
Command Pattern

Jim Fawcett
CSE776 – Design Patterns
Fall  2014



Library
Events



Command Pattern Intent

A command encapsulates a request as an object.  A 
reference to the command is given to an invoker for later 
invocation.

• Intent:
• decouple the event triggering a command from the processing associated 

with the command.  

• The invoker of a command knows about the trigger event but does not need 
to know anything about command’s processing.  The creator of the 
command class knows about the processing but nothing about the invoker’s 
event.

• With commands, you can control their selection, sequencing, queue them, 
undo them, and otherwise manipulate them.

• Commands are an object-oriented replacement for function pointers. 



Motivation

• Command addresses the need 
to issue requests to objects 
without knowing anything 
about the objects themselves. 

• At instantiation, the Command 
is given any information it will 
need to later carry out its task. 

• The actual order to carry out 
that request is given at a later 
time. 

• The key to this pattern is an 
abstract Command Class.









Method
• A client encapsulates a 

request, along with needed 
state, by deriving a specialized 
command from the invoker’s 
abstract base command class.

• Client associates command 
with a receiver (by the 
processing it encapsulates) and 
sends it to the invoker.

• The invoker simply uses the 
command interface to cause 
execution in the receiver



Command Structure

Operation:

  Register(command*);

  Operation();

invoker

Operation:

  execute()=0;

command

Operation:

  execute();

concreteCommand

client
Operation:

  action();

receiver

client code

library code



Command Participants

• Command provides an interface for executing commands

• ConcreteCommand provides binding between a receiver 
and command.  It implements execution by calling receiver 
methods.

• Client creates a concreteCommand object, sets its receiver, 
and registers command with invoker

• Invoker issues command when an invoker event occurs

• Receiver actually performs the command processing



Collaborators

•Client creates concreteCommand and specifies 
receiver

• Invoker stores concreteCommand for later use

• Invoker issues request by calling execute() on 
command

•ConcreteCommand object invokes operations 
on its receiver to carry out the request



Command Event Trace

receiver client concreteCommand invoker

create
command

register command

execute()

action(...)

register
receiver

Don’t call us, 
we’ll call you



Applicability

•Use the command when you want to:

• parameterize objects by an action to perform (menu items)

• specify, queue, and execute requests at different times
(a command object can have lifetime independent of the 
original request)

• respond to library events in client code
(library calls client functions even though the library knows 
nothing of client code)



Applicability
• As an object-oriented replacement for callback functions. Such functions are 

typically useful when designing menus and other user interfaces. 

• Specify, queue, and then execute requests at different times. Command 
objects have lifetimes independent of their original request. 

• Respond to library events in client code (library calls client functions even 
though the library knows nothing of client code).

• Supporting undo-able transactions. If the Command stores the relevant state 
of the receiver, it can reverse its own effects upon the receiver.

• Defining the structure of a system such that a broad class of high-level 
operations are built out of primitives. The Command allows various types of 
transactions to be invoked in the same way. 



Consequences

•Command decouples the object that invokes an 
operation from the one that knows how to 
perform it.

•Commands are first-class objects.  They can be 
manipulated and extended like any other object.

•You can assemble commands into a composite 
command.

• It’s easy to add new commands, because you don’t 
have to change existing classes.



Known Uses

•Office – Word, Excel, …

•Virtually every graphical user interface known 
to mankind uses either callbacks, delegates, or 
commands.  The object oriented ones use 
commands.  MFC uses callbacks.  .Net uses 
delegates.

• .Net delegates are a limited form of command



Navigator - Part of Code Analyzer

nav defProc

passOne passTwo

depends nameTable

fileInfo

dependencyTable

semi tokergrammar



Related Patterns

• The relationships to other patterns as mentioned in 
the class text are rather tenuous.

• The command pattern is similar to the observer 
pattern.  In  both patterns an interested party can 
register to be notified of an event.



Operation:

  Register(command*);

  doCommands();

  doEvents();

Attribute:

  vector<command*> registrants

invoker
Operation:

  execute(invoker::events event) = 0;

command

Operation:

  concreteCommand1(string s);

  execute(invoker::events event);

Attribute:

  string cc1;

concreteCommand1

Operation:

  concreteCommand1(string s);

  execute(invoker::events event);

Attribute:

  string cc1;

concreteCommand2

client

void main() {

  concreteCommand1 comm1 ("client #1");

  concreteCommand2 comm2("client #2");

  invoker inv;

  inv.Register(&comm1);

  inv.Register(&comm2);

  inv.doEvents();

Command Pattern Skeleton Code

Operation:

  receiver(string &name);

  action();

Attribute:

  string _name;

receiver

Operation:

  receiver(string &name);

  action();

Attribute:

  string _name;

receiver



Sample Code: Catalog Program

navig

userProc typedef map<string,fileSet> dirMap

typedef set<fileInfo,smallert> fileSet

smallerfileInfo

catalog::main( )

Attribute:

   virtual void dirsProc(const string &dir);

  virtual void fileProc(const fileInfo &fi);

defProc

wildcards

Class Diagram - Catalog Program

program executive

navigate directory

subtree

filter filenames

with wildcards

find files in a dir

extract file information
define ordering

for fileInfo objects

default processing of

files and directories

while navigating

application specific

file/dir processing
STL containers

store a set of directories and their associated files

Note that catalog::main( ) and navig actually refer to

a userProc object through defProc pointers

client

invoker
command

concrete

command

receiver



Application to Graph Algorithms

• Many graph algorithms are 
based on a traversal process

• Breadth First Search

• Shortest paths

• Diameter

• Depth First Search

• Strong components

• Topological sorting

• All of the above may be 
evaluated by executing 
functions on the graph nodes 
during search.



Command Pattern Applied to Graphs

Graph<T>

Node<T>

command

StrongCompCommand TopoSortCommand

StrongComp TopoSort

Receiver

Invoker



End of Presentation


