NetTestUnity - B Level Specifications

CSE 784 – Fall 2003

NetTestUnity – An automated testing framework
B Level Specifications

By

Mithun Shanbhag

09/15/2003

For

CSE 784 – Fall 2003

Table of Contents

	1.
	INTRODUCTION --
	3

	
	
	

	2.
	REFERENCE DOCUMENTS -----------------------------------
	4

	2.1.
	 Customer A-Specification -------------------------------
	4

	
	
	

	3.
	ARCHITECTURE --
	5

	
	
	

	4.
	REQUIREMENTS ---
	7

	
	
	

	4.1.
	 Functional Requirements -------------------------------
	8

	4.1.1.
	 Harnessing --
	8

	4.1.1.1.
	 Inputs --
	8

	4.1.1.2.
	 Processing --------------------------------------
	8

	4.1.1.3.
	 Output --
	8

	4.1.2.
	 Test-Execution--------------------------------------
	9

	4.1.2.1.
	 Inputs --
	9

	4.1.2.2.
	 Processing --------------------------------------
	9

	4.1.2.3.
	 Output --
	10

	4.1.3.
	 Resource Allocation Tracking ----------------------
	11

	4.1.3.1.
	 Inputs --
	11

	4.1.3.2.
	 Processing --------------------------------------
	11

	4.1.3.3.
	 Output --
	12

	4.1.4.
	 Result Logging --------------------------------------
	13

	4.1.4.1.
	 Inputs --
	13

	4.1.4.2.
	 Processing --------------------------------------
	13

	4.1.4.3.
	 Output --
	14

	
	
	

	4.2.
	 Process Requirements ----------------------------------
	15

	4.2.1.
	 Physical Structure ----------------------------------
	15

	4.2.2.
	 Development Environment ------------------------
	15

	
	
	

	4.3.
	 External Interface Requirements -----------------------
	16

	4.3.1.
	 Hardware Interfaces -------------------------------
	16

	4.3.2.
	 Software Interfaces / API --------------------------
	16

	
	
	

	5.
	DATA DICTIONARY --
	17

	
	
	

	6.
	REQUIREMENTS TRACEABILITY MATRIX -------------------
	18

	
	
	

	7.
	NOTES --
	19

1.
Introduction
Automated testing Frameworks provide the software developer with a facility to construct multiple test cases, aggregate them and monitor their automated execution. Thus this saves the developer considerable time during code development and provides him with an indispensable tool. If the automated testing framework also provides facilities for result logging and checks for memory leaks, it is an added bonus.

Such a tool can be termed as a Test Harness. Several test harnesses are commercially available for different platforms. The most famous is JUnit, a testing framework for java. For the .Net platform, several programs like CSUnit, DotUnit, HarnessIt, NUnit etc are available today. Such tools are indispensable during construction based tests (and also for unit tests to some extent).
In this document, we are providing the Software Requirements Specifications for our Test Harness – NetTestUnity. This tool will operate under the .Net platform only (c# specific). The tool provides a facility to construct, aggregate, execute and monitor test objects. It is also possible to log all the execution results and track all resource (IO and memory) allocations.
2.
REFERENCE DOCUMENTS

JUnit Links

· http://www.junit.org/index.htm
· http://junit.sourceforge.net/
· http://junit.sourceforge.net/doc/cookstour/cookstour.htm
Kent Beck's paper on Testing Frameworks

· http://www.xprogramming.com/testfram.htm
More links on Testing Frameworks

· http://c2.com/cgi/wiki?TestingFramework
· http://www.xprogramming.com/software.htm
.NET testing frameworks

CSUnit

· http://www.csunit.org/index.php
Dot Net Unit

· http://sourceforge.net/projects/dotnetunit/
Dot Unit

· http://dotunit.sourceforge.net/
HarnessIt

· http://www.unittesting.com/
NUnit

· http://sourceforge.net/projects/nunit
XUnity

· http://x-unity.miik.com.ua/
2.1. Customer A-Specification
Project # 1 – Test Harness, 08/25/2003
3. ARCHITECTURE

Our goal is to create an Automated Testing Framework for the .Net platform. NetTestUnity will provide various facilities like construction, aggregation and execution of test cases. A Test driver must be able to interact with our NetTestUnity tool through interfaces. NetTestUnity must also provide facilities for logging test results, either to a file or to the console. Also there must be a facility to monitor resource allocation to the test code.

