilities for:

· Source code check-in, check-out and versioning.

· Defining, building, and executing test configurations remotely.

· Reporting test results.

[image: image7.wmf]FileInfo Requests

Files

Software

Assistant

Directory

Services

Network

Services

User

Interface

controls

Display

Information

Messages

Messages

,

Connection Requests

User Commands

Status Messages

,

error messages

Code and document views

Test results

,

path

,

help info

Figure 1 – Software Assistant System Context Diagram

The Software Assistant System Architecture consists of the partitions:

1. Model Builder Process

Builds code and documents from XML templates, using XSLT processing templates. Parses existing code and documents to update XML models.
2. Repository Server and Shared Data Process

Maintains a persistent, versioned, set of components, based on a dependency structure.
3. Testbed Process

Supports test configuration and execution for multiple, concurrent test configurations.

4. RSA Client
 and Executor

Provides an interface for accessing and controlling the various Software Assistant services and products.
5. Tool Set

Provides Requirements and Bug Tracking, change logging, and analysis tools
6. Communication Service

Manages the transfer of component parts across the network, using sockets, and across the internet, using web services. Also responsible for establishing a file cache on each RSA receiver and maintaining its coherency, while avoiding the transfer of files already on the target.

The Model Builder, Repository, and Testbed are all capable of operating in a stand-alone fashion. That is, they each provide a WinForm interface that is sufficient for carrying out all its required functions. They each also provide a communication end-point, built as part of the Communication Service, so that the RSA Client or other processes can send messages to effect their operations.

2. Reference Documents:

· Software Assistant System Preliminary Architectural Concept, 25 September 2006.

· Software Assistant System Statement of Work, 25 September 2006.

3. Requirements:
The Remote Software Assistant System is a tool designed to help manage code development, control, and testing. The requirements are allocated below, to each of the major partitions described in Section 1.
3.1. Functional Requirements

3.1.1. Remote Software Assistant Model Builder

The model builder is a tool that constructs XML models of code and documents, transforms models into code files and HTML documents, and parses code and documents to update their XML models. Code includes both production modules and test drivers that will be combined with production modules to define a test library. Each test library exposes an ITest interface, defined in conjunction with the Testbed team.
3.1.1.1. Model Builder shall accept user inputs on a drawing panel to support the construction of Data Flow Diagrams, Package Diagrams, and Class Diagrams.

3.1.1.2. A means shall be provided to select lines with arrowheads, rectangles, and ovals, from which to construct these diagrams. Each rectangle and oval shall support displaying a name.

3.1.1.3. Means shall be provided to lay out a diagram using most of the available drawing panel, and to allow subsequent repositioning based on user supplied mouse clicks and movements
.

3.1.1.4. Each of the graphics constructs shall, when right-clicked display a means of data entry and viewing for the following:

3.1.1.4.1. Data flow diagrams – flows, process names, and process requirements. Process names are displayed on the diagram.

3.1.1.4.2. Package diagrams – module names and class names. Module names appear on the diagram.
3.1.1.4.3. Class diagrams – class names and method signatures. Class names appear on the diagram.
3.1.1.5. Model Builder shall provides means to create an XML model for
:

3.1.1.5.1. Software Requirements Specification from the Data Flow Diagram.

3.1.1.5.2. Software Design Document from the package diagram.

3.1.1.5.3. Code and additional details for the Design Document from the class diagram.

3.1.1.6. Model Builder shall provide means to generate HTML documents from the Requirements Specification and Design Document models.

3.1.1.7. Model Builder shall provide means to generate code from the code model.

3.1.1.8. Model Builder shall provide means to update models from their documents or code after manual modifications to the documents or code
.

3.1.2. Remote Software Assistant Client and Executors

The Remote Software Assistant Client provides for integration of model building, viewing products produced by Model Builder, tools provided by the RSA Tool Set, storage of the products in the RSA Repository, and defining and execution of Tests in the RSA Testbed. These actions are effected by sending messages to local and remote Executors, developed as part of this effort.

3.1.2.1. The Client shall provide a WinForm interface consisting of a view to select a specific tool to run, and views, initially hidden, for conducting all of the RSA activities, detailed below.

3.1.2.2. The Client shall provide a view in which to build code and documents and to view these products. This requirement is limited to hosting means provided by the Model Builder functionality.

3.1.2.3. The Client shall provide means to execute each tool from the RSA Tool Set, using local and remote Executors and, where needed, wrappers for legacy tools. The Executors load libraries, for tools structured as libraries, and start processes for tools that operate as stand-alone processes. Each tool developed for RSA, as part of this project, is expected to provide its own interface. This includes tools provided by the Repository and Testbed for check-in, check-out, extraction, and configuration, execution, and reporting of tests.

