
By Ravichandra Malipati, Gajendranath Puli, 
and Jim Fawcett 



 An Object or item that 
serves to remind you 
of a person or past 
event







 Without violating encapsulation, capture and 
externalize an object’s internal state so that 
object can be restored to this state later.



 Save internal state of an object

 Implement checkpoints and undo 
mechanisms

 State of objects are partially or completely 
encapsulated

 To save state externally, violates 
encapsulation







 When snapshot of (some portion of) an 
object’s state must be saved

 When you do not want to compromise 
encapsulation of the object

 You have an Application in which you want to 
go back to any one of a sequence of past 
states.





 Memento- Object that holds one snapshot of 
originator state.

 Originator- the source of memento’s state, 
usually the originator decides when to take 
and retrieve a memento.

 Caretaker- when asked, simply adds the state 
(Memento) to its collection of Mementos.





 Preventing Violation of Encapsulation boundaries

 Simplifies Originator

 Using mementoes could be expensive

 Defining narrow and wide interfaces
◦ Wide: Originator to and from Memento
◦ Narrow: Caretaker to Memento

 Hidden costs in caring for memento



 Probably need sharing relationship between 
Originator and Memento
◦ friend in C++

◦ internal declaration in C#

 Caretaker Data Structure
◦ often holds stack of mementos

◦ However, application may need something more 
complex then simple linear history.



 Language support for wide and narrow 
interface

 Storing Incremental changes



 Skeleton

 Graph walk



 Word

 Git

 Memento-based iteration Interface 
◦ More than one state can work on same collection

◦ Doesn’t break collection’s encapsulation



 Command

 Iterator



 Design Patterns, Elements of Reusable 
Object-Oriented Software, Erich Gamma, et. 
al.



Questions?

Thank You