NetTestUnity is called from a defined entry point, which supplies it with suite of aggregated tests. NetTestUnity then executes each of those tests and if required, performs resource allocation tracking and logs the test result by binding it to a console stream, a memory stream or a file stream. NetTestUnity makes calls into the Test Driver to call the registered tests. It also utilizes the File Services to access the test definition file.

[image: image1.emf]Harness

Command Line / GUI

File Stream

Console Stream

Memory Stream

Test Driver File Services

Code being tested

Test Log

Test Log

Test Log

Test / Log / Track

Command

(Suite of

aggregated

tests)

Test Command

Function call to test code

+

Resource Tracking Msg

Test result

+

Resource Tracking Result

Context Diagram - Test Harness (NetTestUnity)

Request for Test Definition

File

Handle to Test Definition

File

Now referring to the Module diagram for out NetTestUnity program, we see that all processing is split amongst the following modules –

[image: image2.emf]Aggregator

(Executive)

Harness Test Driver

Module Diagram - Test Harness (NetTestUnity)

· Aggregator – This module is actually a top level executive. Its responsibility includes aggregating test objects and executing them by use of the Harness module. It sends the reference of the test objects to the Harness. The program entry point is defined inside this executive.
· Harness – This module is simply consists of interfaces through which test drivers can form test objects and execute them. Its responsibilities include storing of test objects, their execution, logging their results and tracking allocations made to them. It does this by interacting with the Test Driver module.

· Test Driver – This module is responsible for constructing test objects. Also it is responsible for overriding and implementing virtual functions provided by the Harness’s tracking and logging interfaces. This is a required activity for monitoring resource allocation and for logging test results.
4. REQUIREMENTS

Here we identify all of the processes that are collectively responsible for satisfying all of the software’s requirements. The processes are Harnessing, Test-Execution, Result Logging and Resource Allocation Tracking. Each of these processes is responsible for a set of requirements that we will describe in detail below.

[image: image3.emf]Test-Execution

2

Harnessing

1

Resource Allocation

Tracking

3

Result Logging

4

T

e

s

t

L

o

g

R

e

q

u

e

s

t

 f

o

r

T

e

s

t

D

e

f

in

i

ti

o

n

 F

i

l

e

H

a

n

d

le

 t

o

T

e

s

t

D

e

f

in

it

io

n

 F

il

e

T

e

s

t

r

e

s

u

l

t

F

u

n

c t i

o

n

c

a l

l

t

o

t

e

s

t

c

o

d

e

T

e

s

t

R

e

f

e

r

e

n

c

e

+

T

e

s

t

C

o

m

m

a

n

d

T

e

s

t

/

L

o

g

/

T

r

a

c

k

C

o

m

m

a

n

d

T

e

s

t

R

e

f

e

r

e

n

c

e

+

A

l

l

o

c

a

t

i

o

n

T

r

a

c

k

i

n

g

c

o

m

m

a

n

d

T

e

s

t

R

e

f

e

r

e

n

c

e

+

S

t

r

e

a

m

R

e

f

e

r

e

n

c

e

+

T

e

s

t

R

e

s

u

l

t

S

u

m

m

a

r

y

Tracking Summary

R

e

s

o

u

r

c

e

T

r

a

c

k

i

n

g

M

s

g

R

e

s

o

u

r

c

e

T

r

a

c

k

i

n

g

R

e

s

u

l

t

To console / memory / file stream

Data Flow Diagram - Test Harness (NetTestUnity)

4.1.
Functional Requirements
The following sections describe in some detail, the activities performed by the NetTestUnity program.
4.1.1.

