 CSE784 Software Engineering Studio

Fall 2003

Test Harness Program

B Level Specification
for

Software Development

version 1.0

15 September, 2003

CSE 784 – Software Engineering Studio

Riddhiman Ghosh

Table of Contents

41.
Architecture

2.
Reference Documents
7
2.1.
Customer A-Specification
7
3.
Requirements
8
3.1.
Functional Requirements
9
3.1.1.
TEST AGGREGATION
9

3.1.1.1.
inputs
9
3.1.1.2.
processing
9
3.1.1.3.
outputs
9
3.1.2.
TESTING
10

3.1.2.1.
inputs
10
3.1.2.2.
processing
10
3.1.2.3.
outputs
10
3.1.3.
ALLOCATION TRACKING
11

3.1.3.1.
inputs
11
3.1.3.2.
processing
11
3.1.3.3.
outputs
11
3.1.4.
RESULT LOGGING
12

3.1.4.1.
CONSOLE Display
13
3.1.4.1.1.
inputs
13
3.1.4.1.2.
processing
13
3.1.4.1.3.
outputs
13
3.1.4.2.
STREAM LOGGING
13

3.1.4.2.1.
inputs
13
3.1.4.2.2.
processing
13
3.1.4.2.3.
outputs
14
3.2.
Process Requirements
15
3.2.1.
Physical Structure
15
3.2.2.
Development Environment
16
4.
Data Dictionary
17
5.
Requirements Traceability Matrix
17

1. Architecture

The Test Harness program provides a framework using which developers can test application code. Its goal is to offer facilities that make it easy to construct and execute test suites. The code under test can also be instrumented with the help of Test Harness services that keep track of memory allocations and de-allocations in order to detect memory leaks. The results of the various test procedures can be logged to either console output or to a memory stream, or the results can be stored persistently in the file system.

[image: image1.wmf]Application Code

Test Harness

Console UI

File System

System Memory

execution

commands

test and heap

status, errors

'test vector' data

log files

memory log

function invocation results,

memory allocation messages,

memory deallocation messages

function invocations

Figure 1 – Test Harness Context Diagram

As can be seen from the Context Diagram in Figure 1, the major sinks and sources of information which transact with the Test Harness are the application code under test, the file system, the system memory and the console user interface.

Figure 2 represents the high-level partitioning of the Test Harness. The TestAggregator module oversees the execution of the tests contained in one or more TestModules (typically one for each module of application code). The TestAggregator determines the order of execution of the test modules, and thus is in control of the overall flow of the testing process. TestModule contains the actual test procedures that exercise various features of the application code and verify their operation. The TestModule uses AllocTracker to monitor memory allocations and de-allocations from the heap in individual modules. The TestAggregator executive uses updates provided by AllocTracker to maintain state information pertaining to the net usage of heap memory. The Logger module is responsible for redirecting the results of tests to either a memory stream or the console output, or for assigning test results to persistent storage. Both TestModule and TestAggregator use Logger to log test results and heap status. Since the Logger deals with different types of data streams (memory, file, console), it uses the services of the StreamHandler helper module, which provides an abstraction of the different data stores to the Logger module.

[image: image2.wmf]TestAggregator

Test Module(s)

'N'

Logger

AllocTracker

StreamHandler

Figure 2 – Test Harness Module Diagram

The Test Harness framework is architected to provide interfaces for constructing, aggregating and running tests, tracking memory and logging. It also implements some of these interfaces to provide common functionality that may be useful to a general client. The clients of Test Harness would then derive from these interfaces to add specificity relevant to the code being tested.

2. Reference Documents

2.1. Customer A-Specification

Project #1 – Test Harness, Monday 25 August, 2003

3. Requirements

Processing for the Test Harness program is composed of 4 main processes: Test Aggregation, Testing, Allocation Tracking and Result Logging. Each of these processes is responsible for a set of requirements, described in this section.

