Value Object Pattern

Xiaohan Zhang, Hao Zhang,Chen Luo

Intent

Implement datatypes as immutable classes so that their instances can be
handled like built-in values.

Motivation

Account

Money balance

)

rMoney

void deposit(Money moreMoney)
void withdraw(Money lessMoney)

N

Money

static final Money Zero
char currency

a BigDecimal amount

void add(Money moreMoney)

void addAmount(BigDecimal amount)

void substract(Money lessMoney)

void substractAmount(BigDecimal amount)

Account Money

static final Money Zero

Motivation ISR ESEnES T priwshidstin

/" Money BigDecimal amount

Y

void deposit(Money moreMoney)

void withdraw(Money lessMoney) void add(Money moreMoney)

void addAmount(BigDecimal amount)
void substract(Money lessMoney)

void substractAmount(BigDecimal amount)

public static synchronized void transfer (Money money, Account from, Account to) {
Money fromBalance = from.getBalance();
fromBalance.subtract (money) ;
if (fromBalance.isLowerThan (Money.ZERO)) {
throw new RuntimeException ("Insufficient funds!");

}

from.withdraw (money) ;
to.deposit (money) ;

Check if the from account has enough money, and lead to withdraw amount twice

Account Money

Money balance static final Money Zero

M : . _| char currency
Otlvathn Money " | BigDecimal amount

void deposit(Money moreMoney)

void withdraw(Money lessMoney) void add(Money moreMoney)

void addAmount(BigDecimal amount)
void substract(Money lessMoney)
void substractAmount(BigDecimal amount)

Make each Money object immutable, which means you make it return a new object every time where
otherwise it would change its state.

public Money addAmount (BigDecimal otherAmount) {
BigDecimal newAmount = amount.add (otherAmount) ;
return new Money (currency, newAmount) ;

public Money subtractAmount (BigDecimal otherAmount) {
BigDecimal newAmount = amount.subtract (otherAmount) ;
return new Money (currency, newAmount) ;

e “datatypes
P Client
Participants en Value

Command methods return
new instances of Value
rather than change its state

- Clients:The Client class uses Value instances like built-in datatypes, you write
code like attr = attr.calculate(); rather than attr.calculate()
- Value:The Value class represents a domain-specific value type.

Collaborations

A client creates new Value instances.
Necessary initialization data is provided in
constructor. No state-changing methods
No state-changing methods.
e A Value instance provides information to a client

through read-only meth k.a. rver Client > Object A
ough read-only methods (a.k.a. observe () rr—— j
methods). . . objSct andniat: i Object A Create a
e Instead of using state-changing methods, the value J e object
object creates a new instance of its class and |
C e o . New Object — - —>» Object B
initializes it with the computation result. Initiate the new object with

computation from A attributes

e Aclient will receive a new Value instance back.
(Drop old value object, Keep new value object.)

e Most notably, if the value is stored in an attribute of
the client, the client replaces the value object
representing the attribute’s value with the new value
object.

Client Drop Object A and hold Object B

Applicability

Use the Value Obiject pattern if:

1. The domain concept you are implementing represents a value type(Curruncy,
Date, Domain Address, Percentages, etc)

2. The resulting class does not become too heavyweight as to slow down
performance significantly.(The pattern may keeps create and drop objects.)

Consequences

Pros Cons

* Better domain modeling and understanding. * More complicated code.
 Safer programs. » Changes in coding style.

« Potentially better performance. * Potentially lower performance.

» Concurrency.
* Persistence.
« Serialization.
* Distribution.

Know uses

Internet domain they are protocol names, domain names, and URLs.
In engineering they are the metric system and its units.

Java JDK implementations. The String, Integer, and Float classes are
close-to-the-system Value Object implementations.

In the financial services domain are monetary amounts and currencies.

10

Implementation

e Identity, equality and hash code.
e Immutability.

11

Sample Code

Initial = Pokemon(@,

Sample Code

Partner.
Partne
Partne

Partner.set

o m rt
S S

("]

o1}

[

Al

13

Sample Code

@verride

.

Target is Pokemon [Id=25, HP=6@, Attack=10, Type=Electric, Race=Mouse]
Pokemon is Pokemon [Id=25, HP=6@, Attack=10, Type=Electric, Race=Mouse]
This is not the same one we want to find.

Target is Pokemon [Id=25, HP=6@, Attack=1@, Type=Electric, Race=Mouse]
Pokemon is Pokemon [Id=25, HP=6@, Attack=10, Type=Electric, Race=Mouse]
This is the same one we want to find.

14

