	1
	Software Matrix

Software Matrix

Intent:

To provide a framework to manage the process of software salvage
 and promote loose coupling through message passing.
Alias:

Wrapper
Motivation:

Effective recycling of the software assets of an organization has been a long-standing goal of the software engineering discipline. Salvage is a form of recycling that does not insist that there are no changes in the recycled component, as is the case with reuse, but rather, that large pieces of software can be used again with very few, very controlled, changes. We’ve pursued this idea in a series of Master Thesis research projects since 2004 (see the references at the end of this paper.
Consider a hypothetical Radar System Development firm. It develops customized Radar Systems based on the client requirements. The company has developed many radar systems in past projects, based on an original design, but responsive to current customer requirements. Now suppose they get a new client that asks for set of features where some are almost similar to systems developed in past and some of the features require new code development. To build this new radar system, large pieces of software from the existing radar systems software - with pieces not necessarily designed for reuse - were extracted. Modifying and integrating these pieces is often a challenging task, as extracted code has many dependencies with code in the system in which it was originally embedded. Adding a new feature set and code pieces adds more problems and the whole process becomes complex.
We can largely solve this problem with a framework which actively supports and promotes recycling existing components. To achieve loose coupling, we will use message passing.
For example consider the communication block, shown in Figure 1, which uses sockets to connect to remote machines and exchange messages. It has many methods, used internally like connect, listen, send, and receive. Since we have implemented it as shown in Figure 1, then whatever is its internal implementation, even if something changes inside, other blocks have nothing to change as they communicated through the IMsgPass interface methods.

[image: image1.emf]+PostMessage(in msg : Message) : void

+Register(in target : IMsgPass) : void

+Dispose() : void

+name { get; set; }() : string

+type { get; set; }() : string

+isDisposed { get; }() : bool

«interface»

IMsgPass

#dispatch(in msg : Message) : Message

#GetMessage() : Message

#PostRemoteMessage(in msg : Message) : void

#ProcessMessages() : void

+Start() : void

+Wait() : void

-BQ : BlockingQueue<Message>

-target : IMsgPass

-msgThread : Thread

AWrapper BlockingQueue<Message>

Thread

IMsgPass

#dispatch(in msg : Message) : Message

+listenProc()

+StartListener(in port : int) : void

+StopListener() : void

-sender : TcpClient

-listener : TcpListener

-socketStream : Stream

-enc : ASCIIEncoding

-ListenForMessages : bool

Comm

testSender

testReceiver

Message

ThreadProc

-Holds socket and target

-defines message framing

-runs on message framing thread

-Listener thread

-message framing thread

-Message processing thread

-pulls messages from queue

Figure 1 – Message Passing Communication Component

The enduring vision here is to create “Software-ICs” a term coined by Brad Cox
. We turn our software pieces into pluggable cells to achieve plug-and-play approach to software construction.
Applicability:

Use the Software Matrix pattern when:

· A new system is to be composed by extracting code blocks from existing code base and integrating it with new blocks.

· To achieve dynamic reconstruction by plugging/un-plugging blocks at run time.

· When a system is to be developed in incremental steps where all code blocks don’t exist at once and empty place holder blocks initially fill gaps and later contribute to system by adding functionality.
· Experimenting with variations of a system by trying various combinations of existing blocks and composing the system with empty placeholders or working blocks for the remaining system parts.
Structure

[image: image2.emf]+Message()

+Message(in XmlMsgString : string)

+Message(in source : string, in destin : string, in body : string)

+ToString() : string

+copy() : Message

+source : string

+saddr : string

+sport : string

+destin : string

+daddr : string

+dport : string

+body : string

Message

+PostMessage(in msg : Message) : void

+Register(in target : IMsgPass) : void

+Dispose() : void

+name { get; set; }() : string

+type { get; set; }() : string

+isDisposed { get; }() : bool

«interface»