[image: image3.wmf]Test

Aggregation

1

Testing

2

Result

Logging

4

execution

commands

function

invocations

function

invocation

results

TestResults

Data Structure

log files

memory log

Allocation

Tracking

3

memory

allocation

messages

memory

deallocation

messages

'test vector' data

test order

test and heap status

net bytes not freed

errors

Figure 3 - Data Flow Diagram 1

3.1. Functional Requirements

These sections describe the activities required of the Test Harness program.

3.1.1. Test Aggregation

The Test Aggregation process is responsible for initiating execution, generating and maintaining a test suite (an ordered collection of test modules), and sending the test order message to the Testing process to indicate the order in which the various test modules should be invoked.

3.1.1.1. inputs

· The execution commands message contains the user-supplied command to initiate execution of the Test Harness Program.

3.1.1.2. processing

The Test Aggregation process shall accept from the command line a command indicating initiation of the Test Harness program. It shall generate and maintain a data structure which contains all the test modules to be executed in the Test Harness program. This collection of tests shall be an ordered collection. For each test module in this data structure it shall maintain the filename and path description of the file that contains the test vector data required to execute the tests.

3.1.1.3. outputs

· The test order message contains a reference to the data structure generated by the Test Aggregation process. This makes the order of the test modules, and the test vector file paths available to processes receiving this message.

3.1.2. Testing

The Testing process starts executing the test procedures contained within the test modules, the order of execution of the modules being specified by the ‘test order’ message. The Testing process also decides whether a test succeeded or failed.

3.1.2.1. inputs

· The test order message

· Test vector data is the input information required to execute the various tests contained in a test module.

· Function invocation results are the values returned by various application code function calls, used to determine test success or failure.

3.1.2.2. processing

The Testing process shall execute of all test procedures within a module. Order of execution of the test modules shall be in the order specified by the test order message. It shall use the information in test vector data as the required input for the testing procedures. It shall extract the file path descriptor from the data structure referenced by the test order message and read the test vector data information from this file. If an attempt to read the file or parse the path fails, it shall send an error message to the standard output and continue execution of other test modules.

The Testing process shall determine at the end of execution of each test procedure whether the outcome of the test was a success or failure. It shall count the overall number of test successes and failures.

3.1.2.3. outputs

· The function invocation messages are calls out into the application code made by the test procedures in the Testing process.

· The TestResults Data Structure message contains a reference to the container(s) used by the Testing process. It holds success and failure information of all tests carried out.

3.1.3. Allocation Tracking

The Allocation Tracking process is responsible for using the memory allocation and memory de-allocation messages to monitor the status of the heap. The output of this process is sent in the form of a message indicating the net allocated bytes not freed from the heap.

3.1.3.1. inputs

· The memory allocation and memory de-allocation messages are sent in response to the application code allocating and freeing memory from the system heap.

3.1.3.2. processing

The Allocation Tracking process shall use the memory allocation and de-allocation messages to keep track of the total number of memory bytes allocated and the net number of all allocated bytes remaining when the program terminates.

3.1.3.3. outputs

· The net bytes not freed message contains information regarding how many bytes were allocated from the heap, and the net bytes of allocated memory remaining after any de-allocation.

3.1.4. Result Logging

The Result Logging process is responsible for logging the results of testing. The process logs the results to the console – i.e. displays it on the standard output. It is also sends the information to a memory stream and a file stream.

The[image: image4.wmf]Console

Display

4.1

test and heap status

test and heap status

Stream

Logging

4.2

log files

memory log

TestResults Data Structure

net bytes not freed

 DFD 1.4 in Figure 4 shows the sub-processes that make up this process.

[image: image5.wmf]TestAggregator

Test Module(s)

'N'

Logger

AllocTracker

StreamHandler

3.1.4.1. Console Display

This process displays on the console the status of the tests and heap, i.e. how many tests failed and how many allocated bytes remain on the heap.

