
Refactoring to Patterns

Jim Fawcett

CSE776 – Design Patterns

Summer 2005

2

Reference

 Refactoring to Patterns, Joshua Kerievsky,
Addison-Wesley, 2005

3

Agenda

 This presentation provides a summary of
the content from this well received book.

4

Background

 Evolutionary Programming

 A development process that focuses on
incremental development.

 Usually set up as a sequence of development
cycles, each culminating in a software
release.

 Each item from the sequence provides some
planning, design, implementation, and test.

 Sometimes the elements are inverted, as is
the case for extreme programming:

5

Extreme Programming

 Process Model Phases:
 A sequence of releases as per Evol. Prog.

 Steps to achieve a release:

 Specify the functionality for next release

 Design Test(s)

 Write code to make tests pass

 Refactor code to improve the design

 Constantly run regression tests on the entire build
▪ Goal is to stay in state where all tests pass

 Release when the implemented functionality is
incorporated in the build.

6

Refactoring

 Refactoring is a major part of the
Evolutionary style of programming,
especially for Extreme Programming.

 But how do you successfully refactor?

 What are the goals?

 When should you refactor?

 How do you do it?

 How do you know when to stop?

7

A Selection of Chapters

 Chap 3: Patterns

 Chap 4: Code Smells

 Chap 5: Catalog of Refactorings to Patterns

 Chap 6: Creation

 Chap 7: Simplification

 Chap 8: Generalization

 Chap 9: Protection

 Chap 10: Accumulation

 Chap 11: Utilities

8

Patterns

 What is a pattern?
 “Each pattern is a three-part rule, which expresses

a relation between a certain context, a problem, and
a solution”

– Christopher Alexander, Architect

 There are many ways to implement a pattern
 “Every pattern describes a problem which occurs

over and over again in our environment, and then
describes the core of the solution to that problem,
in such a way that you can use this solution a million
times over, without ever doing it the samy way
twice.” – Christopher Alexander

9

Refactoring to, towards, and
away from Patterns

 “Good designers refactor in many
directions, always with the goal of reaching
a better design. While many of the
refactorings I apply don’t involve patters
(i.e., they’re small, simple transformations,
like Extract Method …), when my
refactorings do involve patterns, I
refactor to, towards, and even away from
patterns.” – Joshua Kerievsky

10

Code Smells

 “It’s … necessaryto learn common design
problems so you can recognize them in your
code.”

 Robert Martin, Martin Fowler, and Kent
Beck have all written about specific “Code
Smells”

11

Catalog of Code Smells

 Duplicated Code
 Long Method
 Conditional Complexity
 Primitive Obsession
 Indecent Exposure
 Solution Sprawl
 Alternative Classes with Different Interfaces
 Lazy Class
 Large Class
 Switch Statements
 Combinational Explosion
 Oddball Solution

12

Catalog of Patterns

 Replace Ctors with Creation methods, chain Ctors
 Encapsulate Classes with Factory
 Introduce Polymorphic Creation with Factory Method
 Replace Conditional Logic with Strategy
 Form Template Method
 Compose Method
 Replace Implicit Tree with Composite
 Encapsulate Composite with Builder
 Move Accumulation to Collecting Parameter
 Extract Composite, Replace one/many with Composite.
 Replace Conditional Dispatcher with Command
 Extract Adapter, Unify Interfaces with Adapter
 Replace Type Code with Class

13

Catalog of Patterns

 Replace State-Altering Conditionals with State

 Introduce Null Object

 Inline Singleton, Limit Instantiation with Singleton

 Replace Hard-Coded Notifications with Observer

 Move Embellishment to Decorator, Unify Interfaces,
Extract Parameter

 Move Creation Knowledge to Factory

 Move Accumulation to Visitor

 Replace Implicit Language with Interpreter

14

A Typical Catalog Item

 States Pattern Name and Intent

 Gives an application example

 Discusses motivation

 Benefits and Liabilities

 Mechanics

 Specific things to do

 Presents detailed example

15

Some non-GoF Patterns

 Compose Method
 Extract blocks of code as methods with intent

revealing names
 Chain Constructors

 Remove duplicate code in constructors by calling, in
a constructor, other constructor(s).

 Extract Parameter
 Assign, to a field, a caller provided parameter

instead of a locally instantiated object.
 Move Accumulation to Collecting Parameter

 Replace a complex function that accumulates results
with a set of Composed Methods which are passed a
Collecting Parameter.

16

Summary

 Interesting ideas, presented clearly

 Book is on restricted hold in Sci-Tech
library.