IMsgPass

#dispatch(in msg : Message) : Message

#GetMessage() : Message

#PostRemoteMessage(in msg : Message) : void

#ProcessMessages() : void

+Start() : void

+Wait() : void

-BQ : BlockingQueue<Message>

-target : IMsgPass

-msgThread : Thread

AWrapper BlockingQueue<Message>

Thread

#dispatch(in msg : Message) : Message

AMessageHandler

AMessageHandler

PostMessage PostRemoteMessage

Msg = dispatch(msg)

BQ

target

IMsgPass

Figure 2 –Basic Cell -Wrappers and Messages

[image: image3.emf]AMessageHandler

PostMessage

Msg = dispatch(msg)

BQ

target

AMessageHandler

PostMessage PostRemoteMessage

Msg = dispatch(msg)

BQ

target

Figure 3 -Communicating MessageHandlers

Executive makes these

connections

[image: image4.emf]Graphical User Interface

Local Executive

Local Application

Wrapper

Local Library

Wrapper

Message-Passing

Communication

Remote Executive

Remote Application

Wrapper

Remote Library

Wrapper

XML

mesages

XML

mesages

XML

mesages

XML

mesages

XML

mesages

XML

mesages

XML

mesages

Library

procedure calls

Application

Commandline,

File, IPC,

Memory-mapped files

Library

procedure calls

Application

Commandline,

File, IPC,

Memory-mapped files

Library

procedure calls

Figure 4 -Pluggable Remote Executive Architecture

XML

mesages

Shared Data

Management

XML

mesages

[image: image5.emf]+PostMessage(in msg : Message) : void

+Register(in target : IMsgPass) : void

+Dispose() : void

+name { get; set; }() : string

+type { get; set; }() : string

+isDisposed { get; }() : bool

«interface»

IMsgPass

#dispatch(in msg : Message) : Message

#GetMessage() : Message

#PostRemoteMessage(in msg : Message) : void

#ProcessMessages() : void

+Start() : void

+Wait() : void

-BQ : BlockingQueue<Message>

-target : IMsgPass

-msgThread : Thread

AWrapper BlockingQueue<Message>

Thread

#dispatch(in msg : Message) : Message

AMessageHandler

IMsgPass

Message Handling

ToolUI

ToolLib

Executive

ToolLib

Executive

MessageHandler

Form

ToolUI

FormInvoke

Participants

· IMsgPass

Defines interface for cells to communicate.
· Wrapper

Converts any software block into matrix cell and provides blocking queue to store incoming messages and dispatcher thread to dequeue messages from queue. Its virtual function dispatch is overridden by derived classes to handle messages in application specific ways.
· AMessageHandler
Defines code block aka cell and has to implement message handler to process incoming messages and perform operations based on that.
· Message

Defines methods to create an xml message with source and destination to hold parameters required to communicate between code blocks.
Collaboration
Normally a block, acting as mediator, creates instances of other blocks and routes messages between them based on source and destination fields of message. Instances are generally created once and are stored in static data structure. We’ve experimented with different levels of mediator activity in several of our research projects.
Consequences

The Software Matrix pattern has the following benefits and liabilities:

· It creates software-IC code blocks. The Software matrix helps to create loosely coupled code blocks - almost any existing component can be converted to a matrix cell using a wrapper and defining its message dispatcher. This adds flexibility as constructing a new system from existing blocks won’t have dependencies on a large set of unique function signatures and plugging of new blocks is very easy.
· It promises reduced development cost and maintenance cost and quicker time-to-market for product families composed of same base code blocks. Code blocks - offering new required functionality - become matrix cells and can be plugged into any system. Following the matrix-based architecture allows very fast development by registering existing cells and putting in empty, place-holder, cells for future blocks and developing their functionality later.
· It makes a system dynamic. Cells can be plugged in or plugged out at run time. If more functionality is expected then a new version of cell can be plugged in to system and an old version can be detached without shutting down the system. This process can be automated using a central loader which checks for new version of block and upgrades block when possible.
· Testing of the system can be made more dynamic. Based on an idea of dynamic reconstruction of a system by plugging in and plugging out modules to the system, we can create test cells and we can replace any system cell with special test cell and test system at run time.
· It adds liability on developers to communicate message interpretations across various teams or making usage public so anyone can use their cells.