3.1.4.1.1. inputs

· The TestResults Data Structure message contains a reference to the container(s) used by the Testing process. It holds success and failure information of all tests carried out.

· The net bytes not freed message contains the number of total allocated bytes on the heap that have not been de-allocated.

3.1.4.1.2. processing

The Console Display process shall extract the status of all tests carried out. It shall extract the total number of allocated bytes on the heap that have not been freed. It shall display on the standard output the total number of tests carried out, the number of failures, and the net bytes not de-allocated.

3.1.4.1.3. outputs

· This process sends all its outputs to the standard output in the test and heap status message.

3.1.4.2. Stream Logging

3.1.4.2.1. inputs

· The test and heap status message contains the total number of tests carried out, the total number of failures, and net allocated bytes on the heap which have not been freed.

3.1.4.2.2. processing

The Stream Logging process shall write the contents of the test and heap message to a log file. It shall write time and date of logging into the file. The format for storing the information in the file is not specified, but it should be clear and readable. It shall write the contents of the test and heap message to a memory stream. The format of writing to the stream is not specified, but the format should be such as to make it convenient for other programs/processes to extract and use this status information.

3.1.4.2.3. outputs

· The log files message

· The memory log message

These 2 messages contain information described in the processing section above. The formats of the two are different and are hence denoted as two separate outputs.

3.2. Process Requirements

These requirements specify physical structure of the code developed and the environment where it must operate.

3.2.1. Physical Structure

The Test Harness program shall consist of more than one module. A module is either an executive of which there is only one per program, or a server. There may be as many server modules as deemed appropriate by the development team. An executive module shall consist of either a single implementation file (.c or .cpp) or both a header file (.h) and corresponding implementation file. A server module shall consist of both a header file and implementation file. When both header and implementation file are present they shall have the same identifier, differing only in extension.

The module shall contain the following elements:

· preprocessor statements preventing multiple compilations embed-ded around each header file

· a manual page containing a prologue, a paragraph describing module operations, and a list of the public interface with inter-pretations to help a designer to use the module

· a maintenance page describing the build process, specifically naming the required files and compilation commands

· a main function.

The main function in each server module shall be enclosed by preprocessor statements preventing compilation unless the preprocessor detects a directive of the form TEST_MODULENAME, where MODULENAME is the name of the module with no extension.

Both the header file and implementation file shall begin with a pro-logue that contains descriptions of the following elements:

· file name with a few word summary

· version number

· language of implementation

· platform, e.g., computer and operating system

· application

· author with address, telephone number, and e-mail account

To satisfy the functional requirements mentioned in Section 3.1, the Test Harness program shall supply interfaces, at least one to provide each of the following facilities: aggregating tests, constructing and executing tests, tracking dynamic memory allocations and logging test results.

The Test Harness program shall provide at least one class derived from the tracking interface to implement allocation tracking. It shall implement at least 3 classes derived from the logging interface, one each to implement logging to the console, memory and file streams.

The Test Harness program shall demonstrate the fulfillment of the requirements mentioned in Section 3 by testing several components of a software project implemented in CSE 681 or CSE 687.

For each module of the application code being tested, the Test Harness program shall provide at least one class derived from the interface to construct and execute tests.

3.2.2. Development Environment

The Test Harness program shall compile and link successfully from the ECS clusters using Visual Studio 7.0.