3.1.2.4. The Client shall provide means to pass command line arguments to legacy console application tools, redirect their standard outputs to a temporary file, and display the file to the user.
3.1.2.5. The Client shall provide integration via messages necessary to support all its integrated tools. For example, when the Client activates the RSA Repository’s check-in/check-out form, it passes one or messages to that form specifying a list of all the products built but not yet checked-in. It is expected that the Repository interface will allow selection from this list.
3.1.3. Remote Software Assistant Repository

The Remote Software Assistant Repository is a means for persistant storage and versioning of RSA products, e.g., documents and code.

3.1.3.1. The Repository shall provide means of storing all products developed by the RSA system, with dependency information entered at check-in.

3.1.3.2. Every stored product shall be assigned a version number by the Repository, in one of two states, open or closed.

3.1.3.3. The Repository shall support the modification or addition of new parts to an open check-in without reversioning.

3.1.3.4. The Repository shall prevent any other component from referring to a component version that is open.

3.1.3.5. The Repository shall provide a mechanism to close an open version. Once a version is closed, it is immutable, and may be referenced by any other component.

3.1.3.6. The Repository shall provide a visual interface, to be integrated into the RSA client that provides a list of all the newly created, but unchecked-in products, for selection by the user.

3.1.3.7. The Repository user interface shall provide access to all its required functionality.

3.1.3.8. The Repository shall provide a communication end-point for transmission and reception of messages that gives access to all its functionality.

3.1.3.9. The Repository shall provide the means to extract components, by name, for viewing or subsequent modification.

3.1.3.10. When a product is extracted for modification, it shall be marked as checked out, and when checked-in, will become the highest version number for this component.

3.1.3.11. When a component is extracted, the user shall be given the option of extracting all of the components on which it depends, without specifying each by name.

3.1.3.12. The Repository shall store in the Shared Data component information about every closed check-in.

3.1.4. Remote Software Assistant Testbed

The Testbed provides a Test Harness facility to conduct a sequence of tests defined by a Test Configuration, e.g., an XML file that defines all the test libraries to be executed.

3.1.4.1. The Testbed shall provide a Test Harness that loads test libraries, specified in a Test Configuration, and executes them.

3.1.4.2. The Testbed shall execute each Test Configuration on its own thread, so that separate Test Configurations can run concurrently.

3.1.4.3. The Testbed shall, for each test run, generate a report that specifies the time time of execution, the name and version of the Test Configuration, and provides a summary of pass/fail information.

3.1.4.4. The Testbed shall provide a user interface that makes accessible all its functionality in stand-alone operation.

3.1.4.5. The Testbed shall provide means to create Test Configurations and save them to the Repository, as well as execute them.

3.1.4.6. The Testbed shall provide a communication end-point for transmission and reception of messages that gives access to all its functionality.

3.1.4.7. The Testbed shall store in the Shared Data component information about every Test Configuration execution.

3.1.5. Remote Software Assistant Tool Set

The Tool Set provides a set of newly developed and legacy tools that integrate into the RSA system.
3.1.5.1. The Tool Set shall provide a requirements database that satisfies the requirements of Project #1, Fall 2006.

3.1.5.2. The Tool Set shall provide a Change Logger that reads change information from the Shared Data component, enters that information into a change model, and removes the data from the Shared Data component.

3.1.5.3. The Change Logger shall provide change reports generated from the change model. Note that it is anticipated that this will use infrastructure provide by the RSA Model Builder.

3.1.5.4. The Tool Set shall provide a Bug Tracker that maintains a list of bugs reported against any RSA product.

3.1.5.5. The Bug Tracker display shall provide one line for each bug, providing a title, status (open, pending, closed), date of opening until closed, replaced by a closed data when closed.

3.1.5.6. Double-clicking on any line shall pop up a text display of the bug details and, when closed, its resolution.

3.1.5.7. The Tool Set shall provide an analysis tool that uses the Anal program, stored in the Handouts/CSE784/code/Anal folder, wrapping it with an Application Wrapper, so it is accessible to the RSA client.

3.1.5.8. All tools from the Tool Set shall provide a communication end-point, either directly, or via a wrapper, for transmission and reception of messages that gives access to its functionality.

3.1.6. Remote Software Assistant Communication Facility

The communication Facility provides socket-based message-passing services with in a network, and web service-based message-passing service across the internet.

3.1.6.1. The Communication Facility shall provide means to create messages from XML strings and to extract the XML content string from a message.

