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Example

void chargeMyLaptop(USPlug plug){

plug.provideElectricity();

}

interface USPlug{

void provideElectricity();

}
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Example

void chargeMyLaptop(USPlug plug){
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interface USPlug{
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}
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class UKPlug{

public void giveElectricity();

}



Intent

Convert the interface of a class into another interface clients expect. 

Adapter lets classes work together that couldn't otherwise because of incompatible 
interfaces.
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Structure

There are two types of adapter.

A class adapter uses multiple inheritance to adapt one interface to another.

An object adapter relies on object composition.
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An object adapter relies on object composition:

Target: defines the domain-specific interface that Client uses.

Client: collaborates with objects conforming to the Target interface.

Adaptee: defines an existing interface that needs adapting.

Adapter: adapts the interface of Adaptee to the Target interface.
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Example

void chargeMyLaptop(USPlug plug){

plug.provideElectricity();

}

interface USPlug{

void provideElectricity();

}
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class UKPlug{

public void giveElectricity();

}
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void chargeMyLaptop(USPlug plug){
plug.provideElectricity();

}

interface USPlug{
void provideElectricity();

}

class UKPlug{
public void giveElectricity();

}



Example

class Adapter implements USPlug{
private UKPlug plug;

public Adapter(UKPlug  plug) {
this.plug = plug;

}

@Override
public void provideElectricity() {

//detailed implementation...
plug.giveElectricity();

}
}
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void chargeMyLaptop(USPlug plug){

plug.provideElectricity();

}

UKPlug ukPlug = new UKPlug();

USPlug adapter = new Adapter(ukPlug);

chargeMyLaptop(adapter);



A class adapter uses multiple inheritance to adapt one interface to another.

Target: defines the domain-specific interface that Client uses.

Client: collaborates with objects conforming to the Target interface.

Adaptee: defines an existing interface that needs adapting.

Adapter: adapts the interface of Adaptee to the Target interface.
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Example

class USPlug{
public:

virtual void provideElectricity();
}

class UKPlug{
public:

virtual void giveElectricity();
}
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class Adapter :public USPlug, private UKplug{
public void provideElectricity() {

giveElectricity();
}

}

  USPlug *adapter = new Adapter();
  chargeMyLaptop(adapter);



Why do we need an adapter?

● Sometimes a toolkit class that's designed for reuse isn't reusable only because 
kit’s interface doesn't match the domain-specific interface an application 
requires.

● The Open/Closed Principle
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When to use adapter?

You want to use an existing class, and its interface does not match the one you 
need.

● Parse the input data
● Convert one type to another
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Consequences

Class Adapter

Won't work when we want to adapt a class and all its subclasses.

Lets Adapter override some of Adaptee’s behaviour.

Introduces only one object.

Cannot be used in Java and C# as they don’t support multiple inheritance.
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Object Adapter

Lets a single adapter work with many Adaptees.

Makes it harder to override Adaptee behaviour.
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Consequences



Implementation

Implementing class adapters in C++

Adapter would inherit publicly from Target and privately from Adaptee. Thus 
Adapter would be a subtype of Target but not of Adaptee.
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Pluggable Adapters

Find a narrow interface for Adaptee, that is, the smallest subset of operations that 
lets us do the adaptation.

The narrow interface leads to three implementation approaches:

a. Using abstract operation.
b. Using delegate objects.
c. Parameterized adapters.
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Implementation

a. Using abstract operation

Define corresponding abstract 
operations for the narrow Adaptee 
interface in the TreeDisplay class.

Subclasses must implement the 
abstract operations and adapt the 
hierarchically structured object.
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A DirectoryTreeDisplay subclass 
will implement these operations 
by accessing the directory 
structure.

DirectoryTreeDisplay specializes 
the narrow interface so that it can 
display directory structures made 
up of FileSystemEntity objects.
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Implementation

b. Using delegate objects

In this approach, TreeDisplay forwards 
requests for accessing the hierarchical 
structure to a delegate object.

Suppose there exists a DirectoryBrowser 
that uses a Tree-Display.

DirectoryBrowser might make a good 
delegate for adapting TreeDisplay to the 
hierarchical directory structure.
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Putting the narrow interface that 
TreeDisplay requires into an 
abstractTreeAccessorDelegate class.

Then we can mix this interface into the 
DirectoryBrowser delegate using 
inheritance.
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Implementation

c. Parameterized adapters

To parameterize an adapter with one or more blocks.

Supports adaptation without subclassing.

A block can adapt a request, and the adapter can store a block for each individual
Request.
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Example:

TreeDisplay stores one block for converting a node into a GraphicNode and 
another block for accessing a node's children.

To create TreeDisplay on a directory hierarchy, we write

directoryDisplay :=
(TreeDisplay on : treeRoot)

getChildrenBlock:
[mode | node getSubdirectories]

createGraphicNodeBlock:
[:node | node createGraphicNode]

23



Known Uses

ET++Draw

ET++Draw reuses the ET++ classes for text editing by using a TextShape adapter 
class.

InterViews 2.6

Defines an object adapter called GraphicBlock, a subclass of Interactor that 
contains a Graphic instance and adapts the interface of the Graphic class to that of 
Interactor.
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Known Uses

ObjectWorks\Smalltalk

Includes a subclass of ValueModel 
called PluggableAdaptor.

A PluggableAdaptor object adapts 
other objects to the ValueModel 
interface.

It can be parameterized with blocks for 
getting and setting the desired value.
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Known Uses

Meyer's "Marriage of Convenience"

A form of class adapter.

Adapts implementation of Array class to the interface of a Stack class.

The result is a stack containing a fixed number of entries.
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Advantages & Disadvantages

Advantages
Helps achieve reusability and flexibility.

Client class is not complicated by having to use a different interface and can use 
polymorphism to swap between different implementations of adapters.

Disadvantages
All requests are forwarded, so there is a slight increase in the overhead.

Sometimes many adaptations are required along an adapter chain to reach the 
type which is required.
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Related patterns

Bridge

Decorator

Proxy
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Thank You!

Questions?
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