SECURITY PATTERNS

Harika Bandaru, Vishal Parekh, Honey Shah, Weiheng Chai
CSE-776 (Design Patterns), Fall 2018
Syracuse University

Why Security Pattern

Wish to gain
m Recent ' Software Systemj profit -
Developed
_ P f L Threat Source)
Deploy
- Egq Deployed to
Customers
- (Defenses
lReduce Risk (y

B \ i(Ricks) | L Cyber Threats]
Exploit vulnerabilities

and launch attacks

https://blog.barkly.com/biggest-data-breaches-2018-so-far
https://www.rapid7.com/db/vulnerabilities/apache-struts-cve-2017-5638
https://www.rapid7.com/db/vulnerabilities/apache-struts-cve-2017-5638
http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

Intent, Motivation

m Any pattern is a optimal re-usable solution to common problems.

m Initially security was considered as a Non-Functional-Requirement for system

implementation.
m Which resulted in many breaches.

m Improvement in tech has made ‘Hacking’ easier than ever before with novel

means being discovered each day.

m Complexity Vs Security or Performance Vs Security

Need for Security Patterns:

Ensure Information Security by maintaining CIA (Confidentiality, Integrity and
Availability)

A security pattern is a solution that addresses a class of security
problems/flaws.

Examples of security patterns: User input sanitization and Restrictive memory
access

A Map of Security Patterns

Data Storage and Handling

(Man-in-the-Middle/Public-readable
data/Database leakage/SQLI/Data-
loss/Copyright Infringement)

Restrictive Memory Access

(Side-channel attacks/Buffer
Overflow/Race-conditions/Dirty —

Network Management and Availability

(Physical breach/Denial-of-
Service/Traffic-Congestion/Power-
Outage/Environmental issues/Network
Setup and Configuration)

Information Security Policy and Risk

Copy-on-Write/Privilege leaking)

(Intrusions/Threat Intelligence/Malware
_—/—' Injection/Firewall-evade/Insider
- threats/Vulnerability Tracking/Below-par
Security |

standards)

e f- Patterns
Input Sanitization

(SQL Injection/Format String/Shell- <
shock/Cross-site Request
Forgery/Cross-site Scripting)

Awareness and Training

(Insider Threats/Espionage/Unpatched
software/Outdated practices/Protocol
violations)

Authentication and Encryption

(Identity Theft/Brute-force/Privacy
violation/Secret leakage)

Penetration Testing and Code Review

(Bug-exploits/insecure
libraries/unexpected glitches)

Some Examples of Security Flaws and exploitation

The program has been running 70452 times so far.

./exploit-T4.sh: line 13: 10182 Segmentation fault ./stack Privi|ege Escalation! void myprintf(char *msg)
2 minutes and 4 seconds elapsed. {

;I;hciedprogram has been running 70453 times so far. , = printf(msg);
uiﬁ=0(root) gid=1000(seed) groups=1000(seed),4(adm),24(cdrom),27(sudo),30(dip),46(plugdev),113(1lpadmin),b128(sambashare) } printf("%s",msq);

el

char stringl[20];

TOCTTOU Example Redux Buffer Overflow?
U S t rncpy (S t 1 lngl ,
@ Attack ordered before or after check and use

“"This is a really long string”, 20);
e System transactions save the day

Victim Attacker Process Address Space .
symlink(“secret”,"fo0"); JXFFFF | Top of Stack ks 222

sys_xbegin(); Stack Overflow? o
if(access(“foo”)) { Race Condition! A test@example.com' OR 1= 1 —

fd = open(“foo”); Stack | | Return Address String

sys._xend(); Growth| |Canary Word Growth e

.ocal Variables ... reesenes
time) symlink(“secret”,"foo”); iEF e

Y
e (VOO m v’ Stay signed in

Demo of Buffer Overflow:

Statistics:

Stack

Return
Address (RA)

Secret Data

https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&query=Buffer+Overflow&search_type=last3months
https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&query=Buffer+Overflow&search_type=last3months

Trusted zone

Separation of user mode from OS which is more trusted.
Privilege separation. Leverage the support of hardware.
Ring architecture.