3.1.6.2. Each message shall contain a type field and provide a means for setting and interrogating its type.

3.1.6.3. The Communication Facility shall provide a listener component and connector components for each machine on which it is installed.

3.1.6.4. The Communication Facility shall be implemented as a library that any RSA subsystem can load to access its message transfer capabilities.

3.1.6.5. The Communication Facility shall provide an addressing mechanism that directs messages to any specified IP address or UNC machine name.

3.1.6.6. The Communication Facility shall provide a registration process that will allow any using component to register for receipt of any message type sent to its listener.

3.1.6.7. The listener shall run on its own thread, but will not spawn threads for each connection. Instead the listener shall deposit each message in a queue from which messages are dispatched to each registered part of the receiver. Dispatching shall run on a thread separate from the listener.
3.1.7. Remote Software Assistant Shared Data Service

The Shared Data Service provides access to a dictionary storing key-value pairs, where the key is a string, and the value type can be specified by the user, e.g., it is typed as object.
3.1.7.1. The Shared Data Service shall provide a dictionary-based data storage service
that is accessible to any component that needs to share data with another component.

3.1.7.2. The Shared Data Service shall expose its service via messages requesting storage and retrieval.

3.2. Process Requirements

These requirements specify the physical structure of delivered code and the environment where it must operate.
3.2.1. Physical Structure

3.2.1.1. The Software Assistant source code shall be composed of modules.

3.2.1.2. The Software Assistant source builds shall be composed of managed or unmanaged executables and dynamic link libraries
.

3.2.1.3. The user interfaces shall delegate all operations, not directly associated with providing the user controls and views to server modules, e.g., communication, data management, and all operations specified in this document.

3.2.1.4. All modules shall be provided with manual pages and correct maintenance pages.

3.2.1.5. Code that implements services shared by two or more components of the Software Assistant shall be provided by one set of source code, with the possible exception of configuration files.

3.2.2. Development

3.2.2.1. The Software Assistant development process shall use the SA Repository and Testbed for Qualification testing.

3.2.2.2. The Software Assistant System shall build and operate in the ECS clusters, e.g., 010 Link, 202 Link, and CST 2-122.

3.2.2.3. The Software Assistant System shall be developed subject to the conditions specified in the Software Assistant System Statement of Work, of the latest edition.

4. Definitions:

The Software Assistant System is a tool designed to help manage code development, control, and testing. The following terms are used in the Software Assistant Documentation.

a. Version – a number, generated in sequence by the Repository Server, assigned to a file. This number is encoded in the file specification, using the convention:

filename.VersionNumber.Extension
Each checked-in modification of a file results in a new version number, generated sequentially. Should a version be removed from the Repository Server – a very rare event – versions of this file with higher version numbers will not be re-versioned. All files stored in the repository, including XML manifest files will be versioned.

b. Item – a named, versioned, XML manifest file and all the files on which it holds references, excluding references to other items. Each item refers directly to exactly one product source code module, that is to one C# source file or two C++ files, a header file and an implementation file. A manifest may also hold references to documentation files and other items on which it depends. Each Item represents a module and must refer to a Responsible Individual (RI), that is, some member of the development team.
c. Component – one root item and all the items it references, either directly or indirectly. That is, a component is a top-level item and the closure of all its references. The name of a component is the name of its top-level item. Its version is the version of its top-level item. Programs are Items that refer only to module items, test source files, and documentation. Systems are items that refer only to program items, test source files, and documentation.
d. Test Configuration – a named, versioned, XML manifest file that refers to production source code items and any number of test source code files for each source item. This XML file is referred to as a test item. A test item may refer to lower-level test items. That is, composition of test configurations is supported.
e. Check-in – process of storing all the files of an item in the repository and providing sequenced version numbers, as described above. Only an item’s RI may check it in. On check-in, the item is given a unique identifier and version number. Check in does not replace files with earlier version numbers. Once an item is checked in it is immutable.
f. Check-out – process of transferring files of an item to an RT Client for the express purpose of modification. Only the item’s RI may check it out.

g. Extraction – process of transferring a component’s files to an RT Client. Extraction is not limited to the item’s RI. However, no extracted items may be checked back in. Both RT Clients and the Testbed Server are expected to use extraction.

� EMBED Visio.Drawing.6 ���

� All documents are HTML.

� It is recommended that each oval and rectangle define a set of connection points to which lines attach. Positioning may be effected by selecting an oval or rectangle and double-clicking on the new location. Initial positioning should be dispersed throughout the Builder window, based on dependency order (given by the arrow heads).

