
Adapter

Sayali Vidyadhar Naval
Biao A

Example

void chargeMyLaptop(USPlug plug){

plug.provideElectricity();

}

interface USPlug{

void provideElectricity();

}

2

Example

void chargeMyLaptop(USPlug plug){

plug.provideElectricity();

}

interface USPlug{

void provideElectricity();

}

3

class UKPlug{

public void giveElectricity();

}

Intent

Convert the interface of a class into another interface clients expect.

Adapter lets classes work together that couldn't otherwise because of incompatible
interfaces.

4

Structure

There are two types of adapter.

A class adapter uses multiple inheritance to adapt one interface to another.

An object adapter relies on object composition.

5

An object adapter relies on object composition:

Target: defines the domain-specific interface that Client uses.

Client: collaborates with objects conforming to the Target interface.

Adaptee: defines an existing interface that needs adapting.

Adapter: adapts the interface of Adaptee to the Target interface.

6

Example

void chargeMyLaptop(USPlug plug){

plug.provideElectricity();

}

interface USPlug{

void provideElectricity();

}

7

class UKPlug{

public void giveElectricity();

}

8

void chargeMyLaptop(USPlug plug){
plug.provideElectricity();

}

interface USPlug{
void provideElectricity();

}

class UKPlug{
public void giveElectricity();

}

Example

class Adapter implements USPlug{
private UKPlug plug;

public Adapter(UKPlug plug) {
this.plug = plug;

}

@Override
public void provideElectricity() {

//detailed implementation...
plug.giveElectricity();

}
}

9

void chargeMyLaptop(USPlug plug){

plug.provideElectricity();

}

UKPlug ukPlug = new UKPlug();

USPlug adapter = new Adapter(ukPlug);

chargeMyLaptop(adapter);

A class adapter uses multiple inheritance to adapt one interface to another.

Target: defines the domain-specific interface that Client uses.

Client: collaborates with objects conforming to the Target interface.

Adaptee: defines an existing interface that needs adapting.

Adapter: adapts the interface of Adaptee to the Target interface.

10

Example

class USPlug{
public:

virtual void provideElectricity();
}

class UKPlug{
public:

virtual void giveElectricity();
}

11

class Adapter :public USPlug, private UKplug{
public void provideElectricity() {

giveElectricity();
}

}

 USPlug *adapter = new Adapter();
 chargeMyLaptop(adapter);

Why do we need an adapter?

● Sometimes a toolkit class that's designed for reuse isn't reusable only because
kit’s interface doesn't match the domain-specific interface an application
requires.

● The Open/Closed Principle

12

When to use adapter?

You want to use an existing class, and its interface does not match the one you
need.

● Parse the input data
● Convert one type to another

13

Consequences

Class Adapter

Won't work when we want to adapt a class and all its subclasses.

Lets Adapter override some of Adaptee’s behaviour.

Introduces only one object.

Cannot be used in Java and C# as they don’t support multiple inheritance.

14

Object Adapter

Lets a single adapter work with many Adaptees.

Makes it harder to override Adaptee behaviour.

15

Consequences

Implementation

Implementing class adapters in C++

Adapter would inherit publicly from Target and privately from Adaptee. Thus
Adapter would be a subtype of Target but not of Adaptee.

16

Pluggable Adapters

Find a narrow interface for Adaptee, that is, the smallest subset of operations that
lets us do the adaptation.

The narrow interface leads to three implementation approaches:

a. Using abstract operation.
b. Using delegate objects.
c. Parameterized adapters.

17

Implementation

Implementation

a. Using abstract operation

Define corresponding abstract
operations for the narrow Adaptee
interface in the TreeDisplay class.

Subclasses must implement the
abstract operations and adapt the
hierarchically structured object.

18

A DirectoryTreeDisplay subclass
will implement these operations
by accessing the directory
structure.

DirectoryTreeDisplay specializes
the narrow interface so that it can
display directory structures made
up of FileSystemEntity objects.

19

Implementation

b. Using delegate objects

In this approach, TreeDisplay forwards
requests for accessing the hierarchical
structure to a delegate object.

Suppose there exists a DirectoryBrowser
that uses a Tree-Display.

DirectoryBrowser might make a good
delegate for adapting TreeDisplay to the
hierarchical directory structure.

20

Putting the narrow interface that
TreeDisplay requires into an
abstractTreeAccessorDelegate class.

Then we can mix this interface into the
DirectoryBrowser delegate using
inheritance.

21

Implementation

c. Parameterized adapters

To parameterize an adapter with one or more blocks.

Supports adaptation without subclassing.

A block can adapt a request, and the adapter can store a block for each individual
Request.

22

Example:

TreeDisplay stores one block for converting a node into a GraphicNode and
another block for accessing a node's children.

To create TreeDisplay on a directory hierarchy, we write

directoryDisplay :=
(TreeDisplay on : treeRoot)

getChildrenBlock:
[mode | node getSubdirectories]

createGraphicNodeBlock:
[:node | node createGraphicNode]

23

Known Uses

ET++Draw

ET++Draw reuses the ET++ classes for text editing by using a TextShape adapter
class.

InterViews 2.6

Defines an object adapter called GraphicBlock, a subclass of Interactor that
contains a Graphic instance and adapts the interface of the Graphic class to that of
Interactor.

24

Known Uses

ObjectWorks\Smalltalk

Includes a subclass of ValueModel
called PluggableAdaptor.

A PluggableAdaptor object adapts
other objects to the ValueModel
interface.

It can be parameterized with blocks for
getting and setting the desired value.

25

Known Uses

Meyer's "Marriage of Convenience"

A form of class adapter.

Adapts implementation of Array class to the interface of a Stack class.

The result is a stack containing a fixed number of entries.

26

Advantages & Disadvantages

Advantages
Helps achieve reusability and flexibility.

Client class is not complicated by having to use a different interface and can use
polymorphism to swap between different implementations of adapters.

Disadvantages
All requests are forwarded, so there is a slight increase in the overhead.

Sometimes many adaptations are required along an adapter chain to reach the
type which is required.

27

Related patterns

Bridge

Decorator

Proxy

28

References

https://www.tutorialspoint.com/design_pattern/adapter_pattern.htm

https://www.geeksforgeeks.org/adapter-pattern/

Design Patterns: Elements of Reusable Object-Oriented Software

29

Thank You!

Questions?

30