4. Data Dictionary

	Message Name
	Interpretation
	DFD

	execution commands
	commands given by user to start the Test Harness program
	DFD1

	test order
	reference to container with ordered test modules and corresponding test vector file paths
	DFD1

	test vector data
	input information required for the test procedures
	DFD1

	function invocations
	calls made into the application code functions for testing
	DFD1

	function invocation results
	return values of application code function invocations
	DFD1

	errors
	message describing path error or file not found
	DFD1

	TestResults Data Structure
	reference to container containing success/failure results of tests
	DFD1

	memory allocation messages
	messages corresponding to allocation of memory on heap in application code
	DFD1

	memory de-allocation messages
	messages corresponding to de-allocation of memory on heap in application code
	DFD1

	net bytes not freed
	represents total allocated bytes on heap that have not been freed
	DFD1

	test and heap status
	message describing status of tests and status of heap on console output
	DFD1

	log files
	files with logged information on test and heap status
	DFD1

	memory log
	logged memory stream with status of tests and heap
	DFD1

[image: image6.wmf]Application Code

Test Harness

Console UI

File System

System Memory

execution

commands

test and heap

status, errors

'test vector' data

log files

memory log

function invocation results,

memory allocation messages,

memory deallocation messages

function invocations

5. 5. Requirements Traceability Matrix

	B-Specification
	A-Specification
	Comment

	3.1.1.2.a
	derived
	accept start user command

	3.1.1.2.b
	2
	aggregate test modules

	3.1.1.2.c
	derived
	determine order of test execution

	3.1.1.2.d
	derived
	store path of associated test vector file

	3.1.2.2.a
	2
	execute test procedures within a test module

	3.1.2.2.b
	derived
	follow specific order of test execution

	3.1.2.2.c
	derived
	use input from test vector data

	3.1.2.2.d
	derived
	extract pathname of test vector file

	3.1.2.2.e
	derived
	send error if invalid path or no file

	3.1.2.2.f
	derived
	determine success or failure of test

	3.1.2.2.g
	derived
	keep count of test successes and failures

	3.1.3.2.a
	5
	keep track of net allocated bytes not freed

	3.1.4.1.2.a
	derived
	extract test status

	3.1.4.1.2.b
	derived
	extract number of bytes not freed

	3.1.4.1.2.c
	4
	display test and heap status on console

	3.1.4.2.2.a
	4
	write test and heap status to log file

	3.1.4.2.2.b
	derived
	put time and date stamp on log file

	3.1.4.2.2.c
	4
	write test and heap status to memory stream

	3.2.1.a
	derived
	more than one module

	3.2.1.b
	derived
	executive module

	3.2.1.c
	derived
	server module

	3.2.1.d
	derived
	module names

	3.2.1.e
	derived
	module elements

	3.2.1.f
	derived
	test stub preprocessor statements

	3.2.1.g
	derived
	module prologues

	3.2.1.h
	2
	supply appropriate interfaces

	3.2.1.I
	5
	implement derived class to implement allocation tracking

	3.2.1.j
	4
	derived classes for logging to console, memory and file streams

	3.2.1.k
	6
	demonstrate requirements fulfillment using CSE 681/687 project

	3.2.1.l
	3
	at least one test class per module of code

	3.2.2.a
	1
	compiler used and platform

[image: image7.wmf]Test

Aggregation

1

Testing

2

Result

Logging

4

execution

commands

function

invocations

function

invocation

results

TestResults

Data Structure

log files

memory log

Allocation

Tracking

3

memory

allocation

messages

memory

deallocation

messages

'test vector' data

test order

test and heap status

net bytes not freed

errors

� EMBED Visio.Drawing.4 ���

� EMBED Visio.Drawing.4 ���

� EMBED Visio.Drawing.4 ���

� EMBED Visio.Drawing.4 ���

Figure � SEQ Figure * ARABIC �5� - Data Dictionary

Figure � SEQ Figure * ARABIC �6� - Requirements Traceability Matrix

Figure � SEQ Figure * ARABIC �4� - Data Flow Diagram 1.4

PAGE
1
Test Harness B Specification

[image: image8.wmf]Console

Display

4.1

test and heap status

test and heap status

Stream

Logging

4.2

log files

memory log

TestResults Data Structure

net bytes not freed

_1125315215.vsd

_1125315366.vsd

_1125316595.vsd

_1125244582.vsd