Harnessing

The Harnessing Process is responsible for collecting references to individual tests (or a suite of tests). The Harness is simply composed of interfaces for facilitating test aggregation, logging test results and resource allocation tracking. It is also responsible for calling each of the ‘registered’ tests in the order specified.
4.1.1.1.
inputs

· The Harness is called from a defined entry point (usually in the Test Driver module) and supplied with reference(s) of either individual tests or aggregated test suites.
· The Test / Log / Track command notifies the harness to start executing (logging) the tests, the reference of which was given in the previous message.
4.1.1.2.
processing

· The Harness shall provide interfaces for constructing, aggregating and executing tests.
· The Harness shall store all of these test references in a container (store) and execute these test in the same order in which they were stored.

· The Harness shall provide interfaces for tracking resource allocation / de-allocation and for logging test results.

4.1.1.3.
outputs

· The Test Reference is passed on by the Harness to the Test-Execution process. The Test Reference message is actually the reference of the individual tests registered with the harness.

· The Test command sent to the Test-Execution process contains a request for individual test execution or execution of an aggregated test suite. Of course this request will probably be encapsulated in a function call.

4.1.2.

Test-Execution
The Test-Execution process collects references to aggregated tests and executes each of them by making calls into the testing code. The outputs to the testing code will be requests to execute the aggregated / individual tests (in the same order in which they were registered.) This will probably in the form of function calls (and not explicit messages).
4.1.2.1.
Inputs –

· The Test Reference is passed by the Harness.

· The Test command which contains a request for individual test execution or execution of an aggregated test suite.
· The Handle to the Test Definition file is given to Test-Execution file upon request by the File Services.

· The Code under test returns the Test Result (ie the function call), when test execution has completed.
4.1.2.2.
Processing –

· All test drivers communicating with the test harness for test aggregation, execution, logging and allocation tracking shall interact through these interfaces only.
· The process shall provide at least one class derived from the test interface for each module under test.

· The process shall make use of a test definition files to supply test values to the source under test. The test definition file can be a simple text file or it can be an XML file.

· The process will interact with the Logging process. The Test-Execution process shall send a reference of a stream (console, memory or file) to the Result Logging process. Then it shall send a Test Result summary for each test executed (passed and failed) to the Logging process.
· All test results shall be classified as ‘passed’, ‘failed’ or ‘error in execution’.

· For test logging purposes, the process shall also provide a class derived from the tracking interface.

· The process shall notify the Logging process of any errors. Errors will likely be of the following nature - exception during test execution or missing test definition file.

4.1.2.3.
Outputs –

· The Test-Execution process sends the Test Reference message (ie reference of the test executed) to the Result Logging process and the Allocation Tracking process. This reference enables these processes to extract type details through Reflections.
· The Test-Execution process sends the reference of the user-specified stream (console, memory or file stream) to the Logging process. This enables the Logging process to bind the test log to the stream.

· After each test execution, the Test-Execution process sends the Result summary to the Logging process.

· The Test-Execution process also initiates the tracking process by sending an Allocation tracking command to the Tracking process.
· The Test-Execution process also sends an error message to the Logging process to notify it of any errors. Eg – An untrapped exception or missing test definition file.
4.1.3.

Resource Allocation Tracking
This process is responsible for tracking all allocation and de-allocation of resources for the source code under test. Every time any source code under test dynamically allocates memory, the allocation is tracked and recorded. Similarly tracking is done while garbage collection or destruction of the dynamically memory-allocated objects. This Allocation tracking feature helps us to detect memory leaks (if any) in the source. All disk, file and IO access are also tracked.
4.1.3.1. inputs

· The Test Reference message which is actually the reference of the registered testing function.
· The Allocation Tracking Command which indicates to the tracking process to start tracking all resource.
· The Resource Tracking Result message is a log of the allocation summary made to the source code under test.

4.1.3.2. processing

· The Tracker shall include classes derived from the tracking interface (provided by the Harness) for the purpose of tracking resource allocation to the source under test.
· The Tracker should list out in detail in its Tracking Summary message, all the IO and Memory accesses preformed by the source code under test. The tracker shall classify all allocation and accesses made by the source into the following categories – File, IO device and Memory.