System api for user program to talk with OS.

Process memory separation.

Defense Measures

m Usetype safe languages like C++,java,etc that does boundary checking
automatically,

m Why does this vulnerabilities exists,though we have type safe languages?
— Flexibility : Low level languages
— Performance : Avoiding type safety checks etc.

Use secure library functions.

Validate user-input.

m Source code analysis tools

https://www.owasp.org/index.php/Source_Code_Analysis_Tools

Race Condition
exploitation

Privileged program (set-uid root) Attacker program

/tmp/X points to
an attacker-owned
| 16/01/ 18] SCCOVM:~/ . . ./RACELONALTIONS ealt vulp.c ; '
[10/01/18] seed@VM:~/ . . . /RaceCondition$ gcc -0 vulp vulp.c file access .
10/01/18) seed@VM:~/. .. /RaceCondition$ sudo sysctl -w fs.protected symlinks=0 ' ’ Context
fs.protected symlinks = @ | switch

16/01/18] seed@VM:~/. . . /RaceCondition$ cat vulp.c | *1 Make /tmg /v

/* wlp.c */ mamw1 i) T D)

point to
#include <stdio.h> window /etc/passwd
#include <unistd.h>
#include <string.h>

int main()

{
el A L . Write to /etc ;
char buffer(66]; /etc/passwd

FILE *fp; - T—— B

/* get user input */
scanf("%50s", buffer);

if(laccess(fn, W OK)){ unlink("/tmp/XYZ");
fp = fopen(fn, "a+*): symLink("/etc/passwd"”,"/tmp/XYZ")

fwrite("\n", sizeof(char), 1, fp); .
fwrite(buffer, sizeof(char), strien(buffer), fp); USleep(16900) '

fclose(fp);

else printf("No permission \n");

Solution

N

struct stat statBefore, statAfter;
lstat ("/tmp/X", &statBefore);

if (laccess("/tmp/X", O_RDWR)) {
/* the real UID has access right =/
f = open("/tmp/X", O_RDWR);
lstat ("/tmp/X", &statAfter);

if (statAfter.st_ino == statBefore.st_ino)

{ /* the I-node is still the same *x/
Write_to_file (£f)

}

else perror ("Race Condition Attacks!");

}

else fprintf (stderr, "Permission denied\n");

12

Restrictive Memory Access Pattern

The possible exploitation:

0
1. Heap Buffer Overflow
2. Shellshock-BashCGI
3. Side Channel Attacks
4, Dirty Copy-on-Write
5. OpenSSL Heartbleed

(Taken as per Linux context)

Stack

Return
Address (RA)

Secret Data

13

Solution for memory access

Eliminate Racing or create more hurdles to minimise the attacker to win.
Use secure libraries/frameworks

Least Privilege Principle and service privilege levels

Sandboxing/clear memory boundaries

Update systems and applications

S e e e

14

Lack of Input Sanitization

m Validation: Validation is the process of ensuring that input data falls within
the expected domain of valid program input.

m Sanitization is the process of removing sensitive information from a
document or other message

m SQL Injection

m Format String

m System()

m Shell-Shock - Command Injection
m XSS (Cross Site Scripting)

m Kernel Memory Access using Loadable Kernel Module

15

SQL injection

SQL injection is a code injection technique, used to attack data-driven
applications, in which nefarious SQL statements are inserted into an
entry field for execution.

eOne of the most common attacks on web applications.
eSql is a code injection technique.
eExploits vulnerabilities between web applications and database servers.

eOccurs when user inputs are not properly checked.

