
SECURITY PATTERNS
Harika Bandaru, Vishal Parekh, Honey Shah, Weiheng Chai

CSE-776 (Design Patterns), Fall 2018
Syracuse University

1

Why Security Pattern

■ Recent breaches:

– https://blog.barkly.com/biggest-data-breaches-2018-so-far

– Equifax breach web-application vulnerability (Apache Struts).

– https://www.rapid7.com/db/vulnerabilities/apache-struts-cve-

2017-5638

– http://www.informationisbeautiful.net/visualizations/worlds-

biggest-data-breaches-hacks/

2

https://blog.barkly.com/biggest-data-breaches-2018-so-far
https://www.rapid7.com/db/vulnerabilities/apache-struts-cve-2017-5638
https://www.rapid7.com/db/vulnerabilities/apache-struts-cve-2017-5638
http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

Intent, Motivation
■ Any pattern is a optimal re-usable solution to common problems.

■ Initially security was considered as a Non-Functional-Requirement for system

implementation.

■ Which resulted in many breaches.

■ Improvement in tech has made ‘Hacking’ easier than ever before with novel

means being discovered each day.

■ Complexity Vs Security or Performance Vs Security

3

Need for Security Patterns:
■ Ensure Information Security by maintaining CIA (Confidentiality, Integrity and

Availability)

■ A security pattern is a solution that addresses a class of security
problems/flaws.

■ Examples of security patterns: User input sanitization and Restrictive memory
access

4

A Map of Security Patterns

5

Some Examples of Security Flaws and exploitation

Privilege Escalation!

Buffer Overflow?

???
Stack Overflow?

Race Condition!

???

6

Demo of Buffer Overflow:

Statistics:

https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&quer

y=Buffer+Overflow&search_type=last3months

7

https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&query=Buffer+Overflow&search_type=last3months
https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&query=Buffer+Overflow&search_type=last3months

Trusted zone

■ Separation of user mode from OS which is more trusted.
■ Privilege separation. Leverage the support of hardware.
■ Ring architecture.
■ System api for user program to talk with OS.
■ Process memory separation.

8

Defense Measures
■ Use type safe languages like C++,java,etc that does boundary checking

automatically,
■ Why does this vulnerabilities exists,though we have type safe languages?

– Flexibility : Low level languages
– Performance : Avoiding type safety checks etc.

■ Use secure library functions.
■ Validate user-input.
■ Source code analysis tools

– https://www.owasp.org/index.php/Source_Code_Analysis_Tools

9

https://www.owasp.org/index.php/Source_Code_Analysis_Tools

Race Condition
exploitation

10

11

Solution

12

Restrictive Memory Access Pattern

■ The possible exploitation:

1. Heap Buffer Overflow

2. Shellshock-BashCGI

3. Side Channel Attacks

4. Dirty Copy-on-Write

5. OpenSSL Heartbleed

(Taken as per Linux context)

13

Solution for memory access

1. Eliminate Racing or create more hurdles to minimise the attacker to win.
2. Use secure libraries/frameworks
3. Least Privilege Principle and service privilege levels
4. Sandboxing/clear memory boundaries
5. Update systems and applications

14

Lack of Input Sanitization

■ Validation: Validation is the process of ensuring that input data falls within
the expected domain of valid program input.

■ Sanitization is the process of removing sensitive information from a
document or other message

■ SQL Injection

■ Format String

■ System()

■ Shell-Shock – Command Injection

■ XSS (Cross Site Scripting)

■ Kernel Memory Access using Loadable Kernel Module

15

SQL injection

SQL injection is a code injection technique, used to attack data-driven
applications, in which nefarious SQL statements are inserted into an
entry field for execution.

●One of the most common attacks on web applications.

●Sql is a code injection technique.

●Exploits vulnerabilities between web applications and database servers.

●Occurs when user inputs are not properly checked.

16

Demo of SQL Injection

17

main function

initialize the database:

18

Run the code

19

Login using SQL injection

select * from user where username='" test"' and Password='" "'OR 1=1"；#

20

Add new users using SQL injection

select * from user where username='" ；insert into user() values();#and Password='" + password + "'";

21

Delete existing users using SQL
injection

22

Activity diagram

23

Some common SQL statements for
SQL injection

24

SQL Injection prevention

● Option 1: Use of Prepared Statements
● Option 2: Do Some validation checks at client

25

 Prepared Statements demo

26

 Validation checks demo(using regular expression)

27

https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

Format String

28

The Format String exploit occurs when there is a mismatch between the format string and
the actual arguments.

29

Attacks on Format String Vulnerability
● Crashing the program.

printf("%s%s%s%s%s%s%s%s%s%s%s%s");

● Viewing the stack.
printf("%08x %08x %08x %08x %08x\n");

Output: 40012980 080628c4 bffff7a4 00000005 08059c04

30

● Viewing memory at any location.
printf("\x10\x01\x48\x08 %x %x %x %x %s");

● Writing an integer to nearly any location in the process memory.
printf("12345%n", &i);

31

Counter Measures

● Developers must have a good practice to not use user inputs as an part of a format string.
● Compilers these days have built-in counter measures for detecting potential format

string vulnerabilities.
● Address Randomization

32

System()

● A C function in stdlib.h
● Treats the argument as shell command and executes it.
● Rather than using system use execev

33

34

Example

Cross Site Scripting (XSS)
● XSS is a code injection attack made possible through insecure handling of user input.
● A successful XSS attack allows an attacker to execute malicious JavaScript in a victim's

browser.
● A successful XSS attack compromises the security of both the website and its users.

35

Similarity Among Code-Injection
Attacks

36

Input Sanitisation pattern

● Ignore the client validation. Do the validation at the server once again.
● Sensitive information from the client should be kept in a encrypted,

tamper-proof form.
● Discard request that are obviously questionable.
● Filter the data submitted from the client.
● Remove script tags.

37

Advantages of Implementing
Security Patterns
● Secure coding techniques ensure greater system security.

● Security is viewed as functional requirement in Software Engg.

● The confidentiality & privacy of client will be improved.

● A small number of patterns would improve performance, like Client Data Storage
pattern, etc.

● While cost of implementation is incurred, it is a better than the cost incurred
when there a security flaw is exploited

38

Disadvantages of implementing
Security Patterns
● Most of patterns would incur a performance penalty.

● Cost in terms of manpower, training, testing and infrastructure increases.

● Specific security solutions get outdated quickly and there is a constant need to be
updated

39

40

References:
1. Coursework and Labs : CSE 644 (Internet Security),SU

2. Coursework and Labs : CSE 643 (Computer Security),SU

3. Coursework and Labs : IST 704 (Applied Information Security),SU

4. Code Demonstrations : http://www.cis.syr.edu/~wedu/seed/labs.html

5. Security Patterns Repository v1.0 Darrell M. Kienzle et. al

6. SU IT Services-InfoSec (Information Security Policy) -
https://its.syr.edu/about-us/departments/information-security/

7. Computer Security, A Hands-on Approach by Wenliang Du

 8. Special Thanks - Chris Croad (CISO, ITS, SU), Dr Kevin Du (EECS, SU), Benson
Poikayil (InfoSec Ops, ITS, SU)

9. Design Patterns, Erich Gamma et. al 10.
http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breac
hes-hacks/

41

Thank you.