� This implies that many files are extracted using only one component name, e.g., the component and all the components on which it depends.

� The form of behavior and design descriptions will be as cited above in the Preliminary Architectural Concept.

� Each subsystem should have means to test the validity of its operations.

� This is a technical support role, not a managerial role.

� Team leaders conduct the integration process, as scheduled by the Test Manager. This schedule should be negotiated with everyone agreeing that it can be met. Should this be difficult, please consult the customer.

� The test bed starts out as a set of directories globally accessible to the development teams, with permissions established to control the evolving product. As Qualification Test approaches the test bed typically contains a number of tools designed by the test team to support qualification testing.

� The Team Leader should assign presentation responsibilities and introduce each speaker on his/her team, but should ensure that team members each get a major part of the presentation.

� Drag and drop is neither required nor prohibited.

� It is expected that the model builder graphics input will be used primarily to establish the structure and top-level contents of documents and code, with much of the detail provided manually. The parser will then update the model from the details supplied manually by the developer.

� The model builder may use document and code structure and artifacts that make it relatively simple to parse, e.g., comment delimiters in code, for example.

� This is intended to allow Project Management to select either C++ or C# or both as implementation languages.

PAGE
10
[image: image8.wmf]FileInfo Requests

Files

Software

Assistant

Directory

Services

Network

Services

User

Interface

controls

Display

Information

Messages

Messages

,

Connection Requests

User Commands

Status Messages

,

error messages

Code and document views

Test results

,

path

,

help info

_1220598760.vsd
Graphical User Interface

Local Executive

Local Application
Wrapper

Local Library
Wrapper

Message-Passing
Communication

Remote Executive

Remote Application
Wrapper

Remote Library
Wrapper

XML
mesages

XML
mesages

XML
mesages

XML
mesages

XML
mesages

XML
mesages

XML
mesages

Library

procedure calls

Application

Commandline,
File, IPC,
Memory-mapped files

Library

procedure calls

Application

Commandline,
File, IPC,
Memory-mapped files

Library

procedure calls

Figure 2 - Pluggable Remote Executive Architecture

XML
mesages

Shared Data Management

XML
mesages

_1220598887.vsd
Select oval and
type. Control handles change width & height of oval.

Wrapper

dispatcher

PostMsg(msg)

msg

queue

ArrayList of references to registered objects

Wrapped Library

function call

return

PostMsg(msg)

msg

Optional Child thread

_1220598918.vsd
Select oval and
type. Control handles change width & height of oval.

Wrapper

dispatcher

PostMsg(msg)

msg

queue

ArrayList of references to registered objects

Wrapped Application

Command line

msg

Optional Child thread

_1220667046.vsd
State

Process name

Class name

Event_name

Software Assistant

Directory
Services

Network
Services

User
Interface controls

Display
Information

Files

FileInfo Requests

Messages

Messages,
Connection Requests

User Commands

Status Messages,
error messages

Code and document views
Test results,
path,
help info

_1220598824.vsd
Graphical User Interface

Local Executive

Graphical User Interface

XML
mesages

Message-Passing
Communication

Remote Executive

Library

XML
mesages

XML
mesages

XML
mesages

XML
mesages

Library

Figure 3 - Application of Pluggable Remote
 Executive Architecture

_1220598715.vsd
XSL Transformation

XSL Code Model to Code
Transformation
Template

XML Code
Model Template

Code

Document

XML Document
Model Template

XSL Document Model to Document
Transformation Template

Code Parser

Document Parser

Model Building
Tool

XSL Code Model to Document Model
Transformation Template

Figure 1 - Code and Document Generation Concept

_1189095643.vsd
+test() : bool

«interface»
ITest

1

ConsoleLogger

+write()
+showAll()

«interface»
ILogger

MemoryLogger

+test() : bool
+registerTest() : void

-ArrayList
-failed : unsigned int

tester

+test() : bool
+title() : string

-tout : ILogger
-title : string

test

+aTest(output& out) : test(out)()

aTest - Application Specific Test Driver

1

*

Console

-End3

MemoryStream

1

-End4

FileLogger

FileStream

*

*

class from Tested Module #1

-End3

1

+GenerateNext() : object

«interface»
ITestVectorGenerator

+operator()() : bool
+aTest(output& out) : test(out)()

TestVectorGenerator

+aTest(output& out) : test(out)()

+aTest(output& out) : test(out)()

-End4

*

-End3

1

-End4

*

+operator()() : bool
+aTest(output& out) : test(out)()

ApplicationTVG

ApplicationFL

ApplicationCL

ApplicationML

