
Factory Method Pattern

Vishal Parekh
Xiaohan Zhang



Intent

● Define an interface for creating an object, but let 
subclasses decide which class to instantiate.

● Let a class defer instantiation to subclasses at run 
time.



Virtual Constructor

● Create a copy of an object or a new object without 
knowing its concrete type.

● Don’t know the real type of an object, but need 
operation on it, same as Factory Method Pattern.



Basic Structure



Motivation 

● Frameworks.

- In frameworks, needs to create objects which may be sub 
classed by applications, but doesn’t know the type of object

- Factory method encapsulates knowledge of which subclass 
to instantiate - moves this knowledge out of the framework



Motivation Example



Forces

● Why do we use Factory Method?

- Creates various types of objects without necessarily 
knowing what kind of object it creates or how to create.

- Flexible and reusable classes which can be extended easily.



Applicability

● Use Factory Method if?

- a class doesn’t know the types of objects it must create
- a class wants its subclasses to specify the objects it creates
- the classes decide how to delegate responsibility to one of 

many other helper classes



Basic Structure



Participants

● Product(Document)
- defines the interface of objects the factory method creates
● ConcreteProduct(MyDocument)
- Concrete Class that implements the Product interface
● Creator(Application)
- declares the factory method, which returns an object of type Product.
- May also returns a default ConcreteProduct object
● ConcreteCreator(MyApplication)
- overrides the factory method to return an instance of 

ConcreteProduct



Collaborators

● Creator relies on its subclasses to define the factory method so 
that it returns an instance of the appropriate ConcreteProduct

● The client relies on the Creator to obtain a reference to the 
Product, without the knowledge of which ConreteProduct will 
be created.



Consequences

● Factory Method Pattern has the following consequences：

- Decoupling client from ConcreteProduct classes, only deals with 
the Product interface

- Provides hooks for subclasses: Factory Method gives subclasses 
a hook for providing an extended version of an object.

- Connects parallel class hierarchies



Consequences Example



Implementation- Need of Factory Method

● The factory method is one of the most used and one of the more robust 
design patterns. 

● If you have many object of the same base type and you manipulate them 
mostly as abstract objects, then you need a factory. eg: Database Connection

● Factory Method makes a design more customizable and only a little more 
complicated. 

● Other design patterns require new classes, whereas Factory Method only 
requires a new operation.



Implementation- Major Variations

● Abstract Creator class with no default implementation

- The creator class is  an abstract class and doesn't provide an 
implementation for the factory method it declares.

- It requires subclasses to define an implementation, because 
there is no reasonable default.

- It’s also possible to have an abstract class that defines a 
default implementation for the factory method, but this is less 
common.



● Concrete creator class with default implementation

- The creator is a concrete class and provides a default 
implementation for the factory method.

- The concrete creator uses the factory method primarily for 
flexibility.

- It follows a rule that says “Create objects in a separate operation 
so that subclasses can override the way they’re created”.

Implementation- Major Variations 



● Parameterized factory methods

- It allows the factory method to create multiple type of products.
- The factory method takes a parameter that identifies the kind of 

object to create.
- Overriding a parameterized  factory method lets you easily and 

selectively extend or change the product that a Creator produces.

Implementation- Other Variations 



A parameterized factory method has the following 
general form, where MyProduct and YourProduct are 
subclasses of Product:

class Creator 
{

public:
virtual Product* Create(Productld);

};
Product* Creator::Create (Productld id) 
{

if (id == MINE) return new MyProduct;
if (id == YOURS) return new YourProduct;
// repeat for remaining products...
return 0;

}

Implementation- Parameterized 

For example, a subclass MyCreator could swap 
MyProduct and YourProduct and support a new 
TheirProduct subclass:

Product* MyCreator::Create (Productld id) 
{

if (id == YOURS) return new MyProduct;
if (id == MINE) return new YourProduct;

// N.B.: switched YOURS and MINE
if (id == THEIRS) return new TheirProduct;
return Creator::Create(id); 
// called if all others fail

}



● Using Templates to avoid subclassing

- A potential problem with factory method is that they might 
force you to subclass just to create the appropriate Product 
objects. 

- A solution in C++ is to provide a template subclass of Creator 
that’s parameterized by the Product class.

Implementation- Other Variations 



class Creator 
{

public:
virtual Product* CreateProduct() = 0 ;

};
template <class TheProduct>
class StandardCreator: public Creator 
{

public:
virtual Product* CreateProduct();

};
template <class TheProduct>
Product* StandardCreator<TheProduct>::CreateProduct ()
{

return new TheProduct;
}

Implementation- Using Templates 
With this template, the client supplies just the product 
class—no subclassing of Creator is required.

class MyProduct : public Product 
{

Public:
MyProduct();

};
StandardCreator<MyProduct> myCreator;



Example - Problem
● Imagine that you are creating a electricity bill management application. The first version 

of your app can handle only domestic plans of electricity bill, so the bulk of your code 
lives in a Domestic Plan class.

● After a while, your app becomes so popular that you get tons of requests to include 
Commercial Electricity Plan and Institutional Plan as well.

● It looks that most of your code is coupled to the Domestic Plan class. Adding Plans 
would require making changes to the entire codebase. Moreover, if you decide to add 
another type of plans to the app, you will probably need to make all of those change 
again.

● You will end up with nasty code riddled with conditionals, which select behaviors 
depending on classes of plan objects.



Example - Solution

● The Factory Method pattern suggests replacing direct object creation (using a new 
operator) with a call to a special "factory" method. 

● The constructor call should be moved inside that method. Objects returned by factory 
methods are often referred to as "products."

● Subclasses may return different concrete products as long as these products have a 
common base class or interface.

● Clients of a factory method do not care about the particular type of a product they 
receive. They work with all products using a common product interface.



Minimal Code Implementation - UML Diagram 



Minimal Code Implementation
Step 1: Create a Plan abstract class. Step 2: Create the concrete classes that extends Plan abstract class.



Minimal Code Implementation
Step 3: Create GetPlanFactory to create object of concrete classes Step 4: Generate Bill by using the GetPlanFactory to get the object 



Pros and Cons

● Follows the Open/Closed Principle.
● Avoids tight coupling between concrete products and code 

that uses them.
● Simplifies code due to moving all creational code to one 

place.
● Simplifies adding new products to the program.
● Requires extra subclasses.
● The factory has to be used for a family of objects.



Known Uses

● JAVA API

  - Used in Several Places in the Java.
  - URLConnection has a method getContent that returns the content   
as an appropriate object (html, gif etc.)

● .NET Framework Class Library

  - Systems.Collections.IEnumerable,
  - System.Net.WebRequest
  - System.Security.Cryptography



Related Patterns

● Abstract Factory 
● Factory methods 
● Prototypes 



References

● �Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (n.d.). 
Design patterns.

● https://www.oodesign.com/factory-method-pattern.html
● https://en.wikibooks.org/wiki/C%2B%2B_Programming/Co

de/Design_Patterns 
● https://www.javatpoint.com/factory-method-design-pattern
● https://refactoring.guru/design-patterns/factory-method



Thank You


