
By Ravichandra Malipati, Gajendranath Puli, 
and Jim Fawcett 



 An Object or item that 
serves to remind you 
of a person or past 
event







 Without violating encapsulation, capture and 
externalize an object’s internal state so that 
object can be restored to this state later.



 Save internal state of an object

 Implement checkpoints and undo 
mechanisms

 State of objects are partially or completely 
encapsulated

 To save state externally, violates 
encapsulation







 When snapshot of (some portion of) an 
object’s state must be saved

 When you do not want to compromise 
encapsulation of the object

 You have an Application in which you want to 
go back to any one of a sequence of past 
states.





 Memento- Object that holds one snapshot of 
originator state.

 Originator- the source of memento’s state, 
usually the originator decides when to take 
and retrieve a memento.

 Caretaker- when asked, simply adds the state 
(Memento) to its collection of Mementos.





 Preventing Violation of Encapsulation boundaries

 Simplifies Originator

 Using mementoes could be expensive

 Defining narrow and wide interfaces
◦ Wide: Originator to and from Memento
◦ Narrow: Caretaker to Memento

 Hidden costs in caring for memento



 Probably need sharing relationship between 
Originator and Memento
◦ friend in C++

◦ internal declaration in C#

 Caretaker Data Structure
◦ often holds stack of mementos

◦ However, application may need something more 
complex then simple linear history.



 Language support for wide and narrow 
interface

 Storing Incremental changes



 Skeleton

 Graph walk



 Word

 Git

 Memento-based iteration Interface 
◦ More than one state can work on same collection

◦ Doesn’t break collection’s encapsulation



 Command

 Iterator



 Design Patterns, Elements of Reusable 
Object-Oriented Software, Erich Gamma, et. 
al.



Questions?

Thank You