· The process must test for memory leaks. The process shall log the total number of bytes allocated and the total number of bytes remaining on program termination. This information must be included with the Tracking Summary message.

· After each test is tracked, the Tracker shall send a Tracking Summary message to the Result Logging Process.

4.1.3.3. outputs

· The Resource Tracking Message is sent out by the tracking process to monitor the source code under test for disk, file, IO and memory allocations and de-allocations.
· The Tracking Summary message sent to the Result Logging Process indicates the net summary of all the Disk, File, IO and Memory allocation made to the executed test.

4.1.4.

Result Logging

The Result Logging process is primarily responsible for receiving the summary of all test results from the Test-Execution process and logging these results by binding them to a console, memory or a file stream. Thus the user can direct the summary of all tests performed, either to the console or to a text file.
4.1.4.1. inputs

· The Stream Reference message gives the reference of a user-specified stream to the Result Logging process. This stream can be a console, memory or a file stream.

· The Test Result Summary message indicates the execution details for each of the test passed (or failed).

· The Tracking Summary message indicates the resource allocation details for each test executed.
· The Reference to the executed test is also handed to the Result Logger.
4.1.4.2.
processing
· The Result Logger shall include classes derived from the logging interface (provided by the Harness) for each of the user-specified stream (console, memory or file stream).

· The Result Logger can use the Reflection API to extract certain details from the test (since it has a reference to it). The Result Logger shall list out the referenced test’s type as header for the Test Log output.

· The Result Logging process shall combine all the Test Result and Tracking Summaries for individual tests and generate a Test Log for the entire test suite. The program shall in this manner demonstrate all the test constructing, executing, logging and allocation tracking features.
· The Result Logging process shall bind the generated Test Log to the user-specified console, memory or file stream.

4.1.4.1. outputs

· The Result Logging process outputs a Test Log message which is actually the test execution details for the entire suite of aggregated tests. This log is bound to the referenced stream.
4.2.
Process Requirements
The process requirements specify the physical structure of the code developed and the environment where it must operate.
4.2.1.

Physical Structure

· The NetTestUnity program shall consist of more than one module. A module is either an executive (there is only one per program), or a server. There may be as many server modules as deemed appropriate by the development team.
· Since all implementation will be done entirely in C#, all modules shall consist of a single file (.cs) that contains the implementation.

· The module shall contain the following elements:

1. a manual page containing a prologue, a paragraph describing module operations, and a list of the public interface with interpretations to help a designer to use the module

2. a maintenance page describing the build process, specifically naming the required files and compilation commands

· The main function in each server module shall be enclosed by preprocessor statements preventing compilation unless the preprocessor detects a directive of the form TEST_MODULENAME, where MODULENAME is the name of the module with no extension.

· All modules shall begin with a prologue that contains descriptions of the following elements:

1. file name with a few word summary

2. version number

3. language of implementation

4. platform, e.g., computer and operating system

5. application

6. author with address, and e-mail id.
4.2.2.

Development Environment
The Test Harness program shall compile and link from the command line using Visual Studio .NET (version 7), and shall operate under the Windows NT operating system, version 4.0, service pack 3.

4.3.
External Interface Requirements
This section of the specification will document all of the software and hardware interface requirements at a level of detail sufficient to allow the design of a system that will satisfy these requirements.
4.3.1. Hardware Interfaces

· No external hardware interface requirements.
4.3.2. Software Interfaces / API
The program makes use of the .Net Framework SDK 1.0.

