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Why Security Pattern

■ Recent breaches: 

– https://blog.barkly.com/biggest-data-breaches-2018-so-far

– Equifax breach web-application vulnerability (Apache Struts).

– https://www.rapid7.com/db/vulnerabilities/apache-struts-cve-

2017-5638

– http://www.informationisbeautiful.net/visualizations/worlds-

biggest-data-breaches-hacks/
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Intent, Motivation
■ Any pattern is a optimal re-usable solution to common problems.

■ Initially security was considered as a Non-Functional-Requirement for system 

implementation.

■ Which resulted in many breaches.

■  Improvement in tech has made ‘Hacking’ easier than ever before with novel 

means being discovered each day. 

■ Complexity Vs Security or Performance Vs Security
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Need for Security Patterns:
■ Ensure Information Security by maintaining CIA (Confidentiality, Integrity and 

Availability)

■ A security pattern is a solution that addresses a class of security 
problems/flaws. 

■ Examples of security patterns: User input sanitization and Restrictive memory 
access
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A Map of Security Patterns

5



Some Examples of Security Flaws and exploitation

Privilege Escalation!

Buffer Overflow?

???
Stack Overflow?

Race Condition!

???
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Demo of Buffer Overflow:

Statistics:

https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&quer

y=Buffer+Overflow&search_type=last3months
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Trusted zone

■ Separation of user mode from OS which is more  trusted.
■ Privilege separation. Leverage the support of hardware.
■ Ring architecture. 
■ System api for user program to talk with OS.
■ Process memory separation.
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Defense Measures
■ Use type safe languages like C++,java,etc that does boundary checking 

automatically,
■ Why does this vulnerabilities exists,though we have type safe languages?

– Flexibility : Low level languages
– Performance : Avoiding type safety checks etc.

■ Use secure library functions.
■ Validate user-input.
■ Source code analysis tools

– https://www.owasp.org/index.php/Source_Code_Analysis_Tools
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Race Condition 
exploitation 
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Solution 
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Restrictive Memory Access Pattern

■ The possible exploitation:

1. Heap Buffer Overflow

2. Shellshock-BashCGI

3. Side Channel Attacks

4. Dirty Copy-on-Write

5. OpenSSL Heartbleed

(Taken as per Linux context)
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Solution for memory access

1. Eliminate Racing or create more hurdles to minimise the attacker to win.
2. Use secure libraries/frameworks
3. Least Privilege Principle and service privilege levels
4. Sandboxing/clear memory boundaries
5. Update systems and applications
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Lack of Input Sanitization

■ Validation: Validation is the process of ensuring that input data falls within 
the expected domain of valid program input.

■ Sanitization is the process of removing sensitive information from a 
document or other message

■ SQL Injection

■ Format String

■ System()

■ Shell-Shock – Command Injection

■ XSS (Cross Site Scripting)

■ Kernel Memory Access using Loadable Kernel Module
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SQL injection

SQL injection is a code injection technique, used to attack data-driven 
applications, in which nefarious SQL statements are inserted into an 
entry field for execution.

●One of the most common attacks on web applications.

●Sql is a code injection technique.

●Exploits vulnerabilities between web applications and database servers.

●Occurs when user inputs are not properly checked.
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Demo of SQL Injection 
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main function

initialize the database:
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Run the code                 
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Login using SQL injection

select * from user where username='" test"' and Password='"  "'OR 1=1"；#
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Add new users using SQL injection

select * from user where username='" ；insert into user() values();#and Password='" + password + "'"; 
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Delete existing users using SQL 
injection
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Activity diagram
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Some common SQL statements for 
SQL injection
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SQL Injection prevention

● Option 1: Use of Prepared Statements 
● Option 2: Do Some validation checks at client
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 Prepared Statements demo
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 Validation checks demo(using regular expression)
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Format String 
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The Format String exploit occurs when there is a mismatch between the format string and 
the actual arguments.
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Attacks on Format String Vulnerability
● Crashing the program.

printf("%s%s%s%s%s%s%s%s%s%s%s%s");

● Viewing the stack.
printf("%08x %08x %08x %08x %08x\n"); 

Output: 40012980 080628c4 bffff7a4 00000005 08059c04 
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● Viewing memory at any location.
printf("\x10\x01\x48\x08 %x %x %x %x %s"); 

● Writing an integer to nearly any location in the process memory.
printf("12345%n", &i);
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Counter Measures

● Developers must have a good practice to not use user inputs as an part of a format string. 
● Compilers these days have built-in counter measures for detecting potential format 

string vulnerabilities. 
● Address Randomization 

32



System()

● A C function in stdlib.h 
● Treats the argument as shell command and executes it.
● Rather than using system use execev

33



34

Example



Cross Site Scripting (XSS)
● XSS is a code injection attack made possible through insecure handling of user input.
● A successful XSS attack allows an attacker to execute malicious JavaScript in a victim's 

browser.
● A successful XSS attack compromises the security of both the website and its users.
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Similarity Among Code-Injection 
Attacks 
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Input Sanitisation pattern

● Ignore the client validation. Do the validation at the server once again. 
● Sensitive information from the client should be kept in a encrypted, 

tamper-proof form.
● Discard request that are obviously questionable.
● Filter the data submitted from the client.
● Remove script tags.
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Advantages of Implementing 
Security Patterns 
● Secure coding techniques ensure greater system security. 

● Security is viewed as functional requirement in Software Engg. 

● The confidentiality & privacy of client will be improved. 

● A small number of patterns would improve performance, like Client Data Storage 
pattern, etc. 

● While cost of implementation is incurred, it is a better than the cost incurred 
when there a security flaw is exploited

38



Disadvantages of implementing 
Security Patterns
● Most of patterns would incur a performance penalty. 

● Cost in terms of manpower, training, testing and infrastructure increases. 

● Specific security solutions get outdated quickly and there is a constant need to be 
updated
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Thank you.


