Pattern: Command

Why this pattern? What does it do? Where is it used?
1. What is main intent of this Pattern?
a. Encapsulate an invocation as a queue-able, storable, object

b. de-couple the event triggering a command from the processing associated with the command.

2. What is weird about this pattern?

a. Library’s invoker calls application code!

3. What is a good mental model for this Pattern?

a. Hollywood principle: Don’t call me, I’ll call you.

4. What is important about its structure?
a. Three distinct parts: the invoker, the command, and the receiver

5. What is important about its behavior?

a. Allow library code that doesn’t know anything about using applications to call application specific code.

b. Essentially the library integrates seamlessly with an application designed, perhaps years, later.

6. When would you use this pattern?

a. When you have a hammer everything looks like a nail. I use the command everywhere.

7. Are there other patterns you might consider combining with this pattern?

a. Almost all, and none. Command is a stand-alone pattern that is widely useful.
8. Are there other patterns you might consider using instead of this pattern?

a. Observer
Command Structure
[image: image1.emf]Operation:

Register(command*);

Operation();

invoker

Operation:

execute()=0;

command

Operation:

execute();

concreteCommand

client

Operation:

action();

receiver

client code

library code

� EMBED Visio.Drawing.11 ���

[image: image2.emf]Operation:

Register(command*);

Operation();

invoker

Operation:

execute()=0;

command

Operation:

execute();

concreteCommand

client

Operation:

action();

receiver

client code

library code

_1306724604.vsd
Class name

Class name

Attribute:

client

Operation:
 Register(command*);
 Operation();

invoker

Operation:
 execute()=0;

command

Operation:
 execute();

concreteCommand

Operation:
 action();

receiver

client code

library code