· Sometimes we have to trade off between flexibility and message-passing overhead. Messages have to travel from blocking queue to dispatcher thread, thread to message handler function and message handler function to message processor function. Flexibility adds some overhead.
Implementation

Here are some useful techniques of implementing the software matrix pattern:

· Mediator based implementation: Basic architecture proposed mediator based architecture where mediator does message routing between loaded blocks. Mediator loads blocks and starts up the system.
· Hierarchy of Mediators: sometimes in large systems when there are many blocks and complex interactions through message passing may cause bottlenecks, we can use a hierarchy of mediators. Blocks remain the same but a specific mediator does part of the message routing if can, but if it can’t, then it will pass the message to a top level mediator who can forward it to mediator capable of routing that message.
· Mediator not routing messages: in this type of implementation, mediator is still loading all blocks but whenever particular block wants to talk to other block, mediator will connect them directly and let them talk.
· If implemented in C# or C++ on windows platform, blocks (cells) can be composed as Dynamic Link Libraries and can be loaded through loader. Java classes can be converted to jar files and classes can be loaded from classpath using class discovery.
Sample Code:

Known Uses:
· The Software Matrix: Architecture for software salvage, thesis by Riddhiman Ghosh, who implemented a directory synchronizer both using software matrix and a conventional approach. Performance degradation was not perceptible to human users. We measured a few percent difference in operational latency.

· Framework for self-healing and dynamic construction: application of software matrix, thesis by Aniruddha Krishna, successfully demonstrated ease of system development using matrix architecture. He demonstrated the effectiveness of dynamically rearranging system components to heal a system after part of the system failed.
· Remote Software Assistant class project (CSE 784: Software Studio): Class of 24 students implemented moderate size of software system using software matrix architecture. Software consisted of tools like model builder, software repository, testbed server, requirements database manager, bug tracker, change logger, and a code analyzer. it successfully demonstrated how easily things can be integrated and composed of various blocks and how any system can be composed using message passing based software matrix framework.
· Cross Platform Development, thesis by Vijay Appadurai demonstrated building programs for both Windows and Linux platforms from a common Software Matrix code base.
· Athena: Tool for diagram based code generation, thesis by Tilak Patel. My goal is to show dynamic templatized construction from available cells and placeholder cells and experiment with possible designs of systems and automatic code generation.
Related Patterns:

Mediator

Abstract factory
Singleton

References:
1. Dr. Fawcett’s research page http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/research.htm
2. Riddiman Ghosh’s research page http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/softwarematrix.htm
3. Anirudha Krishna’s research page http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/SelfHealingSoftwareMatrix.htm
4. Vijay Appadurai’s research page http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/SWMatrixCrossPlatformDev.htm
5. Software Studio http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/RSA/rsa2006.html
6. Design Patterns: Elements of Reusable Object-Oriented Software - Gang of four
7. Hill side http://hillside.net/
� Salvage means Lifting of a significant block of existing systems and inserting them into a newly developed system.

�

_1245914870.vsd
#dispatch(in msg : Message) : Message
#GetMessage() : Message
#PostRemoteMessage(in msg : Message) : void
#ProcessMessages() : void
+Start() : void
+Wait() : void

-BQ : BlockingQueue<Message>
-target : IMsgPass
-msgThread : Thread

AWrapper

+Message()
+Message(in XmlMsgString : string)
+Message(in source : string, in destin : string, in body : string)
+ToString() : string
+copy() : Message

+source : string
+saddr : string
+sport : string
+destin : string
+daddr : string
+dport : string
+body : string

Message

+PostMessage(in msg : Message) : void
+Register(in target : IMsgPass) : void
+Dispose() : void
+name { get; set; }() : string
+type { get; set; }() : string
+isDisposed { get; }() : bool

«interface»
IMsgPass

BlockingQueue<Message>

Thread

#dispatch(in msg : Message) : Message

AMessageHandler

-End1

1

-End2

*

-End3

1

-End4

*

AMessageHandler

PostMessage

PostRemoteMessage

Msg = dispatch(msg)

