
Five Fundamental Patterns
Working with Classes and Interfaces

Jim Fawcett

CSE776 – Design Patterns

Summer 2004



Reference

 Working with Classes and Interfaces, five fundamental 
patterns, Dirk Riehle, C++ Report, March 2000.



A Pattern Language for OOD

 Small patterns
 Design idioms

 Good practice

 Pattern language
 Coordinated set of patterns

 One focused topic area

 Individual patterns often stated in abbreviated 
style



Simple Class Pattern

 Problem:

 You need to design and implement a concept.

 Context:

 One implementation is sufficient, no other is needed.

 Changes to implementation may affect clients.

 You want to make it as simple as possible, but not simpler.

 Solution:

 Implement the concept as a single class



Design by Primitives

 Problem:
 You need to implement a class.

 Context:
 You expect to evolve the class.
 You want it to be easy to add new member functions.
 You want to avoid a fragile class in which changes to a function affect 

many other functions.
 You want to make it as simple as possible, but not simpler.

 Solution:
 Separate more complex non-primative member functions from primitive 

member functions.
 Determine the primitive member functions that best help implement 

the class.
 Implement non-primitive member functions using primitive member 

functions.



Interface Class

 Problem:
 You need to design and implement a concept with different implementations.

 Context:
 You want to give clients freedom of choice:

 for selecting an implementation.
 to not care about the implementation.

 You want to change implementations without affecting clients.
 You want to introduce new implementations without making clients notice.
 You want to separate implementations from their clients.
 You want to make it as simple as possible, but not simpler.

 Solution:
 Determine the functionality of the concept separately from its 

implementations.
 Represent the functionality as an interface class (only pure virtual 

functions).
 Make implementation classes inherit and implement the interface class.



Abstract Base Class

 Problem:
 You need to ensure identical behavior of concept implementations where 

functionality is identical, and provide different behavior, where 
functionality is different.

 Context:
 You want to avoid redundant code.
 You want to ease adding other implementations.
 You want to make it as simple as possible, but not simpler.

 Solution:
 Separate variant functionality of the implementations from invariant 

functionality.
 Implement the invariant part as shared functionality in an abstract base 

class.
 Declare the variant part in the abstract base class using pure virtual 

functions.
 Make implementations subclasses of the abstract base class that implement 

the variant part.



Narrow Interface Class

 Problem:
 You need to minimize effort to introduce new subclasses of an abstract 

base class.

 Context:
 You are using an abstract base class with many pure virtual member 

functions.
 You expect existing subclasses to evolve and new subclasses to enter 

the system.
 You want to make it as simple as possible, but not simpler.

 Solution:
 Reduce the number of pure virtual member fuctions to it minimum by 

using design by primitives.
 Provide default implementations of primitives were possible.
 Implement all non-primitive member functions using primitives.


