Flyweight Design Pattern
O

e “USE SHARING TO SUPPORT LARGE NUMBERS
OF FINE-GRAINED OBJECTS EFFICIENTLY.”
o One object instance holding shared (intrinsic) state
o Unigue (extrinsic) state is stored outside of the
shared object

Motivation

___ @

Folder Representation

™ Flyweight demo . -| I:IIE[
Adam Bill Charlie

Dave Edward Fred

cEml -

|

Zeorge

Benefits

Forces

\ v / Forces

& ~
v

Related Patterns

Consequences

John Reekie (UTS)

Forces

___ @

‘To obtain a fine grained object structure
‘We will possibly have many objects

‘Cost of storing a copy of each object is high

Motivation Example

O

Folder Representation

;ﬂﬂﬂrweight demo 3 ;]QIE[
Adam Bill Charlie
Dave Edwgd Fred
-
Zeorge

Applicability
___ T

FLYWEIGHT PATTERN IS USED WHEN ALL OF THE
FOLLOWING ARE TRUE

- An application has a large number of objects
Store costs are high
- Most object state can be made extrinsic???
- Authors claim. I strongly disagree
- You want most of object state intrinsic, e.g., shared
- Many groups of objects will be replaced by few shared
objects(intrinsic)
- The application doesn’t depend on object identity

Structure

FlyvweightFactory - _.=J Flyweight

getFlyweight(key) @ operation(extrinsicState)

if(flyweight(key) exists) {
return existing flyweight: }
else {

create new flyweight:

add it to pool of flyweights
return the new flyweight;: }

ConcreteFlyweight UnsharedConcreteFlyweight

operation(extrinsicState) operation(extrinsicState)

intrinsicState allState
Client

Participants

___ @

e Flyweight (Window)

Declares interface that flyweights can use to receive and act on
Intrinsic state

e ConcreteFlyweight (Icon)
Implements flyweight interface and adds storage for intrinsic state.
Must be shareable
e¢ UnsharedConcreteFlyweight (Name, Location)
— Commonly has ConcreteFlyweights as children
e Flyweightfactory
— Creates and manages flyweight objects
e Client
—~ Maintains references to flyweights
- Computes or stores extrinsic state of flyweights

Application

Collaborations

___ @

e State of Flyweight is characterized by intrinsic and extrinsic
state

Intrinsic state stored in ConcreteFlyweight
Extrinsic state stored or computed by Client Objects

e Clients should not instantiate ConcreteFlyweights directly
Proper sharing will not occur

® ®
flyweight
pool
' . " ‘
(aFlyweightFactory aConcre teFlyweight aConcre teFlyweight
intrinsicState | N PR ‘
L flyweights [2 _ L intrinsicState

Consequences

___ @

e Pros:

Cost saved by space savings (Function of reduction of number of
instances and amount of intrinsic state per object)

e Cons:

Cost increased in run-time to transfer, find or compute extrinsic
state

Implementation

___ @

e Removing Extrinsic State
Must be easily identifiable and be removed from shared objects

Pattern is only useful if state can be shared

e Managing Shared Objects
Clients should not instantiate ConcreteFlyweights directly
Flyweight factory allows clients to locate a particular flyweight
Reference counting and garbage collection can be used

Known Uses

___ @

-2D/3D Vector drawing program
2D /3D Video game
Cad applications

Related Patterns
___ T

e Flyweight is often combined with Composite pattern to
Implement a logically hierarchical structure in terms of
a graph with shared leaf nodes

e State and Strategy can be implemented as flyweights

— State: An object can alter its behavior when its internal state
changes

— Strategy: Define a family of algorithms and make them
Interchangeable

References

___ @

‘Design Patterns, Elements of Reusable Object-Oriented
Software, Erich Gamma, et. al.

‘http://www.informit.com/articles/article.aspx?p=31563&se
gqnum-=3

‘http://sourcemaking.com/design patterns/flyweight
‘http://www.xml.com/pub/a/2000/01/19/feature/index.html
?page=3

‘http://www.blackwasp.co.uk/flyweight.aspx

‘http://www.ecs.syr.edu/faculty/fawcett/handouts/cse776/p
resentations-students/flyweight/

http://www.informit.com/articles/article.aspx?p=31563&seqnum=3
http://sourcemaking.com/design_patterns/flyweight
http://www.xml.com/pub/a/2000/01/19/feature/index.html?page=3
http://www.blackwasp.co.uk/flyweight.aspx
http://www.ecs.syr.edu/faculty/fawcett/handouts/CSE776/Presentations-Students/Flyweight/

Questions????

O