16

Demo of SQL Injection

’ Q
—using oystem;

E B

"

MySql.Data. MySqlClient;

17

main function

initialize the database:

username Password
» |Weiheng qwertyu
Weihengl gwertyul
Weiheng2 gwertyu2
Weiheng3 gwertyu3
Weiheng5 gwertyu5s
| HULL | [HULL |

18

Run the code

[e= g oy mrye e

e input the username:

input the pa

19

Login using SQL injection

select * from user where username='" test"”' and Password="'" "'OR 1=1#"

]

o
w
-
[

sult Grid H 43 Filter Rows: | Edit: [;C] &y G | Export/Import:] 354‘ Wrap Cell Content: I

username Password

testsglinjection test

Weiheng qwertyu
Weiheng2 qwertyu2
Weiheng3 gwertyu3
Weiheng5 qwertyus
HULL | [HULL |

select * from user where username="test" and Password=" ""OR 1=1";#

20

Add new users using SQL injection

> input the
t into us
> input the

username Password
testsqglinj... test
Weiheng qwertyu
Weihengl gwertyul
Weiheng2 qwertyu2
Weiheng3 gwertyu3
Weiheng5 qwertyu5

Mm@

select * from user where username=" ;insert into user() values();#and Password="'+ password + """,

21

Delete existing users using SQL
injection

put the username.
re from us vhere username= Weihengl ;#

userriame Fasswoiru
p |testsqlinj... test
Weiheng gwertyu
Weiheng2 qgwertyu2
Weiheng3 qwertyu3

Weiheng5 qgwertyu5
P HULL HULL

22

Activity diagram

client server database

the data inject to

change the input the SQL execute the SQL
'——> data such as —| command with changed
username out being command

checked

return the result
of injection to
the user

Some common SQL statements for

SQL injection
B And 1=1/And 1=2
B OR1=1/0OR1=2
B+ -5/ > & <= >=

B 1like 1/1 like 2

B 1l like '1/1" like 2

24

SQL Injection prevention

e Option 1: Use of Prepared Statements
e Option 2: Do Some validation checks at client

25

ep_ared Statements demo

public bocl Login()

input the username:
1=1;4#

input the ssword

le. WriteLine ("t

1g username = Con

Wrong username or
vlease input the username:

Console. WriteLine("login success!”);

conn. Close () ;

return true;

26

Validation checks demo(using regular expression)

public bool Login()

e. Writeline{(please input the username
sString username = sole. ReadLine () ;
B le, Writeline(please input the password’)
ord = zole. ReadLine()
new Rezex(@” ‘\w+"):

ztch(username) 'reg. IsMatch(passw
T

Console. WriteLine ("invalid username or password”):

invalid username or password

return false; }
connetSty = “server=127.0.0. 1;port=3306;user=root;password=123456; datal

new MySglConnection(connetStr) ;

Console, WriteLine (ex. Message) ;

rom user wiere username= + username + and Password= - passwora -

nand (mysqlcemd, conn) ;

e0: https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

27

Format String

<stdio.h>

int main()

{

int id = 100, age =25;

charx name = "Smith"; A g ‘
printf("ID:%d Name:%s Age i name, age); % :
0; iR
| BT e age: 25
| < -
$ 6 » name: 0x5000 i “Bob Smith”
g m—_—— id: 100
0]
= /*1“5 Format String: |
§ J2 0x6000
& .

28

The Format String exploit occurs when there is a mismatch between the format string and

the actual arguments.

<stdio.h>

int main()

{

int id = 100, age =25;

‘.

1
|

I

charx name = "Smith";
printf("ID:%d \nName:%s \nAge:%d\n",id, name);

0;

boundary

| 1 name: 0x5000 —1_)
@ id: 100 “Bob Smith”

Format String:
@ 0X6000

ID: %d, Name: %s, Age: %d

/35:.
- <n0t an argument>

|

29

Attacks on Format String Vulnerability

e Crashing the program.

printf ("$s%s5%5%5%5%5%5%55%5%5%55%s") ;

e Viewing the stack.
printf ("$08x %08x %08x %08x %08x\n");
Output: 40012980 080628c4 bffff7a4 00000005 08059c04

30

e Viewing memory at any location.
printf ("\x10\x01\x48\x08 %$x %$x %$x %$x %$s");

e Writing an integer to nearly any location in the process memory.
printf ("12345%n", &1i);

Print out the contents at the address 0x10014808 using format-string viunerability

user_input []
N

\
/

%ox

%ox

Yox
0x10014808

Address of user_input|[]

I Pnnt this Print this
for the 4th 96x for the 1st 9x

For %s: print out the contents pointed by this address

31

Counter Measures

e Developers must have a good practice to not use user inputs as an part of a format string.
e Compilers these days have built-in counter measures for detecting potential format
string vulnerabilities.