BQ

target

IMsgPass

-End3

1

-End4

*

Figure 2 – Basic Cell - Wrappers and Messages

_1245914939.vsd
AMessageHandler

PostMessage

Figure 3 - Communicating MessageHandlers

Msg = dispatch(msg)

BQ

target

AMessageHandler

PostMessage

PostRemoteMessage

Msg = dispatch(msg)

BQ

target

Executive makes these connections

_1245914957.vsd
Graphical User Interface

Local Executive

Local Application
Wrapper

Local Library
Wrapper

Message-Passing
Communication

Remote Executive

Remote Application
Wrapper

Remote Library
Wrapper

XML
mesages

XML
mesages

XML
mesages

XML
mesages

XML
mesages

XML
mesages

XML
mesages

Library

procedure calls

Application

Commandline,
File, IPC,
Memory-mapped files

Library

procedure calls

Application

Commandline,
File, IPC,
Memory-mapped files

Library

procedure calls

Figure 4 - Pluggable Remote Executive Architecture

XML
mesages

Shared Data Management

XML
mesages

_1245913967.vsd
Select box and type. Control handles change width & height of box.

+PostMessage(in msg : Message) : void
+Register(in target : IMsgPass) : void
+Dispose() : void
+name { get; set; }() : string
+type { get; set; }() : string
+isDisposed { get; }() : bool

«interface»
IMsgPass

#dispatch(in msg : Message) : Message
#GetMessage() : Message
#PostRemoteMessage(in msg : Message) : void
#ProcessMessages() : void
+Start() : void
+Wait() : void

-BQ : BlockingQueue<Message>
-target : IMsgPass
-msgThread : Thread

AWrapper

BlockingQueue<Message>

Thread

#dispatch(in msg : Message) : Message

Message

-End1

1

-End2

*

-End3

1

-End4

*

IMsgPass

-End3

1

-End4

*

#dispatch(in msg : Message) : Message

testReceiver

#dispatch(in msg : Message) : Message
+listenProc()
+StartListener(in port : int) : void
+StopListener() : void

-sender : TcpClient
-listener : TcpListener
-socketStream : Stream
-enc : ASCIIEncoding
-ListenForMessages : bool

Comm

-End3

1

#dispatch(in msg : Message) : Message

testSender

-End4

*

ThreadProc

-End3

1

-End4

*

- Holds socket and target
- defines message framing
- runs on message framing thread

- Listener thread
- message framing thread

- Message processing thread
- pulls messages from queue

_1245843889.vsd
Static Structure

#dispatch(in msg : Message) : Message

ToolUI

+PostMessage(in msg : Message) : void
+Register(in target : IMsgPass) : void
+Dispose() : void
+name { get; set; }() : string
+type { get; set; }() : string
+isDisposed { get; }() : bool

«interface»
IMsgPass

#dispatch(in msg : Message) : Message
#GetMessage() : Message
#PostRemoteMessage(in msg : Message) : void
#ProcessMessages() : void
+Start() : void
+Wait() : void

-BQ : BlockingQueue<Message>
-target : IMsgPass
-msgThread : Thread

AWrapper

BlockingQueue<Message>

Thread

#dispatch(in msg : Message) : Message

AMessageHandler

-End1

1

-End2

*

-End3

1

-End4

*

#dispatch(in msg : Message) : Message

ToolLib

-End3

1

-End4

*

IMsgPass

-End3

1

-End4

*

Message Handling

#dispatch(in msg : Message) : Message

Executive

-End3

1

-End4

*

-End3

1

-End4

*

#dispatch(in msg : Message) : Message

ToolLib

#dispatch(in msg : Message) : Message

Executive

#dispatch(in msg : Message) : Message

MessageHandler

-End3

1

-End4

*

-End3

1

-End4

*

#dispatch(in msg : Message) : Message

Form

#dispatch(in msg : Message) : Message

ToolUI

-End3

1

-End4

*

FormInvoke

