Flyweight Design Pattern
O




e “USE SHARING TO SUPPORT LARGE NUMBERS
OF FINE-GRAINED OBJECTS EFFICIENTLY.”
o One object instance holding shared (intrinsic) state
o Unigue (extrinsic) state is stored outside of the
shared object
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Forces
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‘To obtain a fine grained object structure
‘We will possibly have many objects

‘Cost of storing a copy of each object is high
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Applicability
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FLYWEIGHT PATTERN IS USED WHEN ALL OF THE
FOLLOWING ARE TRUE

- An application has a large number of objects
Store costs are high
- Most object state can be made extrinsic???
- Authors claim. I strongly disagree
- You want most of object state intrinsic, e.g., shared
- Many groups of objects will be replaced by few shared
objects(intrinsic)
- The application doesn’t depend on object identity




Structure

FlyvweightFactory - _.=J Flyweight

getFlyweight(key) @ operation(extrinsicState)

if(flyweight(key) exists) {
return existing flyweight: }
else {

create new flyweight:

add it to pool of flyweights
return the new flyweight;: }

ConcreteFlyweight UnsharedConcreteFlyweight

operation(extrinsicState) operation(extrinsicState)

intrinsicState allState
Client




Participants
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e Flyweight (Window)

Declares interface that flyweights can use to receive and act on
Intrinsic state

e ConcreteFlyweight (Icon)
Implements flyweight interface and adds storage for intrinsic state.
Must be shareable
e¢ UnsharedConcreteFlyweight (Name, Location)
— Commonly has ConcreteFlyweights as children
e Flyweightfactory
— Creates and manages flyweight objects
e Client
—~ Maintains references to flyweights
- Computes or stores extrinsic state of flyweights




Application




Collaborations
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e State of Flyweight is characterized by intrinsic and extrinsic
state

Intrinsic state stored in ConcreteFlyweight
Extrinsic state stored or computed by Client Objects

e Clients should not instantiate ConcreteFlyweights directly
Proper sharing will not occur
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Consequences
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e Pros:

Cost saved by space savings (Function of reduction of number of
instances and amount of intrinsic state per object)

e Cons:

Cost increased in run-time to transfer, find or compute extrinsic
state




Implementation
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e Removing Extrinsic State
Must be easily identifiable and be removed from shared objects

Pattern is only useful if state can be shared

e Managing Shared Objects
Clients should not instantiate ConcreteFlyweights directly
Flyweight factory allows clients to locate a particular flyweight
Reference counting and garbage collection can be used




Known Uses
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-2D/3D Vector drawing program
2D /3D Video game
Cad applications




Related Patterns
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e Flyweight is often combined with Composite pattern to
Implement a logically hierarchical structure in terms of
a graph with shared leaf nodes

e State and Strategy can be implemented as flyweights

— State: An object can alter its behavior when its internal state
changes

— Strategy: Define a family of algorithms and make them
Interchangeable
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