e Address Randomization

32

System()

e A Cfunctionin stdlib.h
e Treatsthe argument as shell command and executes it.
e Rather than using system use execev

33

Example

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

int main(int argc, char *argv(])

{
char *v[3];
char *command;
if(argc < 2)
{
printf("Please type a file name.\n");
return 1;
}
v[0] = "/bin/cat"; v[1] = argv[1]; v[2] = NULL;
command = malloc(strlen(v([®]) + strlen(v[1]) + 2);
sprintf(command, "%s %s" -
// Use only one of the followings.
system(command) ;
// execve(v[@], v, NULL);
return 0 ;
}
[09/12/18] seed@VM:~/.../Labl-SetUID$./Task8 "filetoread; mv filetoread fileread"
reading...
[09/12/18]seed@VM:~/.../Labl-SetUID$ ls *file*
fileread

[09/12/18] seed@VM:~/. . ./Labl-SetUID$ |}

34

Cross Site Scripting (XSS)

e XSSisacodeinjection attack made possible through insecure handling of user input.

e A successful XSS attack allows an attacker to execute malicious JavaScript in a victim's
browser.

e A successful XSS attack compromises the security of both the website and its users.

Instagram ® O o

120 posts 869 followers 48 following

POy YOUR NAME edtprome O
«'\' :
" 2

YOUR INTRO HERE

il POSTS

35

Similarity Among Code-Injection

Trusted Code saL’ Execution
Code _

Data’
Untrusted User Data |
SaQL 2 SQL >
(a) saL | —> ® —> Statement Parser

Untrusted User Data

HTML
Content’ |
HTML HTML ™
Trusted HTML ‘ —> ® —> Page > Parser

(b) JavaScript Content +JavaScript Ja\é%sdcer-'pt ——— P Execution
Cpde

Untrusted User Data

Data’ *
—_— Shell
Trusted Command ® » Command —— o, oo »

(c) System() Name Command’ ———» Execution

Untrusted User Data

Data’ ¢
Format
i ;
(d);tznmat e e — > ——p Format _, string —> ————» Execution
¢ Format Specifiers String Parser s;ﬁ;?i?rs-

Input Sanitisation pattern

e Ignore the client validation. Do the validation at the server once again.
e Sensitive information from the client should be kept in a encrypted,
tamper-proof form.

e Discard request that are obviously questionable. Identify input
e Filter the data submitted from the client. sources
e Remove script tags. l
Identify reads of Add code to
input sources check & handle

| |

Define criteria Specify handling
-
for valid data invalid data

37

Advantages of Implementing
Security Patterns

e Secure coding techniques ensure greater system security.
e Security is viewed as functional requirement in Software Engg.
e The confidentiality & privacy of client will be improved.

e A small number of patterns would improve performance, like Client Data Storage
pattern, etc.

e While cost of implementation is incurred, it is a better than the cost incurred
when there a security flaw is exploited

38

Disadvantages of implementing
Security Patterns

e Most of patterns would incur a performance penalty.
e Cost in terms of manpower, training, testing and infrastructure increases.

e Specific security solutions get outdated quickly and there is a constant need to be
updated

39

References:

1. Coursework and Labs : CSE 644 (Internet Security),SU

2. Coursework and Labs : CSE 643 (Computer Security),SU

3. Coursework and Labs : IST 704 (Applied Information Security),SU

4. Code Demonstrations : http://www.cis.syr.edu/~wedu/seed/labs.html
5. Security Patterns Repository v1.0 Darrell M. Kienzle et. al

6. SU IT Services-InfoSec (Information Security Policy) -
https://its.syr.edu/about-us/departments/information-security/

7. Computer Security, A Hands-on Approach by Wenliang Du

8. Special Thanks - Chris Croad (CISO, ITS, SU), Dr Kevin Du (EECS, SU), Benson
Poikayil (InfoSec Ops, ITS, SU)

9. Design Patterns, Erich Gamma et. al 10.

http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breac
hes-hacks/

40

Thank you.