In particular the Test Harness uses the System.Collection library to utilize containers for aggregating test results. Also for File and other IO accesses, the program will make use of the System.IO library. And finally for dynamically loading type information during the logging and tracking processes, the program will use the System.Type and System.Reflection namespaces.
5.
DATA DICTIONARY
	Message Name
	Interpretation
	DFD

	
	
	

	Test / Log / Track command
	Notifies NetTestUnity to start executing the tests (with allocation tracking and logging)
	DFD 1

	
	
	

	Test Reference
	The reference of the individual tests registered with NetTestUnity.
	DFD 1

	
	
	

	Test Command
	Informs the Test-Execution unit to execute the test
	DFD 1

	
	
	

	Resource Tracking Message
	Function call to test source code under test for resource allocation / de-allocation
	DFD 1

	
	
	

	Resource Tracking Result
	Resource allocation / de-allocation done for the source code under current test
	DFD 1

	
	
	

	Function call to test code
	The Test-Execution unit invokes a test function
	DFD 1

	
	
	

	Test Result
	Result of test execution
	DFD 1

	
	
	

	Test Result Summary
	The execution details for each of the test passed (or failed).
	DFD 1

	
	
	

	Tracking Summary
	The resource allocation details for each test executed.
	DFD 1

	
	
	

	Test Log
	The test execution details for the entire suite of aggregated tests.
	DFD 1

6.
REQUIREMENTS TRACEABILITY MATRIX

	B-Specifications
	A-Specifications
	Comment

	
	
	

	4.1.1.2.a.
	2
	Interaction through interfaces only

	4.1.1.2.b.
	derived
	Storing test references

	4.1.1.2.c.
	2
	Interaction through interfaces only

	4.1.2.2.a.
	2
	Interaction through interfaces only

	4.1.2.2.b.
	3
	Derivation from test interface

	4.1.2.2.c.
	derived
	Use of Test definition file

	4.1.2.2.d.
	derived
	Reference of specified stream

	4.1.2.2.e.
	derived
	Summary of Test Result

	4.1.2.2.f.
	derived
	Nature to Test Result

	4.1.2.2.g.
	5
	Interaction through tracking interface

	4.1.2.2.h.
	derived
	Nature of error

	4.1.3.2.a.
	5
	Interaction through tracking interface

	4.1.3.2.b.
	derived
	Resource classification

	4.1.3.2.c.
	5
	Net bytes allocated / de-allocated

	4.1.3.2.d.
	derived
	Tracking result summary

	4.1.4.2.a.
	4
	Interaction through logging interface

	4.1.4.2.b.
	derived
	Test Log header

	4.1.4.2.c.
	derived
	Test log generation

	4.1.4.2.d.
	6
	Demonstration of program features

	4.1.4.2.e.
	derived
	Bind test log to stream

	4.2.1.a.
	derived
	Module Structure

	4.2.1.b.
	derived
	Server Modules

	4.2.1.c.
	derived
	Module elements

	4.2.1.d.
	derived
	Test Stub pre-processor statements

	4.2.1.e.
	derived
	Module prologue

	4.2.2.a.
	1
	Compiler used

	4.2.2.b.
	1
	OS platform

7.
NOTES

B-Specifications for NetTestUnity released on 09/15/2003.
19

_1125418211.vsd
�

�

Aggregator
(Executive)�

Harness�

Test Driver�

�

Module Diagram - Test Harness (NetTestUnity)�

_1125418433.vsd
�

�

Harness�

Command Line / GUI�

File Stream�

Console Stream�

Memory Stream�

�

�

�

Test Driver�

File Services�

Code being tested�

Request for Test Definition File�

Handle to Test Definition File�

Test Log�

Test Log�

Test Log�

Test / Log / Track Command�

(Suite of aggregated tests)�

Test Command�

Function call to test code
+
Resource Tracking Msg�

Test result
+
Resource Tracking Result�

Context Diagram - Test Harness (NetTestUnity)�

_1125416323.vsd
�

�

Test-Execution
2�

�

Harnessing
1�

Resource Allocation Tracking
3�

Result Logging
4�

Test Log�

Test result
�

�

Request for Test Definition File�

Handle to Test Definition File�

Function call to test code �

Test Reference +
Test Command�

Test Reference +
 Allocation Tracking command

�

Test Reference + Stream Reference +
Test Result Summary�

Tracking Summary�

Resource Tracking Msg�

Resource Tracking Result�

Test / Log / Track Command�

To console / memory / file stream�

Data Flow Diagram - Test Harness (NetTestUnity)�

