
FACTORY METHOD PATTERN

CSE776-Design Patterns
Jim Fawcett

Intent

“Define an interface for creating an object,
but let subclasses decide which class to
instantiate”

 It lets a class defer instantiation to subclasses at
run time.

 It refers to the newly created object through a
common interface.

Also Known as

Virtual Constructor

The main intent of the virtual constructor
idiom in C++ is to create a copy of an object or
a new object without knowing its concrete
type and this is exactly what the Factory
Method does.

Motivation

Frameworks:

Factory Method is used in frameworks where
library code needs to create objects of types which
may be sub classed by applications using the
framework.

Since the library knows when an object needs to
be created, but not what kind of object it should
create, this being specific to the application, it can
use the Factory Method.

Motivating Examples – Cont.

Forces

We want to have a set of reusable classes
which are flexible enough to be extended.

The client does not know the type of object
that needs to be created in advance and still
wants to perform operations on them.

Applicability

Factory Method is needed when:

A class can’t anticipate the types of objects it
must create.

A class wants its subclasses to specify the
object to create.

The designer wants to localize knowledge of
helper sub classes.

Basic Structure

+FactoryMethod()

+AnOperation()

Creator

+FactoryMethod()

ConcreteCreator
ConcreteProduct

Product

...

product=FactoryMethod()

...

return new ConcreteProduct

Participants

Product (IHttpHandler)
Defines the interface of objects the factory method

creates.

ConcreteProduct (ASP.SamplePage_aspx)
Implements the Product Interface

Creator (IHttpHandlerFactory)
Declares the factory method and may provide a default

implementation for it.
Defines the return type as Product.

ConcreteCreator (PageHandlerFactory)
Overrides the factory method to return an instance of

ConcreteProduct.

Collaborators

The Creator relies on the subclass’s factory
method to return an instance of appropriate
ConcreteProduct object.

The Creator executes some sequence of
operations on the object or simply returns a
reference to Product (bound to the
ConcreteProduct object) to the client.

Consequences

The client code deals only with the product
interface, therefore it can work with any user
defined Concrete Product classes (decoupling
subclass details from client classes).

New concrete classes can be added without
recompiling the existing client code.

It may lead to many subclasses if the product
objects requires one or more additional
objects. (Parallel class hierarchy)

Consequences – Cont.

+CreateManipulator()

Figure

+CreateManipulator()

TextFigure

+CreateManipulator()

LineFigure

+DownClick()

+Drag()

+UpClick()

Manipulator

+DownClick()

+Drag()

+UpClick()

TextManipulator

+DownClick()

+Drag()

+UpClick()

LineManipulator

Client

Here, the client needs a manipulator to handle the figure.

Rather than having the client be aware of the manipulators,

this knowledge is limited to the concrete Figure subclasses.

Implementation

Two major varieties

Abstract Creator class with no default
implementation

Concrete Creator with default
implementation.

Other variations:

Parameterized Methods

Templates

Parameterized Factory
Methods
class Creator {

public:

 virtual Product* Create(ProductID id) {

 if (id == P1) return new MyProduct;

 if (id == P2) return new YourProduct;

 // other products ...

 return 0;

 }

};

// You can subclass the Creator to handle more IDs

Product* MyCreator::Create(ProductID id) {

 if (id == P3) return new TheirProduct;

 // Handle other IDs

 return this->Creator::Create(id);

};

Templatized Factory Methods

class Creator {

public:

 Creator() {

 // You won’t call factory method here (why?)

 // Use lazy initialization instead

 }

 virtual Product* CreateProduct() = 0;

};

template <class T>

class StandardCreator: public Creator {

public:

 virtual Product* CreateProduct() {

 return new T;

 }

}

// In the Client

StandardCreator<MyProduct> myCreator;

Known Uses

It is a pervasive pattern.

It is used in several places in the Java API. For
example, URLConnection has a method
getContent that returns the content as an
appropriate object (html, gif etc.)

.Net Framework Class Library
Factory method is used in:
 Systems.Collections.IEnumerable,

 System.Net.WebRequest

 System.Security.Cryptography

Related Patterns

Abstract Factory

Template Methods

Prototypes

References

Design Patterns, Elements of Reusable
Object-Oriented Software, Erich Gamma, et.
al., Addison-Wesley, 1994,
ISBN 0-201-63361-2

http://www.ondotnet.com/pub/a/dotnet/2003
/08/11/factorypattern.html

http://en.wikibooks.org/wiki/More_C%2B%2
B_Idioms/Virtual_Constructor

http://www.ondotnet.com/pub/a/dotnet/2003/08/11/factorypattern.html
http://www.ondotnet.com/pub/a/dotnet/2003/08/11/factorypattern.html
http://en.wikibooks.org/wiki/More_C++_Idioms/Virtual_Constructor
http://en.wikibooks.org/wiki/More_C++_Idioms/Virtual_Constructor

