
Big Ball of Mud

Ketul Mehta
Vishvesh Shah
Sayali Naval
Vishal Parekh

1

Features of Muddy Code:

● Lacks perceivable architecture
● Not desirable but common in practise
● Haphazardly constructed, Duct- tape, Sprawling Code,

Spaghetti Code Jungle.
● Everything talks to everything else
● Extensive use of global variables
● Code Duplication
● Documentation

Muddy and Happy?

Your View?

Legacy == Mud?

OR

Legacy !=Mud?

Forces:

● Time
● Cost
● Skill and Experience
● Visibility
● Application Complexity

Patterns:

● Big Ball of Mud
● Throwaway Code
● Piecemeal Growth
● Keep it Working
● Shearing layers
● Sweeping it under the rug
● Reconstruction

Analogy between Shanty Town and Software
Systems:

Shanty Town:
● Slums built with

inexpensive materials
and simple tools

● Relatively unskilled
labours

● Infrastructure is not a
major concern

● Fulfills immediate
requirement

Alias:
1. Shanty Town
2. Spaghetti Code

Software Systems as compared to Shanty Town:

● Inadequate investment in tools and infrastructure
● Undercapitalized libraries and frameworks
● Individual portions of the system goes unchecked
● Short deadlines

Throw away code
● Throw away code can be referred as quick and dirty code that was intended

to be used only once and then discarded.
● It is used when we need an immediate fix for a small problem or a quick

prototype or a proof of concept.

9

Throw away code

● Time is frequently the decisive force that drives programmers to write the
throw away code.

● Throw away code is often written as an alternative to reusing someone else’s
more complex code.

● It is nearly a universal practice.
● The real problem is when it is not thrown away.

10

Piecemeal Growth
● This is an incremental or iterative kind of software development.
● Before waterfall development , programmers used simple,casual relatively

undisciplined “code and fix” approach to software development.
● Code and fix approach worked for small jobs but it did not scale well.

11

Piecemeal Growth
● Waterfall approach was able to flourish before because computer and

business requirements changed at a more leisurely pace.
● But today’s designers are confronted with a broad onslaught of the changing

requirement.

12

Piecemeal Growth
● Master plans are often rigid, misguided and out of date. Users need change

with time.
● We can’t simply plan, we have to plan to be able to adapt.
● Incrementally addresses forces that encourage change and growth.
● Uncontrolled growth can ultimately be a malignant force. The result of

neglecting to contain it can be a Big Ball Of Mud.

13

Keep It Working
Maintenance of a system:

● Taking a system down for a major overhaul.
● Bad Fix Injection.
● Might break the system.

14

Keep It Working
Work with a live system:

● Do what it takes to maintain the
software and keep it going.

● Integrate new subsystems with the
running system in such a way as to
minimize disruption.

15

Keep It Working
Factors that ensure the system doesn’t break:

● Baby steps.
● Daily/Weekly Build.
● A commitment to rigorous testing.

16

Shearing Layers
Concept:

● Different software artifacts change at different rates.
● Factor your system into different layers so that artifacts that change at similar

rates are in same layer.

17

Shearing Layers
Different layers of software applications within organisations:

● Adaptability: Artifacts that evolve quickly provide a system with dynamism and
flexibility.

● Stability: Slowly evolving objects are bulwarks against change.

18

Shearing Layers
Layers in software:

● Data: Changes most quickly.
● Code: Changes more slowly than data.

19

Shearing Layers
Layers in object-oriented languages:

● The abstract classes and components change more slowly.
● Some abstractions make their ways into the frameworks and libraries that

constitute the system's infrastructure.

20

Shearing Layers
Software evolution:

● Enduring insights gravitate towards primary structural elements.
● Things in flux are spun out into the data.

21

Sweeping it under the rug
● If you can’t make a mess go away, at least you can hide it.

22

Sweeping it under the rug
● How much chaos an individual can tolerate?
● Spaghetti code is hard to comprehend, repair, or extend.

23

Sweeping it under the rug
● Comprehensibility

It takes time and money.

● Morale

Minor modifications can lead to maintenance marathons.

24

Sweeping it under the rug
Therefore,

● If you can’t easily make a mess go
away, at least cordon it off.

25

Sweeping it under the rug
Solution

● Re-establishing the system's conceptual integrity
● Architectural rehabilitation
● Use of Facade

26

Reconstruction

27

● Your code has declined to the point where it is beyond repair, or
even comprehension.

Reconstruction
● Obsolescence

Technically or economically outdated

● Change

Impossible to accommodate new demands

28

Reconstruction
● Cost

Traumatic for both who have worked on it and who have paid for it

● Organization

Demand considerable time and resources, requires high-level
management support

29

Reconstruction
Advantages

● Re-establishes contact between architecture and implementation
● Issues are revisited
● Getting the experience needed to do the job

30

Conclusion
● Economics of the software world are such that the market moves so

fast that long term architectural ambitions are foolhardy
● Casual architecture is natural during the early stages of a system’s

evolution
● People build BIG BALLS OF MUD because they work

31

Thank You!

32

